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Substituent effects on exchange anisotropy in single- and multiorbital organic radical magnets

Jonathan Marbey,1,* Aaron Mailman ,2 Richard T. Oakley ,3 Stephen Hill ,1,† and Stephen M. Winter4,‡

1National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32310, USA
2Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland

3Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
4Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, USA

(Received 24 September 2023; revised 18 March 2024; accepted 20 March 2024; published 19 April 2024)

The contribution of heavy-atom substituents to the overall spin-orbit interaction in two classes of organic
radical molecular magnets is discussed. In “single-orbital” radicals, spin-orbit coupling (SOC) effects are well
described with reference to pairwise anisotropic exchange interactions between singly occupied spin-bearing
orbitals on neighboring molecules; anisotropy requires the presence of spin density on heavy-atom sites with
principal quantum number n > 3. In “multiorbital” radicals, SOC involving virtual orbitals also contributes to
anisotropic exchange and, as a result, the presence of heavy (n > 3) atoms in formally non-spin-bearing sites
can enhance pseudodipolar ferromagnetic interaction terms. To demonstrate these effects, ferromagnetic and
antiferromagnetic resonance spectroscopies have been used to probe the exchange anisotropy in two organic
magnets, one a “single-orbital” ferromagnet, the other a “multiorbital” spin-canted antiferromagnet, both of
which contain a heavy-atom iodine (n = 5) substituent. While the symmetry of the singly occupied molecular
orbital in both radicals precludes spin-orbit contributions from iodine to the overall exchange anisotropy, the
symmetry and energetically low-lying nature of the lowest unoccupied molecular orbital in the latter allows for
appreciable spin density at the site of iodine substitution and, hence, a large exchange anisotropy.
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I. INTRODUCTION

The early development of organic (p-block) radical-based
magnetic materials was characterized by low magnetic or-
dering temperatures (<2 K) and vanishingly small coercive
fields (Hc < 10 Oe) [1–6]. Higher ordering temperatures
were eventually encountered, for example, in the spin-
canted antiferromagnet β-NCC6F4-DTDA (TN = 36 K) [7]
and the charge-transfer salt ferromagnets [BBDTA][GaCl4]
(TC = 7 K) [8], [BBDTA][Au(CN)2] (TC = 8 K) [9], and
C60 • TDAE (TC = 16 K) [10], but in none of these materials
was there any indication of magnetic hysteresis. In contrast to
spin S > 1

2 metal-based systems, where single-ion anisotropy
may arise from crystal-field effects, Kramers’ theorem forbids
zero-field magnetic anisotropy for isolated S = 1

2 radicals.
In such systems, the source of coercivity is therefore con-
fined to intermolecular spin-spin interactions, either through
long-range dipolar effects or anisotropic spin-orbit coupling
(SOC) contributions to the exchange. The former depends on
crystal morphology and microscopic structure, the latter on
the presence of heavy atoms (with principal quantum number
n > 3) in spin-bearing sites. It is therefore not surprising that
early “light-atom” magnets such as those noted above showed
no coercive field, Hc, as SOC effects are very weak.

Evidence for increased magnetic hysteresis and pos-
sible spin-orbit-mediated anisotropic exchange interactions

*Present address: Laboratory for Physical Sciences, 8050 Green-
mead Drive, College Park, MD 20740, USA.

†shill@magnet.fsu.edu
‡winters@wfu.edu

emerged with the development of resonance stabilized het-
erocyclic radicals based on the N-alkyl-pyridine bridged
bisdithiazolyl framework and its selenium-containing variants
1A–1D (E1/E2 = S/Se; see Fig. 1) [11–13]. From a structural
perspective the effects of steric protection provided by the
exocyclic substituents (R1/R2) coupled with a highly delo-
calized spin distribution was sufficient, in most cases [14],
to preclude solid-state association (dimerization), even for
selenium-based radicals. These features allowed for system-
atic studies of isotropic and anisotropic exchange between
spins on heavy (n > 3) centers [15]. In one particular isostruc-
tural family of radicals, 1A–1D (R1 = Et, R2 = Cl) with space
group P4̄21m, in which herringbone-packed arrays of slipped
radical π stacks are wrapped about 4̄ axes (Fig. 2), ferromag-
netic (FM) order was observed, with the critical temperature
TC increasing with the extent of Se incorporation from 12.8 K
in 1B to 17 K in 1D, the latter being very high for an
organic ferromagnet at ambient pressure [16,17]. Moreover,
in both cases, significant and increasing magnetic hysteresis
was observed, with the coercive field Hc rising from 250 Oe
in 1B (at 2 K) to 1370 Oe in 1D (at 2 K). These values,
which are two to three orders of magnitude larger than those
encountered in conventional light-atom organic magnets, were
proposed to arise from the contribution of SOC effects to
anisotropic exchange occasioned by the incorporation of se-
lenium; similar trends had been observed in the g anisotropy
of isolated S- and Se-based radicals. Later ferromagnetic reso-
nance (FMR) measurements of the magnitude of the magnetic
anisotropy in 1B and 1D (R1/R2 = Et/Cl), both with and with-
out applied pressure, supported this interpretation [18–20].
Subsequent work on the isostructural bromo derivative
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FIG. 1. Valence bond (VB) representations of (a) “single-orbital”
and (b) “multiorbital” bisdithiazolyl radicals 1 and 2 and their
selenium-containing variants. Kohn-Sham singly occupied molecu-
lar orbital (SOMO) for (c) prototypal model 1A (R1/R2 = H) and
(d) SOMO/LUMO pair for 2A (R2 = H). (e) Two-site, two-orbital
interaction diagram for two adjacent radicals, 1, expressing site-to-
site exchange coupling, Ji j , in terms of the on-site Coulomb potential,
U, and electron hopping, t00

