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Antiferromagnets can host ultrafast spin dynamics in the terahertz (THz) frequency range, but an energy-
efficient generation of THz magnons necessary for high-speed information processing devices is challenging.
Fortunately, some antiferromagnetic compounds possess substantial magnetoelastic coupling between spins
and strains, which opens the way for their excitation by mechanical stimuli. Here, we report a theoretical
study of the spin dynamics excited in single-crystalline NiO by picosecond acoustic pulses, which can be
created by optomechanical transducers driven by femtosecond laser pulses. To describe the interrelated spin
and strain dynamics in this antiferromagnet distinguished by a strong magnetoelastic coupling, we carry out
micromagnetoelastic simulations based on the numerical solution of the Landau-Lifshitz-Gilbert equation for
sublattice magnetizations and the elastodynamic equation for mechanical displacements. The simulations show
that the propagating “bipolar” pulse of the longitudinal strain generates correlated clockwise and counterclock-
wise precessions of the sublattice magnetizations, which have a complex spatial distribution in the region
behind the pulse front. The spatiotemporal analysis of the simulation data reveals that the spin dynamics
excited by the pulses with durations τ smaller than about 7 ps comprises a monochromatic spin wave with
the frequency ν ≈ 450 GHz. Moreover, a second monochromatic spin wave having the frequency ν ≈ 2 THz
emerges at τ � 3 ps. By comparing the calculated dispersion of spin and elastic waves in NiO we demonstrate
that the revealed monochromatic magnons originate from two magnetoacoustic resonances existing in this
antiferromagnetic compound. Importantly, the acoustic pulses with durations τ � 3 ps appear to be capable
of creating antiferromagnetic magnons with THz and sub-THz frequencies in the absence of external magnetic
fields. Our findings shed light on the magnetoacoustic phenomena in antiferromagnets and indicate that the
single-crystalline NiO is a promising material for the development of ultrafast magnonic devices with a low
power consumption.
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I. INTRODUCTION

Antiferromagnets are considered as promising materials
for spintronics because they are robust against the influence
of magnetic fields, do not create stray fields, and demon-
strate ultrafast spin dynamics in the terahertz frequency range
[1–3]. However, the development of “antiferromagnetic spin-
tronics” requires the elaboration of efficient methods for the
excitation and control of spin dynamics in antiferromagnets
and techniques enabling reliable detection of their magnetic
states. Since the magnetic means of excitation suffer from
several significant deficiencies (necessity to generate strong
fields, high energy consumption, and scaling problems), it is
of primary importance to study processes induced in antifer-
romagnets by nonmagnetic stimuli, such as electric currents
and fields, optical pulses, and elastic strains. Previous theo-
retical and experimental studies in this field have been largely
devoted to spin phenomena caused by electric currents [1,4,5].
Importantly, the electric currents flowing in heavy metals and
topological insulators generate significant transverse spin cur-
rents, which exert a spin-orbit torque (SOT) on spin lattices in
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ferromagnets and antiferromagnets brought into contact with
such materials [6]. Therefore, current-induced reorientations
of the Néel vector can be realized in nanostructures com-
prising ultrathin antiferromagnetic layers and nonmagnetic
conductors with a strong spin-orbit coupling [1,4]. In partic-
ular, it is revealed experimentally that the antidamping SOT
in NiO/Pt bilayers orients the Néel vector towards the direc-
tion of the writing electric current when its density exceeds
∼107 A cm−2 [7]. Furthermore, in antiferromagnetic crystals
where spin sublattices form space-inversion partners, the elec-
tric current flowing through the lattice can induce a relativistic
spin torque, whose staggered fieldlike component can trig-
ger ultrafast spin-axis reorientation [8]. The current-induced
reorientations of the Néel vector observed in the CuMnAs
and Mn2Au films have been attributed to the action of such
staggered spin-orbit fields [9–11]. Since the electrical readout
of the spin reorientation can be realized via measurements
of the linear-response anisotropic magnetoresistance [9] or
second-order magnetotransport coefficient [11], it is possible
to design an antiferromagnetic solid-state memory with both
electrical writing and readout [9,11]. However, the density of
the writing current should be well above 106 A cm−2 [9–11],
which points to rather high Ohmic losses that accompany the
functioning of such a memory.
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Importantly, antiferromagnets exhibit the phenomenon
of magnetostriction caused by the magnetoelastic coupling
between spins and strains, and their magnetostrictive defor-
mations can be comparable to those in ferromagnets [12–15].
Hence, antiferromagnetic compounds may have significant
magnetoelastic coupling constants, which makes it possi-
ble to change magnetic states of antiferromagnetic materials
by mechanical stimuli. This feature, which has been con-
firmed by recent experimental studies [16–25], provides an
opportunity to realize an energy-efficient electrical control
of antiferromagnets via their interfacial coupling to piezo-
electric materials [26]. Indeed, the electrical switching of the
Néel vector was realized in the antiferromagnetic Mn2Au
film grown on the ferroelectric PMN-PT substrate experienc-
ing large piezoelectric deformations in applied electric fields
[22]. Such a switching results from changes in the mag-
netic anisotropy caused by anisotropic in-plane film strains
created by the substrate [22]. Significant strain-driven spin
reorientations were also revealed in antiferromagnetic MnPt
films grown on PMN-PT [23]. Owing to the phenomenon of
anisotropic magnetoresistance, these reorientations manifest
themselves in changes of the film conductivity and lead to
the appearance of two nonvolatile resistance states switchable
by the substrate piezoelectric strains but insensitive to strong
magnetic fields [23].