i j . (f) Two-site, four-orbital interaction
diagram for two radicals, 2, with a small SOMO-LUMO gap, �ϵ.
The SOMO-SOMO (t00

i j ) and SOMO-LUMO (t10
i j and t01

i j ) hopping
integrals, and the SOMO-LUMO electron exchange integral, K01

ii , are
indicated [15].

FIG. 2. (a) Herringbone packed arrays of slipped π stacks of
1D (R1/R2 = Et/Cl), space group P4̄21m, viewed parallel to the b
axis [16]. (b) Head-over-tail packed layers of radicals in 2A•EtCN
(R2 = I), space group Pnma, viewed parallel to the c axis [30].
(c) Magnetization M versus T at H = 100 Oe for 1D (R1/R2 = Et/Cl)
[16] and (d) for 2A•EtCN (R2 = I) [30]. Hysteresis in M versus
H at T = 2 K for (e) 1D (R1/R2 = Et/Cl) [16] and (f) 2A•EtCN
(R2 = I) [30].

1D (R1/R2 = Et/Br) revealed a slight increase in Hc to 1620
Oe (at 2 K) [21], while in the iodo derivative 1D (R1/R2 =
Et/I), lower TC (10.5 K) and Hc (370 Oe at 2 K) values
were observed [22]. However, the TC of all three materials
(R2 = Cl, Br, I) increased under pressure, reaching 27.5 K for
R2 = I at 2 GPa [23].

Synthetic routes to a second class of resonance stabi-
lized bisdithiazolyl radical, 2A, in which the N-alkyl-pyridine
bridge in 1A is replaced by an oxobenzene unit [Fig. 1(b)],
were later developed. While the selenium-containing variants
2B–2D are strongly associated in the solid state and there-
fore lack any magnetic signature, a wide range of all-sulfur
radicals 2A with different R2 groups have been character-
ized, many of which display interesting magnetic as well as
conductive properties [24–27]. In particular, the family of
halogen-substituted radicals 2A (R2 = F, Cl, Br, I) has pro-
vided a rich source of magnetic information; several phases
have been observed, including some solvates. Both the R2 = F
(space group Cmc21) [28] and R2 = Cl (space group Pna21)
[29] derivatives order as spin-canted antiferromagnets, with
Néel temperatures TN = 13 and 8 K, and coercivities Hc =
290 and 80 Oe (at 2 K), respectively. While the chloro, bromo,
and iodo derivatives form isostructural acetonitrile (MeCN)
solvates (space group Pna21) which do not order magneti-
cally, crystallization of the iodo derivative from propionitrile
(EtCN) generates a solvate 2A•EtCN (R2 = I), space group
Pnma, which adopts a layered structure (Fig. 2) and orders
as a spin-canted antiferromagnet (SCAFM) [30]. This latter
material is striking not only for its high ordering temperature
(TN = 35 K), which is just below that of β-NCC6F4-DTDA
[7], but also for its coercive field (Hc = 1060 Oe at 2 K),
which is exceptionally large for a nominally light-atom
radical.

Understanding the magnetic properties of these two classes
of radicals 1 and 2, in particular, the role played by
heavy atoms (n > 3) in determining the degree of magnetic
anisotropy that ultimately influences magnetic hysteresis, re-
quires different theoretical models for describing anisotropic
exchange interactions [15]. In class 1 radicals, which we refer
to as “single-orbital” systems, pairwise anisotropic exchange
arises due to the effects of SOC on the interactions between
spin-bearing singly occupied molecular orbitals (SOMOs) on
neighboring molecules; anisotropy requires the presence of
spin density on heavy-atom sites with principal quantum num-
ber n > 3 [Fig. 1(c)]. In class 2 radicals, SOC involving virtual
orbitals, principally the lowest unoccupied molecular orbital
(LUMO), also contributes to anisotropic exchange [Fig. 1(d)].
As a consequence, in these so-called “multiorbital” systems,
the presence of heavy atoms in formally non-spin-bearing
sites can enhance pseudodipolar ferromagnetic interaction
terms. In this paper we present theoretical expressions for
anisotropic exchange for both single- and multiorbital radi-
cals and demonstrate the validity of our approach by using
FMR and antiferromagnetic resonance (AFMR) spectroscopy
to explicitly probe the consequences of substitution effects on
the exchange anisotropy in 1D (R1/R2 = Et/I), and 2A•EtCN
(R2 = I), both of which contain a heavy atom substituent
iodine (n = 5) in the basal R2 position. Our measurements
confirm that the extent of SOC due to the iodine substituent is
dictated by the molecular orbitals that dominate the exchange.
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In neither case does the symmetry of the SOMO permit, to
first order, any spin density at the position of substitution
but, in 2A•EtCN (R2 = I), there is a low-lying unoccupied
molecular orbital (the LUMO) that does.

II. THEORETICAL MODELS

A. Single-orbital (SOMO-SOMO) radicals

Magnetic interactions in crystalline organic radicals are
typically dominated by isotropic exchange effects which are
often described in terms of the two-site single-orbital Hubbard
model [Fig. 1(e)]. Within this approximation, the exchange
parameter, Ji j , defined in terms of the isotropic Heisenberg
Hamiltonian, ĤI = −2Ji j Ŝi · Ŝ j (we use the −2JŜ1 · Ŝ2 con-
vention here for consistency with previous publications) [15],
between two radicals on adjacent sites, i and j, is given by the
expression in Eq. (1):

2Ji j = 2JFM
i j + 2JAFM

i j = 2K00
i j − 4

(
t00
i j

)2
/U . (1)

The magnitude and sign of Ji j depends upon (i) the inter-
molecular hopping integral t00

i j , which is directly related to the
SOMO-SOMO overlap; (ii) the on-site Coulomb potential U;
and (iii) the electron exchange integral K00

i j (Hund’s coupling),
between the two radicals. The “00” in the superscripts refer
to the SOMOs associated with the two radical sites; i.e., we
number orbitals at each site i and j, with “0” representing the
SOMO, “1” representing the LUMO, and so on (this will be-
come important later on when considering “multiorbital” radi-
cals). Qualitatively, strong overlap leads to a large virtual hop-
ping term 4(t00

i j )2
/U , which favors AFM exchange (−ve Ji j),

while FM exchange (Hund’s coupling with +ve Ji j) is favored
when SOMO-SOMO overlap, and hence t00

i j , is nullified.
While the above model [Eq. (1)] provides an effective

framework for rationalizing the magnetic behavior of virtually
all light-atom (n � 3) radicals, when heavier (n > 3) atoms
are incorporated into spin-bearing sites, as in the heavier
members of the series 1A–1D, SOC-driven anisotropic
exchange interactions must also be considered. For structures
based on isolated atomic ions, anisotropic exchange generated
by the coupling of spin (S) and orbital (L) momenta may
be expressed via the Hamiltonian, ĤSOC = λL̂ · Ŝ, with a
magnitude set by the empirical SOC constant, λ, which
grows sharply with increasing atomic number (roughly as
Z4) [31]. In molecular systems, however, the presence of
multiatom and multielectron SOC contributions is such
that ĤSOC cannot be expressed in terms of a single atomic
parameter λ, or operator L̂. Instead, one must introduce
an effective one-electron molecular operator ̂L, such that
ĤSOC = λ̂L · Ŝ, which may be computed within the spin-orbit
mean field (SOMF) approximation [32,33]. To first order, this
interaction in orbitally nondegenerate radicals mixes filled
and virtual (unoccupied) orbitals to induce nonzero orbital
angular momentum at the expense of the spin moment. The
physical consequence of this mixing is that the spin/orbital
composition of the observable magnetic moment becomes
orientation dependent, which results in increased anisotropy
in the g tensors of isolated selenium-based radicals compared
to their sulfur counterparts [34]. In the solid state, the
exchange interactions between composite spin-orbital

moments are also rendered anisotropic, and may be
generally described by extension of the isotropic Heisenberg
Hamiltonian (ĤI) to include anisotropic terms [Eq. (2)]:

ĤA = −2Ji j Ŝi · Ŝ j + Di j · Ŝi × Ŝ j + Ŝi · ↔
�i j · Ŝ j . (2)

In this expression the vector Di j is the antisymmetric
Dzyaloshinskii-Moriya (DM) term [35,36], while the sym-

metric tensor
↔
�i j represents the pseudodipolar (PD) interac-

tion. Both DM and PD effects arise from the presence of
SOC interactions and may contribute to the total magnetic
anisotropy given the appropriate symmetry conditions. The
DM term prefers Ŝi and Ŝ j to be canted with respect to each
other and lie in the plane perpendicular to the Di j vector, with
the anisotropy field HA ∼ |Di j |/μBJi j [not to be confused
with the anisotropic Hamiltonian ĤA of Eq. (2)]. The PD term
prefers Ŝi and Ŝ j to be parallel (perpendicular) to the largest

positive principal axis of the
↔
�i j tensor for AFM (FM) aligned

spins.
The standard microscopic description for the DM and

PD terms, which we have previously applied to 1B and 1D
(R1/R2 = Et/Cl), stems from the work of Moriya [35], who
considered isolated S = 1