The magnetoelastic effects in antiferromagnets have been
studied theoretically since the middle of the 20th century
[27,28]. The early theoretical studies were mostly focused
on analytical calculations of magnetoelastic waves in bulk
antiferromagnets [27,29,30]. Effects of external stresses on
the antiferromagnetic resonance, magnetoelastic waves, and
spin reorientation transitions were analyzed as well [29,31].
More recent theoretical research includes analytical studies
of dynamic magnetoelastic phenomena in antiferromagnetic
films and heterostructures [32–34] and first-principles calcu-
lations of the strain effects on magnetic states of FeRh [16,17]
and various Mn-based antiferromagnets [35,36]. Besides, a
numerical modeling of the strain-driven dynamics of antifer-
romagnetic moments has been performed recently [37]. Using
finite-element calculations of the coupled magnetic and elastic
dynamics, the authors modeled the strain-induced antiferro-
magnetic switching in a nanodisk bonded to a piezoelectric
substrate [37], but the cross terms in the magnetoelastic en-
ergy that depend on the magnetizations of both sublattices
were ignored in this study. The same approximation was
used in the simulations of the acoustic excitation of magnons
in the polycrystalline film of the easy-axis antiferromagnet
Fe50Mn50 [38]. Overall, the behavior of antiferromagnets un-
der mechanical stimuli remains to be largely unexplored and
requires further theoretical investigations, especially the exci-
tation of spin dynamics in antiferromagnets by injected elastic
waves and short strain pulses created by piezoelectric and
optical transducers.

In this paper, we report the results of numerical simula-
tions of the interrelated spin and elastic dynamics generated
by strain pulses in the single-crystalline NiO. Our advanced
micromagnetoelastic modeling is distinguished from the pre-
ceding numerical studies by the correct description of the
two-way magnetoelastic coupling between the Néel vector
and lattice strains. The simulations are performed with the

FIG. 1. Bipolar pulse δεxx (x, t ) of the longitudinal strain and
strain-induced precession of sublattice magnetizations in the (100)-
oriented NiO film with thickness tNiO. The unit vectors m(1) and m(2)

show the magnetizations’ orientations relative to the crystallographic
directions of the prototypic cubic phase of NiO. Two coordinate
systems, (x, y, z) and (x′, y′, z′), are used in this study.

aid of an in-house software previously used to quantify the
strain-induced magnetization dynamics in ferromagnetic films
[39–41]. The upgraded version of this software makes it
possible to describe magnetoelastic phenomena occurring in
antiferromagnetic and ferrimagnetic crystals via the introduc-
tion of two spin sublattices. Since the inertial effects can
modify the high-frequency spin dynamics [42–44], and they
are expected to be especially important in the case of antifer-
romagnets [45,46], our model also allows for the influence of
spin inertia on the generation of antiferromagnetic magnons.
Nickel oxide is chosen for numerical calculations because
this antiferromagnetic compound has a high Néel temperature
TN = 523 K and our analysis of the experimental data [47]
shows that the single-crystalline NiO has very high magne-
toelastic constants exceeding 108 erg cm−3.

II. MICROMAGNETOELASTIC MODELING

The interrelated spin and acoustic dynamics in magne-
toelastic materials can be modeled by solving a system
of coupled differential equations comprising the Landau-
Lifshitz-Gilbert (LLG) equation and the dynamical equa-
tion of the elasticity theory appended by magnetoelastic terms
[48,49]. For antiferromagnets and ferrimagnets, it is necessary
to introduce at least two spin sublattices and operate with their
local magnetizations M(p)(r, t ) (p = 1, 2). Since well below
the Néel temperature the magnitudes |M(p)| = M (p)

s of sublat-
tice magnetizations can be regarded as constant quantities at a
given temperature, it is sufficient to consider the unit vectors
m(p) = M(p)/M (p)

s defining the magnetization directions in the
crystal lattice (Fig. 1). Taking into account that inertial effects
may play a role at THz spin dynamics [42–44], we write the
LLG equation for m(p) as [46,50]

dm(p)

dt
=−γpm(p) × H(p)

eff + αpm(p) × dm(p)

dt

+ τpm(p) × d2m(p)

dt2
, (1)

where H(p)
eff is the effective magnetic field acting on the sub-

lattice magnetization M(p), while γp, αp, and τp denote the
electron’s gyromagnetic ratio, dimensionless Gilbert damping
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parameter, and angular momentum relaxation time, respec-
tively, which are assumed to have the same values for both
sublattices in this work. The effective field is the sum of
the external magnetic field H, field H(p)

dip caused by dipo-
lar interactions between spins, and contributions resulting
from the intersublattice and intrasublattice exchange inter-
actions, magnetocrystalline anisotropy, and magnetoelastic
coupling between spins and strains. As spin rotations modify
the strain state of a magnetoelastic material, the dynamical
equation for the mechanical displacements u(r, t ) of material
points contains additional magnetoelastic terms depending on
the directions m(p)(r, t ) of both sublattice magnetizations.
Therefore, Eq. (1) should be solved together with the elas-
todynamic equation

ρ
∂2u
∂t2

= ∇σ, (2)

where ρ is the mass density and σ is the Cauchy stress tensor
including the magnetoelastic term σmel. In the simulations,
the antiferromagnetic material is modeled by an ensemble
of N nanoscale computational cells characterized by the spa-
tial positions rn of their centers and the vectors m(1)(rn, t ),
m(2)(rn, t ), and u(rn, t ) (n = 1, 2, . . . , N ).

The magnetoelastic contributions to the effective fields
H(p)

eff and the stress tensor components σi j (i, j = x, y, z) can
be calculated by differentiating the magnetoelastic energy
density Fmel with respect to the sublattice magnetizations M(p)

and strains εi j , respectively. In the case of antiferromagnets,
the magnetoelastic energy density Fmel should be considered
as the sum of the contributions depending on the compo-
nents of the Néel vector L = (M(1) − M(2) )/2 and the mean
magnetization M = (M(1) + M(2) )/2. However, in the ground
(M = 0) and weakly magnetized (M � L) states considered
in this work, only the Néel vector contribution is essential
[32]. Accordingly, the magnetoelastic energy density can be
written in the first approximation as Fmel = Bi jkl lil jεkl , where
l = L/Ms = (m(1) − m(2) )/2 and Ms = M (1)

s = M (2)
s is the

saturation magnetization of each sublattice. For antiferromag-
nets with the cubic paramagnetic phase, the energy density
Fmel takes the form

Fmel = B1
(
εxxl2

x + εyyl2
y + εzzl

2
z

)
+ B2[(εxy + εyx )lxly + (εxz + εzx )lxlz + (εyz + εzy)lylz]

(3)

in the reference frame of this phase. Hence the magnetoelastic
effective field H(p)

mel = (−1/Ms)∂Fmel/∂m(p) is given by

Hmel(p)
x = (−1)p

[
B1

Ms
εxxlx + B2

Ms
(εxyly + εxzlz )

]
,

Hmel(p)
y = (−1)p

[
B1

Ms
εyyly + B2

Ms
(εyxlx + εyzlz )

]
,

Hmel(p)
z = (−1)p

[
B1

Ms
εzzlz + B2

Ms
(εzxlx + εzyly)

]
. (4)

Since the magnetoelastic stress σmel is defined by the re-
lations σ mel

i j = ∂Fmel/∂εi j , we obtain the total stresses σi j

as

σxx = c11εxx + c12(εyy + εzz ) + B1l2
x ,

σyy = c11εyy + c12(εxx + εzz ) + B1l2
y ,

σzz = c11εzz + c12(εyy + εxx ) + B1l2
z ,

σxy = 2c44εxy + B2lxly,

σxz = 2c44εxz + B2lxlz,

σyz = 2c44εyz + B2lylz, (5)

where c11, c12, and c44 are the elastic stiffnesses of the proto-
typical cubic phase. Using the relations li = (m(1)

i − m(2)
i )/2,

one can rewrite Eqs. (4) and (5) in terms of the direction
cosines of the sublattices’ magnetizations M(p). Importantly,
this procedure shows that each of the magnetoelastic effective
fields depends on both m(1)

i and m(2)
i , which was not taken

into account in the previous simulations of strain driven spin
dynamics in antiferromagnets [37,38].

The total effective field H(p)
eff also includes significant con-

tribution resulting from the dipolar interactions between spins,
which play an important role in NiO [28,51,52]. In particular,
they determine the orientations of the easy planes, which
appear to be parallel to the {111} crystallographic planes
[51]. Since the rigorous calculation of the dipolar interac-
tions between all individual spins requires the introduction
of eight sublattices [52], we evaluate the dipolar fields in
an approximation compatible with our two-sublattice model.
Namely, total dipolar field is considered as the sum of the two
contributions depending on the Néel vector L and the mean
magnetization M, respectively. The first contribution allows
for the easy-plane anisotropy of dipolar origin, which is de-
fined by the energy density F dip

anis = K ′
0l2

z′ = K0(lx + ly + lz )2,
where lz′ is the projection of the normalized Néel vector
l on the [111] crystallographic axis, and K0 = K ′

0/3. The
second contribution represents the long-range magnetic field
δHdip(r, t ), which appears in the presence of nonzero mean
magnetization M(r, t ) in the antiferromagnet and originates
from its spatial inhomogeneity. The field δHdip(r, t ) is calcu-
lated by summing the fields created by uniformly magnetized
rectangular prisms with the magnetizations M(rn, t ), which
model the computational cells with the sizes smaller than the
exchange length [53].