2 atomic centers and computed SOC
corrections to the AFM exchange by using Eqs. (3) and (4):

DAFM
i j = 4i

U

{
t00
i j C00

ji − C00
i j t00

ji

}
, (3)

�AFM
i j = 4

U

{
C00

i j ⊗ C00
ji + C00

ji ⊗ C00
i j

}
. (4)

In the above two equations, the SOMO-SOMO spin-orbit
hopping parameter C00

i j is a (pseudo-) vector, with Cartesian
components given in Eq. (5),

[
C00

i j

]
μ

= 1

2

⎧⎨⎩∑
a �=0

〈
φ0

i

∣∣L̂μ

i

∣∣φa
i

〉
εa − ε0

t a0
i j +

∑
a �=0

t0a
i j

〈
φa

j

∣∣L̂μ

j

∣∣φ0
j

〉
εa − ε0

⎫⎬⎭,

(5)

in which μ � {x, y, z}; t a0
i j (t0a

i j ) is the hopping integral be-
tween orbital φa

i (φ0
i ) at radical site i and orbital φ0

j (φa
j ) at site

j. The index a runs over all orbitals in the summation, and a =
0 refers to the SOMO; εa and ε0 refer to the corresponding
orbital energies. The orientation and magnitude of C00

i j com-
pletely determines the character of the magnetic anisotropy.
While Moriya’s approach is equally valid for organic radicals,
a conceptual disadvantage of writing C00

i j in terms of molecu-

lar operators L̂i is that the energy scale for the interaction is no
longer set by a single atomic λ, complicating comparison of
different molecular materials. Moreover, SOC may have var-
ied effects on different orbitals, as discussed below. In order to
address this complication, we introduce the orbital-dependent
weighting functions shown in Eqs. (6) and (7):

Pμ(a,E) =
∑
b �= a

|εa − εb| � E

∣∣∣∣∣
〈
φa

i

∣∣L̂μ

i

∣∣φb
i

〉
εa − εb

∣∣∣∣∣, (6)

Ptot (a,E) =
∑
b �= a

|εa − εb| � E

√√√√∑
μ

(∣∣∣∣∣
〈
φa

i

∣∣L̂μ

i

∣∣φb
i

〉
εa − εb

∣∣∣∣∣
)2

. (7)
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FIG. 3. Calculated weighting function, Ptot (0,E), for 1A–1D
(R1/R2 = Et/Cl) as a function of the width of the energy window E

[15]. The limiting values of Ptot (0,E) appear in the same ratio as the
average SOC constants for the heavy (S, Se) atoms in the molecule.

Both functions quantify the degree of first-order spin-orbit
mixing of orbital φa

i with all other orbitals on the same site
lying within an energy window E. The first function, Pμ,
describes the relative weight of SOC induced by the differ-
ent Cartesian components of ̂L, which, for a = 0, is closely
related to the orientation of C00

i j and, therefore, the character of
the anisotropic exchange. The second function, Ptot, quantifies
the total weight of mixing, and is related to the overall scale
of the SOC, analogous to λ. For example, for anisotropic
exchange, the anisotropy field HA ∝ |C00

i j | [2] and, therefore,

should scale roughly as |Ptot (0,E)|2 in the limit E → ∞.
Values of Ptot (0,E), computed at the B3LYP/def2-SV(P) level
using ORCA [37], are plotted in Fig. 3 for 1A–1D (R1/R2 =
Et/Cl) [15]. As can be seen, the summation is slowly converg-
ing; consequently, large energy windows must be considered.
The results indicate that the ratios of Ptot (0,E) values for
1A–1D (R1/R2 = Et/Cl) converge towards those determined
by the average atomic spin-orbit-coupling parameters λ of
the chalcogen atoms [38] within the molecular framework.
On this basis, one expects that HA for 1B and 1D should be
roughly in the ratio [(λS + λSe)/2λSe]2 = 0.36, in excellent
agreement with the value found experimentally (∼0.35) [15].

B. Multiorbital (SOMO-LUMO) radicals

The multiorbital phenomenon, though relatively rare in
radical-based systems [39,40], was well recognized by An-
derson [41] and Goodenough [42] in the context of magnetic
oxides, and their ideas were later applied to the design
of charge-transfer ferromagnets [8,43]. The possible in-
volvement of such an effect in 2A was first indicated by
electrochemical measurements and density functional theory
(DFT) calculations, which revealed an unusually low-lying
LUMO arising from the interaction of a carbonyl group with
the π manifold of the radical [15,30]. While the π∗-acceptor
orbital of the carbonyl C=O unit does not, by symmetry, per-
turb the a2 SOMO, it is able to mix with the b1 LUMO, giving
rise to a small SOMO-LUMO energy gap, �ϵ [Fig. 1(f)]. The

presence of this low-lying LUMO, and the consequent large
on-site SOMO-LUMO Hund’s coupling, K01

ii , leads to a strong
FM exchange interaction through virtual hopping processes;
note here that the “01” superscript and “ii” subscript imply
on-site SOMO and LUMO coupling. The suitably modified
isotropic FM exchange term is given in Eq. (8),

2JFM
i j = 2K00

i j + 2

(
t01
i j

)2 + (
t10
i j

)2

(V + �ε)2 − (
K01

ii

)2 2K01
ii , (8)

where the on-site Coulomb repulsion term V (<U) refers to
two electrons in different orbitals on the same molecule, while
the t01

i j (t10
i j ) describe hopping processes between the SOMO

(superscript “0”) and LUMO (superscript “1”) on adjacent
sites i and j.

An understanding of the magnetic anisotropy of multior-
bital radicals such as 2A can be developed in a similar manner,
by modification [44] of Moriya’s standard description, to
include anisotropic SOC corrections to the multiorbital FM
exchange. Accordingly, the second and third terms in Eq. (2)
must be redefined by including the expressions provided in
Eqs. (9) and (10):

DFM
i j = −2i

{
C01

i j t10
ji − t10

i j C01
ji

(V + �ε)2 − (
K01

ii

)2

}
K01

ii , (9)

�FM
i j = −2

{
C01

i j ⊗ C10
ji + C01

ji ⊗ C10
i j

(V + �ε)2 − (
K01

ii

)2

}
K01

ii . (10)

These are distinguished from Moriya’s conventional
anisotropic exchange terms by the superscript “FM”. The
interorbital (SOMO-LUMO) SOC-mediated hopping C01

i j is
then given by Eq. (11):

[
C01

i j

]
μ

= 1

2

⎧⎨⎩∑
a �=0

〈
φ0

i

∣∣L̂μ

i

∣∣φa
i

〉
εa − ε0

t a1
i j +

∑
a �=1

t0a
i j

〈
φa

j

∣∣L̂μ

j

∣∣φ1
j

〉
εa − ε1 + V

⎫⎬⎭.

(11)

It is important to note from Eq. (11) that, in contrast to C00
i j

defined in Eq. (5), the value of C01
i j depends on SOC effects in

both the SOMO and the LUMO, through the first and second
terms, respectively. As a result, while the magnitude of C00

i j is
related only to Ptot (0,E), the interorbital SOC terms C01

i j scale
with both Ptot (0,E) and Ptot (1,E). To illustrate this point,
Fig. 4 displays the values of these two terms for 2A (R2 = F,
Cl, Br, I), computed at the B3LYP/def2-SV(P) level [37],
which reveal an important distinction between the behavior
of the SOMO and LUMO [15]. As may be seen in Fig. 1(d),
the a2 SOMO for these radicals contains a vertical nodal plane
at the R2 position and, as a consequence, SOC corrections are
independent of both the R2 group and the C = O moiety: for
large E, Ptot (0,E) converges to the same value in 2A for all
substituents at the R2 position [Fig. 4(a)]. By contrast, the b1

LUMO [Fig. 1(d)], which possesses nonzero density at the R2

position, gives rise to spin-orbit effects that scale roughly with
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FIG. 4. Calculated weighting functions (a) Ptot (0,E) for the
SOMO and (b) Ptot (1,E) for the LUMO of 2A with R2 = F, Cl, Br,
I, as a function of the width of the energy window E [15].

the spin-orbit constant λ for R2 (= F, Cl, Br, I), as quantified
by Ptot (1,E) [Fig. 4(b)].

III. EXPERIMENTAL METHODS

In order to assess the influence of both single- and
multiorbital contributions to the anisotropic exchange in
class 1 and 2 radicals, a series of FMR and AFMR ex-
periments were, respectively, carried out on 1D (R1/R2 =
Et/I) and 2A (R2 = I), both of which possess a heavy
atom substituent (iodine) in the basal position; samples
were prepared as previously described [30,45]. The results
were then compared to those previously published for 1D
(R1/R2 = Et/Cl) [18,19] and 2A (R2 = F) [45], each of
which contains a lighter halogen at the R2 position. With
the exception of 1D (R1/R2 = Et/Cl), for which FMR stud-
ies were performed previously on an oriented single crystal
[18,19,46,47], all measurements were made on ∼50 mg
constrained powders using a broadband homodyne spectrom-
eter in the electron magnetic resonance (EMR) facility at
the U.S. National High Magnetic Field Laboratory (NHMFL)
[48]. This is a transmission-type spectrometer, employing
solid-state microwave sources (Virginia Diodes Inc., USA)
capable of generating frequencies in the 25–600 GHz range
that are propagated to/from the sample via oversized cylin-
drical light pipes. A sweepable magnetic field is generated
using a 15/17 T superconducting magnet (Oxford Instruments
plc, UK), which is outfitted with a helium flow cryostat. The
frequency- and temperature-dependent FMR and AFMR pow-
der spectra, respectively shown in Figs. 5(a) and 5(b), were
collected in derivative mode using field modulation in combi-
nation with phase-sensitive lock-in detection via a broadband
hot electron InSb bolometer (QMC Instruments Ltd, UK). The
spectra are thus plotted as the derivative of the transmission
signal intensity, I, with respect to the applied magnetic field
Happ, i.e., dI/dHapp. The resonance positions in each trace are
determined from the turning points of the spectra (see insets
to Fig. 5): the uniaxial system 1D (R1/R2 = Et/I) results in
two such turning points at the leading and trailing edges of
the powder averaged spectrum, corresponding, respectively, to
microcrystals with Happ parallel and perpendicular to the mag-
netic easy (c) axis [see Fig. 2(a)]. Meanwhile, orthorhombic
2A•EtCN (R2 = I) displays three turning points, correspond-