In addition to the easy-plane anisotropy of dipolar origin,
a weak easy-axis anisotropy exists in NiO, which defines the
energetically most favorable directions in the {111} crystallo-
graphic planes [28,54]. Since the easy axes are almost parallel
to the 〈112̄〉 directions [13], the corresponding energy density
can be written as F ea

anis = K ′
1l2

y′ = K1(lx − ly)2, where ly′ is the
projection of the Néel vector on the direction in the (111)
plane, which is orthogonal to the [112̄] one, and K1 = K ′

1/2.
Hence the sum of the easy-plane and easy-axis anisotropies in
the cubic reference frame has the form

Fanis = K0(lx + ly + lz )2 + K1(lx − ly)2, (6)

and the total anisotropy contribution to the effective field H(p)
eff

can be calculated as H(p)
anis = (−1/Ms)∂Fanis/∂m(p) by differ-

entiating Eq. (6) rewritten in terms of the direction cosines
m(p)

i of the sublattice magnetizations. Note that H(p)
anis includes
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the aforementioned first contribution to the dipolar field H(p)
dip

so that H(p)
dip is set equal to δH(p)

dip (r, t ) in the numerical
calculations.

To complete the description of the total effective fields
H(p)

eff involved in Eq. (1), we have to specify the contributions
of exchange interactions between the spins. In our model,
the intersublattice interactions are quantified by an effective
antiferromagnetic exchange, which keeps the sublattice mag-
netizations m(1)(r, t ) and m(2)(r, t ) antiparallel in the absence
of perturbing magnetic fields and internal stresses. The cor-
responding fields H(p)

afm determined using the molecular field
theory are given by the relations H(1)

afm = λm(2) and H(2)
afm =

λm(1), where λ represents a phenomenological parameter. Fi-
nally, the contributions H(p)

fm of the intrasublattice interactions
governed by the ferromagnetic exchange between the nearest
neighbors are calculated as

H(p)
fm = 2A

Ms

[
∂2m(p)

∂x2
+ ∂2m(p)

∂y2
+ ∂2m(p)

∂z2

]
. (7)

The phenomenological parameters λ and A are evaluated for
NiO as described in Sec. III.

To carry out micromagnetoelastic simulations of the spin
dynamics in NiO, we use homemade software, which nu-
merically integrates Eq. (1) by the projective Runge-Kutta
algorithm with a fixed integration step δt = 20 fs and solves
Eq. (2) by a finite-difference technique with a midpoint
derivative approximation [41]. Both techniques belong to the
class of explicit finite-difference methods. The convergence
of the integration of Eq. (2) in one dimension (1D) is ensured
by fulfilling the condition c < δx/δt , where δx is the com-
putational cell size and c is the highest elastic wave velocity
present in the problem (in our case, c equals the velocity cL of
the longitudinal elastic waves in NiO). The convergence of the
integration of the LLG equation has been tested numerically
in separate preliminary simulations by picking small enough
δt for given δx and magnetic parameters of the material.
The considered (100)-oriented NiO film (Fig. 1) is modeled
by an ensemble of cubic computational cells with the size
δx = 0.417 nm equal to the lattice constant of NiO. The dy-
namical variables m(p)(rn, t ) and u(rn, t ) are assumed to vary
only along the x direction orthogonal to the film surfaces, and
the calculation of the dipolar field δHdip(rn, t ) is done using
periodic boundary conditions imposed in the film plane [53].
Hence, we are solving a pseudo-1D problem corresponding to
the NiO film with infinite in-plane dimensions, which is sub-
jected to an external mechanical impact uniformly distributed
along the in-plane y and z directions.

In the numerical calculations, we employ the material
parameters of single-crystalline NiO. The phenomenolog-
ical exchange parameters λ = −5.8 × 106 Oe and A =
1.59 × 10−8 erg cm−1 and anisotropy constants K ′

0 = 4.25 ×
106 erg cm−3 and K ′

1 = 1.8 × 105 erg cm−3 of NiO are
evaluated as described in Sec. III. The elastic properties are
defined by the stiffnesses c11 = 3.3 × 1012 erg cm−3, c12 =
0.6 × 1012 erg cm−3, and c44 = 1.1 × 1012 erg cm−3 of the
paramagnetic NiO extrapolated to room temperature [55].
The set of material parameters also includes the electron’s
gyromagnetic ratio γp = 1.919 × 107 G−1 s−1 corresponding

to the measured g-factor g = 2.18 [56], sublattice magneti-
zation Ms = 382 emu cm−3 [57], Gilbert damping parameter
αp = 5 × 10−4 [58], and mass density ρ = 6.853 g cm−3

[55]. Since the relaxation time τp is unknown for NiO, we
first perform simulations without the account of the inertial
term in Eq. (1) and then analyze its possible influence on the
acoustic excitation of antiferrromagnetic magnons in NiO.