FIG. 5. (a) Normalized FMR spectra of 1D (R1/R2 = Et/I) and
(b) AFMR spectra of 2A•EtCN (R2 = I), shown both as a function
of frequency (at 5 K) and temperature (see lower-right insets, with
horizontal scale expanded); the frequencies and temperatures are
indicated in the plots. The two observable turning points in (a) corre-
spond to the easy-axis (Happ//z or c) and hard-plane (Happ//xy or ab)
components of the spectra, as expected for a uniaxial system. The
three features labeled x, y, and z in (b) correspond to the spectral
components of an orthorhombic spin-canted antiferromagnet, two of
which vanish below 60 GHz (see main text and Fig. 6). A notice-
able g = 2.00 impurity signal (�) can also be observed, most likely
arising from solvent loss upon grinding the polycrystalline material.
Although this signal appears quite strong in derivative mode, the
double-integrated area accounts for less than 1% of the total spectral
density and can thus be neglected in the analysis.

ing to the easy, intermediate, and hard directions. In both
sets of spectra, all turning points can be observed, except for
the two lowest frequencies (25 and 51 GHz) for 2A•EtCN
(R2 = I).

IV. RESULTS

The resonance conditions for the spectra shown Fig. 5 can
be determined by solving the semiclassical Landau-Lifshitz
equation of motion for a sublattice of net magnetization M
[49]:

∂M±

∂t
= γ M± × Heff , (12)

where any effects from damping, which contribute to the
overall line shape, have been neglected. Note here that, in
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AFMR, the magnetizations of the antialigned sublattices, M+
and M−, are denoted in the superscript; this distinction is not
necessary in FMR. Here, the gyromagnetic ratio is given by
γ = gμB/h̄, with the g value being constrained to that of the
free electron. The effective field, Heff , considers all of the
magnetic contributions to the free energy density F:

Heff = ∇Mx,y,z F, (13)

where, for a uniaxial system (such as 1D) in an applied mag-
netic field [50],

F = −M · Happ − HA|M|cos2θM. (14)

Here, Happ is the applied magnetic field vector, while the
anisotropy field is parametrized by HA, with θM being the
angle between the magnetization M and the easy axis (i.e.,
θM = 0◦ and 90◦ correspond, respectively, to the easy and hard
magnetization directions). With this notation, the free energy
for the orthorhombic antiferromagnet 2A•EtCN (R2 = I) can
conveniently be expressed as [50,51]

F = − Happ · (M+ + M−) − Hex

|M| (M+ · M−)

− HA2

|M|M+
z M−

z − HA1

|M|M+
y M−

y , (15)

where |M| = |M+| = |M−|. The degree of orthorhombicity is
defined in terms of the anisotropy field components given by
HA = (0, HA1 , HA2 ), along the x, y, and z directions, with
x corresponding to the easy axis in the case of 2A•EtCN
(R2 = I), while the antiferromagnetic exchange field strength
between magnetic sublattices is parametrized by Hex.

To determine the FMR/AFMR magnetic field positions
from the above expressions, a time-dependent harmonic so-
lution of the form M(t ) = M0eiωt can be assumed, where M0

is given by the magnitude of the sublattice magnetization and
ω denotes angular frequency. First, considering the uniaxial
ferromagnetic system, 1D, whose degrees of freedom are de-
scribed in Eq. (14), the solution to Eq. (12) in terms of the
anisotropy field, HA, gives the following resonance conditions
when the applied field, Happ, is parallel to the easy axis and the
hard plane [respectively, the c axis and ab plane in Fig. 2(a)]
[18]:

Easy axis: ω = γ (Happ + HA),

Hard plane: ω = γ [Happ(Happ − HA)]1/2. (16)

From this, the resonance positions determined from the spec-
tra shown in Fig. 5(a) can be used to constrain the anisotropy
field, HA = 7.86 kOe, as shown in Fig. 6(a).