III. DETERMINATION OF MAGNETOELASTIC
CONSTANTS AND EFFECTIVE EXCHANGE

PARAMETERS OF NiO

The reliable determination of the magnetoelastic constants
B1 and B2 of an antiferromagnetic single crystal requires
the knowledge of its spontaneous strains and the orienta-
tion of the Néel vector. Fortunately, the spontaneous strains
ε0

i′ j′ (i′, j′ = x′, y′, z′) of the single-crystalline NiO discussed
in this paper have been measured by the x-ray diffraction
topography [13,47]. The experimental data [47] show that
ε0

x′x′ − ε0
y′y′ ≈ −9 × 10−5 and ε0

x′z′ + ε0
z′x′ ≈ 1.6 × 10−5 in the

rotated reference frame with the axes x′, y′, z′ parallel to the
[112̄], [1̄10], and [111] crystallographic directions, respec-
tively [59]. Taking into account that the Néel vector is almost
parallel to the [112̄] direction [13,47] and setting the stresses
σi j in Eq. (5) to zero, we obtain the following relations for the
spontaneous strains in the rotated reference frame:

ε0
x′x′ = −B1c11

2(c11 − c12)(c11 + 2c12)
− B2

4c44
,

ε0
y′y′ = B1

6

(
1

c11 − c12
− 2

c11 + 2c12

)
+ B2

12c44
,

ε0
z′z′ = 1

6

( −2B1

c11 + 2c12
+ B2

c44

)
,

ε0
x′z′ = ε0

z′x′ = 1

6
√

2

(
2B1

c11 − c12
− B2

c44

)
,

ε0
x′y′ = ε0

y′x′ = ε0
y′z′ = ε0

z′y′ = 0, (8)

where the material constants are defined in the crystallo-
graphic frame (x, y, z). The formulas for the difference ε0

x′x′ −
ε0

y′y′ and the shear strain ε0
x′z′ give the system of equations en-

abling us to evaluate the magnetoelastic constants B1 and B2.
The calculation yields

B1 = −(c11 − c12)
(
ε0

x′x′ − ε0
y′y′ − 2

√
2ε0

x′z′
)
,

B2 = −2c44
(
ε0

x′x′ − ε0
y′y′ +

√
2ε0

x′z′
)
. (9)

Since the relevant elastic constants ci j of the paramagnetic
NiO are known [55], the magnetoelastic constants appear to
be B1 ≈ 3 × 108 erg cm−3 and B2 ≈ 1.7 × 108 erg cm−3.
Substituting these values into Eq. (8), we find the rest of the
spontaneous strains in the rotated reference frame as ε0

x′x′ ≈
−8.1 × 10−5, ε0

y′y′ ≈ 9.4 × 10−6, and ε0
z′z′ ≈ 3.7 × 10−6. As

may be expected, the strain ε0
x′x′ along the spin axis is much

larger than the strains in the transverse directions. In the crys-
tallographic reference frame (x, y, z), the spontaneous strains
of the NiO single crystal with the [112̄] orientation of the Néel
vector are predicted to be ε0

xx = ε0
yy ≈ −3.7 × 10−6, ε0

zz ≈
−6 × 10−5, ε0

xy ≈ −1.3 × 10−5, and ε0
xz = ε0

yz ≈ 2.6 × 10−5.
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Since the evaluated magnetoelastic constants B1 and B2

of the single-crystalline NiO are very high, the orienta-
tion of the Néel vector in this antiferromagnetic com-
pound should be very sensitive to strains. This conclu-
sion agrees with the experimental data on the Néel-vector
direction in the epitaxial NiO films grown on (001)-
oriented MgO [60]. Indeed, the measurements show that
in such (001)-oriented films the Néel vector is oriented
along the [5519] direction significantly differing from its
[112̄] orientation in the bulk NiO, which is attributed to
the influence of substrate-induced strains [60]. Substitut-
ing the measured in-plane strains εxx = εyy ≈ 8.6 × 10−3

in the epitaxial NiO film into Eq. (3), we determine the magne-
toelastic energy Fmel as a function of the Néel-vector direction
cosines li. The minimization of the sum of Fmel, elastic energy,
and the energy of magnetocrystalline anisotropy Fanis given
by Eq. (6) then shows that the energetically most favorable
direction in the strained NiO films should be close to [5519]
at the values of the magnetoelastic constants and anisotropy
coefficients used in this paper. Namely, the calculated angle
θ between the Néel-vector direction and the [001̄] axis is
about 22◦, whereas the measurements give θ = 20◦. Given
the uncertainty in the angle θ and the in-plane strains in the
MgO/NiO/Pt structure [60], the agreement with the experi-
mental data should be regarded as excellent.

Now we turn to the evaluation of the effective exchange
parameters λ and A and anisotropy constants K ′

0 and K ′
1

involved in our two-sublattice model of NiO. Appropriate
values of λ, A, K ′

0, and K ′
1 can be found by reproducing

the measured frequencies of two antiferromagnetic resonance
(AFMR) modes [54,61,62] and the spin-wave dispersion de-
termined by inelastic neutron scattering techniques [54]. To
this end, we model the spin dynamics in the (100)-oriented
NiO film with fixed in-plane strains εyy, εzz, and εyz set equal
to the spontaneous strains given above. First, the relaxation of
deflected spins to the equilibrium [112̄] orientation is inves-
tigated at different values of λ, K ′

0, and K ′
1, which enables us

to quantify the spin precession occurring during this process.
The determined frequency of the precession out of the (111)
easy plane is compared with the measured frequency ν

high
AFMR =

1100 GHz of the higher AFMR mode [61,62], while the fre-
quency of the in-plane precession is collated to the frequency
ν low

AFMR = 240 GHz of the lower AFMR mode [54]. Second,
we consider monochromatic spin waves excited at the NiO
surface x = 0 by a fictitious local magnetic field H(x = 0, t )
oscillating with a frequency ν and model their propagation
across the NiO film at different values of the ferromagnetic
exchange parameter A. The variation of the wave number k
with the excitation frequency ν is then compared with the
measured spin-wave dispersion [54]. By performing a series
of simulations, we find that the agreement between theoretical
and experimental results is attained at λ = −5.8 × 106 Oe,
A = 1.59 × 10−8 erg cm−1, K ′

0 = 4.25 × 106 erg cm−3, and
K ′

1 = 1.8 × 105 erg cm−3.

IV. SPIN DYNAMICS EXCITED IN NiO BY STRAIN PULSES

Micromagnetoelastic simulations are carried out for NiO
films not subjected to magnetic fields (H = 0) and epitaxial
strains [εi j (r, t = 0) = ε0

i j]. The initial state of such films is

FIG. 2. Frequency spectra of strain pulses with different du-
rations τ generated in NiO. The spectra show the normalized
amplitudes of the Fourier transforms of the time dependences
δεxx (x, t ) at the NiO surface x = 0. The pulse durations are indicated
on the plot.

determined in the macrospin approximation by numerically
finding the energetically most favorable spin orientation in the
stress-free Ni crystal. The calculations show that the predicted
initial spin orientation is very close to the [112̄] direction,
and the lattice strains only slightly differ from the sponta-
neous strains ε0

i j given in Sec. III. To generate a strain pulse
δεxx(x, t ) in the NiO film, we introduce a time-dependent uni-
form displacement δux(x = 0, t ) = umax exp (−t2/τ 2

u ) at the
film surface x = 0. Such a variable displacement should give
rise to a “bipolar” strain pulse (Fig. 1) involving periods of
compression and tension [41]. The parameters umax and τu

are tailored so as to produce the initial strain amplitude of
2 × 10−4 and a realistic pulse duration of a few picoseconds
[63,64]. At the same time, the in-plane strains εyy, εzz, and εyz

are kept equal to their initial values ε0
yy, ε0

zz, and ε0
yz throughout

the film so that changes δuy and δuz in the in-plane displace-
ments depend on the coordinate x only. The dynamics of
the sublattice magnetizations m(p)(x, t ) and the lattice strains
εx j (x, t ) are determined by numerically solving Eqs. (1) and
(2) as described in Sec. II. The results presented in Figs. 3–5
below do not allow for the possible influence of the spin
inertia, which is discussed later in the end of this section.

The simulations performed for the NiO film with the
thickness tNiO = 834 nm (2000 lattice constants) demonstrate
the generation of a bipolar strain pulse near the surface,
which propagates across the film and induces correlated
counterclockwise and clockwise precessions of the sublattice
magnetizations m(1) and m(2) around the [112̄] easy axis
(Fig. 1). Figure 2 shows representative frequency spectra of
strain pulses with durations τ ranging from 1 to 10 ps. Re-
markably, the spectra obtained at τ � 3 ps contain significant
components in the THz frequency range, which indicates
the possibility of exciting THz antiferromagnetic magnons
by picosecond acoustic pulses. As can be seen from Fig. 3,
the spin dynamics generated by the propagating strain pulse
has a complex spatial distribution, which involves the region
of largest oscillations of the direction cosines m(p)

i′ (x, t ) just
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FIG. 3. Spatial distribution of the spin dynamics excited in NiO
by a 1-ps-long strain pulse. The plots show changes δm(1)

i′ (x, t ) of the
magnetization direction cosines in the first sublattice at the moment
t = 0.12 ns. The insets show enlarged views of the intermediate
region containing a THz monochromatic spin wave (right inset) and
a peak of magnetization oscillations generated by a small pulse of
shear strains created by the spin precessions induced by the primary
pulse of the longitudinal strain (left inset).

after the pulse front followed by nonmonotonic variation of
the oscillations’ amplitude down to much smaller values far
behind the front. Interestingly, there exists a small peak of the
precession amplitudes, which gradually lags from the strain
pulse moving with the velocity cL = √

c11/ρ of the longitudi-
nal elastic wave (see the left inset in Fig. 3). The simulation
data shows that the distance between this peak and the front
increases with time as (cL − cT)/t , where cT = √

c44/ρ is the
velocity of the transverse elastic wave in NiO. Therefore, we
can attribute the revealed feature of the spin dynamics to its
additional excitation by a pulse of transverse elastic strains
εxy(x, t ) and εxz(x, t ). Such a secondary strain pulse is created
by the precession of the sublattice magnetizations induced
by the primary acoustic pulse δεxx(x, t ). This phenomenon is
caused by the back action of the magnetization precession on
lattice strains, and is similar to the generation of elastic waves
by spin waves in ferromagnets [39,40,65].