As more spectral features can be resolved for the SC-AFM
system 2A•EtCN (R2 = I) in Fig. 5(b), the resonance condi-
tions are given by the following three solutions to Eq. (12)
[51]:

Hard axis: ω = γ
[
H2

app + 2HexHA2

]1/2
,

Intermediate axis: ω = γ
[
H2

app + 2HexHA1

]1/2
,

Easy axis: ω = γ
[
H2

app − 2HexHA1

]1/2
, (17)

where the easy-axis fit provides a constraint on the spin-flop
field, HSF = √

2HexHA1 , defined as the field at which the spon-

FIG. 6. Resonance frequency versus field plot for the different
spectral components (open circles) deduced from Fig. 5 for (a) 1D
(R1/R2 = Et/I) and (b) 2A•EtCN (R2 = I). The solid curves are fits
to the data according to (a) Eq. (16) and (b) Eq. (17), from which
the anisotropy fields, HA, are determined. The cyan dashed line and
solid square data points in (b) correspond to the g = 2.00 impurity
signal (�). The intercept on the abscissa at 20.6 kOe in (b) gives the
spin-flop field HSF, while the inset shows a comparison between 2A
(R2 = F) [45] and 2A•EtCN (R2 = I) at 112 GHz. This demonstrates
a clear augmentation of the anisotropy upon introducing a heavier
substituent at the R2 position.

taneous magnetization flips from the easy axis to the interme-
diate direction [52], manifested as a discontinuity in the fre-
quency dependence seen in Fig. 6(b). From previous magneti-
zation experiments [30], fixing Hex = 350 kOe yields HA1 =
610 Oe and HA2 = 740 Oe from the fits in Fig. 6(b). This
parametrization gives a spin-flop field of HSF = 20.6 kOe,
which agrees well with the magnetization measurements that
give HSF = 21 kOe at 28 K [30]. Contributions from canting
were neglected, as this did not improve the fit to the resonance
positions, again consistent with previous magnetization mea-
surements [30].

These results, when coupled with those obtained from pre-
vious measurements on 2A (R2 = F), allow for a comparison
between the single-orbital (1D) and multiorbital (2A) systems.
To this end, the anisotropy fields extracted from the fits given
by Eqs. (16) and (17), along with other relevant quantities, are
compiled in Table I.

Considering first the two isostructural ferromagnetic sys-
tems, 1D (R1 = Et, R2 = Cl, I), it may be seen that, upon
incorporation of a heavier halogen at R2, HA decreases by
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TABLE I. Magnetic parameters for 1D (R1 = Et, R2 = Cl and I), 2A (R2 = F), and 2A•EtCN (R2 = I).

1D Space group HA (kOe) Hc (kOe) TC (K)

R2 = Cl P4̄21m 8.20a 1.37b 17.0b

R2 = I P4̄21m 7.86 0.39c 10.5c

2A Space group HA1 (Oe) HA2 (Oe) Hex (kOe) Hc (Oe) TN (K)

R2 = F Cmc21 200d − 250d 290d 13.0d

R2 = I Pnma 610 740 350e 1060e 35.0e

aReferences [18,19].
bReference [16].
cReferences [22,23].
dReferences [28,45].
eReference [30].

only ∼4%; this is in spite of somewhat larger decreases in
both Hc and TC. However, a very different trend is found for
the SCAFM systems 2A, where a rather large increase in the
exchange anisotropy is seen upon substitution of I for F. Not
only does the magnitude of the anisotropy increase by more
than a factor of 3 but, for the iodo derivative, all three compo-
nents are resolved in the AFMR spectra. This is demonstrated
in the inset to Fig. 6(b), which compares the spectral features
obtained at 112 GHz for 2A•EtCN (R2 = I) with those for
2A (R2 = F) [45], where the anisotropy is barely resolvable.
It is important to note that the exchange field (Hex) makes
a non-negligible contribution to the resonant field position
[see Eq. (17)], and that these fields are appreciably different
for the two compounds. This is due to the fact that the two
radicals are not isostructural; they crystallize in different space
groups, i.e., Cmc21 (2A with R2 = F) and Pnma (2A•EtCN
with R2 = I), with the latter being more favorable for a larger
interstack exchange, which ultimately gives rise to a 40%
stronger Hex (350 kOe versus 250 kOe), as seen in Table I.
A more detailed discussion regarding SOMO-SOMO overlap
and the role of slippage between the neighboring π stacks is
outlined in Ref. [15].

V. DISCUSSION

The results shown in Table I can be satisfactorily inter-
preted in terms of the calculated SOMO Ptot (0,E) and LUMO
Ptot (1,E) weighting functions derived in Sec. II. Before doing
so, however, we note that spin-spin dipolar interactions and
demagnetization effects can be ruled out as explanations for
the observed magnetic anisotropy, as we have discussed else-
where [15,18,19]. We thus conclude that the overwhelming
contribution to the anisotropy is from SOC, and that the trends
arising in the anisotropic exchange (i.e., the HA values in
Table I) can be explained via consideration of the weighting
functions displayed in Figs. 3 and 4. For the sake of this
discussion, any contributions from the DM interaction are
neglected as they were not required to constrain the anisotropy
fields deduced from either the FMR or AFMR measurements.
As such, the sole contribution to the anisotropic exchange
originating from SOC is given by the pseudodipolar exchange
term [15]. From this, the anisotropy in zero applied magnetic
field can be approximated by gμBHA ∝ Tr[�AFM

i j ] for 1D and
gμBHA ∝ Tr[�FM

i j ] for 2A, which are, respectively, outlined in
Eqs. (4) and (10).