Remarkably, the spatial distributions of the spin oscil-
lations excited by the pulses with the durations τ � 7 ps
involve an intermediate region, where they have the form of
monochromatic spin waves (see the right inset in Fig. 3).
To determine the characteristics of such waves, we calcu-
lated the Fourier transforms of the magnetization oscillations
δm(p)

i′ (x, t ) in the appropriate spatial and temporal intervals
and plotted their amplitudes as functions of the frequency
ν and the wave number k. Representative spectra shown in
Fig. 4 demonstrate the presence of two peaks at the frequen-
cies of about 450 GHz and 2 THz in the spectra obtained at
the pulse durations of 1 and 3 ps. These peaks, which are
absent at τ = 10 ps, are characterized by the wave numbers

k ≈ 40 × 105 rad cm−1 and k ≈ 190 × 105 rad cm−1, respec-
tively. In should be noted that the ratio of the peak heights
strongly depends on the pulse duration.

To clarify the origin of the revealed monochromatic
spin waves, we compare the dispersion of antiferromagnetic
magnons with the dispersion relation νL = cLk/(2π ) of the
longitudinal elastic waves. For two-sublattice antiferromag-
nets, the dispersion relation can be written as [66]

νAFM(k) =
√

ν2
0 + [cAFMk/(2π )]2, (10)

where ν0 denotes the frequency of the lower or higher AFMR
mode, and cAFM is the velocity of the antiferromagnetic
spin wave. The frequencies ν low

AFMR = 240 GHz and ν
high
AFMR =

1100 GHz of these modes are known (see Sec. III), and
cAFM = 5.9 × 105 cm s−1 is evaluated by fitting Eq. (10) to
our simulation data on the propagation of monochromatic
spin waves in NiO discussed in Sec. III. Figure 5 shows
that the calculated dependences νAFM(k) and νL(k) cross at
the wave numbers klow

cross ≈ 40 × 105 rad cm−1 and khigh
cross ≈

190 × 105 rad cm−1 yielding the crossing-point frequencies
ν low

cross ≈ 450 GHz and ν
high
cross ≈ 2 THz. Since the parameters of

the crossing points are close to the frequencies and wave num-
bers of the monochromatic spin waves generated by the 1- and
3-ps-long acoustic pulses, we arrive at the conclusion that the
excitation of such waves is due to the phenomenon of magne-
toacoustic resonance [48,49]. Accordingly, the pulse spectrum
should contain significant components at frequencies around
ν low

cross or ν
high
cross to be capable of generating monochromatic spin

waves with considerable magnitudes.
Finally, we consider the possible influence of the spin iner-

tia on the acoustic excitation of antiferromagnetic magnons in
NiO. As the relaxation time τp involved in Eq. (1) is unknown
for NiO, the range of its acceptable values is evaluated by
analyzing the inertial corrections to the frequency ν

high
AFMR of

the higher AFMR mode. To that end, we use the analytical
relation ν

high
AFMR = [γp/(2π )]

√
2K ′

0|λ|/Ms/
√

1 + 2τpγp|λ| [45]

and the constraint that the frequency ν
high
AFMR calculated with the

account of the inertial effects and the ±10% error in the deter-
mined anisotropy constant K ′

0 = 4.25 × 106 erg cm−3 should
remain equal to the measured value of 1100 GHz [61,62]. This
procedure yields the relaxation time τp ranging from about 0.5
to −0.5 fs, which looks reasonable in view of the numbers
reported for ferromagnets [42], since τp can also take negative
values in our notation [67].