Focusing first on 1D, where the exchange anisotropy is
dominated by the SOMO-SOMO spin-orbit hopping param-
eter C00

i j , given in Eq. (5), there is a dramatic increase
seen in Ptot (0,E) occasioned by the sequential replacement
of sulfur by its heavier congener selenium. These changes
are also manifest in the experimentally observed exchange
anisotropies. However, by virtue of the nodal plane which
bisects the a2 SOMO of the molecule, there can be no
appreciable spin density at the R2 position. Accordingly, com-
parison of the FMR results for 1D (R1 = Et, R2 = Cl, I)
indicate that substituents at the basal R2 position have no
influence on SOC and, ultimately, lead to no impact on the
anisotropic exchange between neighboring molecules. The
converse is true for 2A. While the symmetry of the SOMO
remains the same as for 1D, the LUMO, which lies just
0.2−0.4 eV above the SOMO, displays b1 symmetry and has
a rather sizable density at the R2 position. As a result, the
weighting function Ptot (1,E) calculated in Fig. 4(b) varies
drastically with the atomic number (Z) of the substituent at the
R2 position, scaling roughly as λR2 for a large enough energy
window. As such, an enhanced LUMO-mediated anisotropic
exchange in 2A•EtCN (R2 = I) compared to 2A (R2 = F) is
fully anticipated.

In principle, the significant increase of magnetic anisotropy
in 2A•EtCN (R2 = I) compared with 2A (R2 = F) could be
attributed to differences in molecular packing rather than
enhancement of SOC, since the two materials are not isostruc-
tural. However, symmetry considerations and explicit ab initio
calculations of Ci j point to SOC enhancement [30]. It may
first be noted that both materials display a net canted moment,
which uniquely restricts the possible antiferromagnetic order-
ing patterns in both cases: spins within the same π stack must
be ferromagnetically aligned by symmetry. The primary effect
of SOC on the SOMO and LUMO of 2A, both of which are π

orbitals, is to mix them with σ orbitals [15,53], thus inducing
an orbital moment in the molecular plane. This has the follow-
ing effects: (i) the component of Ci j perpendicular to the plane
of the molecule is suppressed, and (ii) the anisotropic coupling
between any two planar molecules that lie in the same plane
is also suppressed.

Although 2A (R2 = F) and 2A•EtCN (R2 = I) are not
isostructural, it follows that the anisotropic exchange is dom-
inated by the interactions along the π -stacking direction in
both materials. For 2A (R2 = I), inversion symmetry further
restricts the spin-orbit-mediated SOMO-SOMO hopping so
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that C00
π is strictly zero. As a result, the large anisotropy field

HA (Table I) for 2A•EtCN (R2 = I) can only arise from �FM
π ,

through an enhanced SOMO-LUMO hopping term |C01
π |2

prompted by the heavy iodine substituent. Due to the sign of
�FM

π , this interaction provides each π stack (which is ordered
ferromagnetically within the stack) with an easy-axis, which
was previously estimated [30] to lie near the crystallographic
a axis. This is fully compatible with the observed AFMR
modes, and the previous ab initio estimates of HA = 500 −
700 Oe, which are in excellent agreement with the value ob-
served here. In contrast, for 2A (R2 = F), both �FM

π and �AFM
π

may be finite. However, a significant contribution from �FM
π

may be largely ruled out on the basis of the observed easy-
plane anisotropy. In this material, the π -stacked molecules
form a 2D brick-wall grid of sites in the ab plane related to
each other by translation (C centering). If �FM

π were dominant,
it would provide each 2D layer with an easy axis, given that
the spins within each layer are ordered ferromagnetically. By
contrast, a dominant �AFM

π acting between ferromagnetically
aligned spins produces an easy plane. The latter scenario is
overall more compatible with the observed AFMR modes.
Moreover, inspection of Eqs. (4) and (10) suggests that �FM

π

should tend to be weaker than �AFM
π by a factor of roughly

K01
ii /U ∼ 0.1. The latter coupling should therefore tend to

dominate when both are present. This same observation also
explains the order of magnitude difference in HA between
2A•EtCN (R2 = I) and 1D materials. The net conclusion is

that the incorporation of the heavy iodine substituent enhances
�FM

π in 2A to a similar degree as incorporation of selenium
enhances �AFM

π in 1D.

VI. CONCLUSIONS

We have discussed the contribution of heavy-atom sub-
stituents to the overall SOC interaction in two classes of
organic radical magnets. As shown by the FMR and AFMR
results, substitution of the heavy-atom iodine at the R2 po-
sition in the “single-orbital” radical 1D effects essentially
no variation in the anisotropic exchange, while the same
substitution in the “multiorbital” radical 2A significantly aug-
ments the magnetic anisotropy. These results are supported by
the incorporation of multiorbital exchange models via DFT
calculations. In so doing, we demonstrate the role of the
SOMO-LUMO gap in dictating the nature of the anisotropic
exchange between neighboring radical molecules.
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