To clarify the influence of the spin inertia on the magne-
toacoustic resonances in NiO, we first derive the dispersion
relation νAFM(k) of the antiferromagnetic magnons with the
account of the inertial effects. This relation can be determined
by linearizing the system of two LLG equations written for the
sublattice magnetizations m(p) slightly deviating from their
equilibrium directions. Leaving out the magnetoelastic contri-
bution to the effective fields H(p)

eff and the magnetic damping in
Eq. (1) and using the ansatz of plane spin waves, we obtain the
secular equation ensuring the existence of a nontrivial solution
of the considered system of equations. The solution of the
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FIG. 4. Frequency and wave number spectra of magnetization dynamics excited by strain pulses with different durations in the selected
intervals of the strain-induced spin oscillations. The plots show the temporal (a), (c), (e) and spatial (b), (d), (f) Fourier transforms of the
magnetization oscillations δm(1)

z′ (x, t ). Frequency spectra are based on the time signal taken at x = tNiO/2 = 417 nm. The pulse front crosses
this position at t = 0.0595 ns. The graphs are plotted for the following intervals: (a) [0, 0.12] ns, (c) [0.0647, 0.08] ns, (e) [0.0627, 0.0679] ns.
Wave number spectra are based on the spatial profile of magnetization at t = 0.12 ns. The pulse front has the coordinate x = 834 nm, and the
following spatial intervals on the x axis are used: (b) [0, 834] nm, (d) [730, 771] nm, (f) [738, 771] nm. Vertical lines denote the crossing-point
frequencies and wave numbers discussed in the text. The pulse durations are indicated on the plots.

secular equation gives

νAFM(k) = 1

2π

√√√√1 + 2β + τpγp
K
Ms

+ 2τpDk2 ∓
√

1 + 4β + 4β2 + 2(1 − 2β )τpγp
K
Ms

+ 4τpDk2

2τ 2
p

, (11)

where K denotes the anisotropy constant K ′
0 or K ′

1 yielding
the higher or lower branch of the antiferromagnetic spin-wave
dispersion, respectively, β = τpγp|λ| is the dimensionless pa-
rameter characterizing the relative strength of inertial effects

in a specific antiferromagnet, and D = 2Aγp/Ms is the spin
wave stiffness. The minus sign before the nested square root in
Eq. (11) provides the dispersion relation for the correlated pre-
cession of the sublattice magnetizations, while the plus sign
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FIG. 5. Dispersion relations of spin and elastic waves in NiO.
Points denote the results of micromagnetic simulations obtained for
spin waves excited at the NiO surface x = 0 by a fictitious local
magnetic field H(x = 0, t ) oscillating with a frequency ν. The curves
represent two branches of the spin-wave dispersion relation resulting
from the fitting of Eq. (10) to the simulation data, while the straight
line shows the dispersion of the longitudinal elastic waves in NiO.

corresponds to their coupled nutation. In the limit of τp → 0,
Eq. (11) reduces to Eq. (10) with cAFM = 2γp

√|λ|A/Ms and
ν0 = [γp/(2π )]

√
2K|λ|/Ms at the minus sign and predicts an

infinite nutation frequency at the plus sign. The good accuracy
of the dispersion relation derived for the precession mode
is supported by the agreement of Eq. (11) with the results
of micromagnetic simulations performed with the account of
inertial effects for antiferromagnetic magnons generated at the
NiO surface by the fictitious local magnetic field.

Equation (11) predicts that the introduction of the nonzero
relaxation time τp shifts the dispersion curves of the pre-
cession mode to lower frequencies at τp > 0 and to higher
frequencies at τp < 0. The numerical results obtained for
NiO at τp = 0.5 fs and τp = −0.5 fs are presented in Fig. 6.
As the frequency ν

high
AFMR of the higher AFMR mode is kept

fixed at the measured value of 1100 GHz, significant changes
of the higher branch of νAFM(k) appear only at the wave
numbers k exceeding about 200 × 105 rad cm−1. The lower
branch demonstrates similar modifications, with the AFMR
frequency ν low

AFMR being almost unaffected by the spin inertia.
Nevertheless, the crossing points of νAFM(k) with the disper-
sion of longitudinal elastic waves experience notable shifts
at the chosen values of the relaxation time τp. Namely, at
τp = 0.5 fs, the crossing-point frequencies ν

high
cross and ν low

cross
decrease from 2 THz to approximately 1.9 THz and from
450 GHz to about 370 GHz, respectively. In contrast, the cal-
culation yields ν

high
cross ≈ 2.7 THz and ν low

cross ≈ 580 GHz when
τp = −0.5 fs.

In order to validate the crossing-point frequencies and
wave numbers predicted with the aid of Eq. (11), we run addi-
tional micromagnetoelastic simulations of the spin dynamics
generated by the 1-ps-long acoustic pulse in the presence
of inertial effects characterized by the relaxation times τp =
±0.5 fs. In these simulations, a different integration scheme

FIG. 6. Influence of spin inertia on the magnon dispersion and
magnetoacoustic resonances in NiO. The curved dotted and dashed
lines show the magnon dispersion relations calculated using Eq. (11)
with the relaxation time τp equal to 0.5 fs and −0.5 fs, respectively.
The cross and circle symbols denote the results of micromagnetoe-
lastic simulations obtained for the frequencies and wave numbers of
monochromatic spin waves generated by the 1-ps-long strain pulse.
The straight green line indicates the dispersion of the longitudinal
elastic waves in NiO, and the solid blue and red curves display the
dispersion of antiferromagnetic magnons in the absence of inertial
effects.

of the LLG equation is employed, which is a variant of the
explicit projective Euler scheme adapted for the integration
of Eq. (1) involving the inertial term. Since this scheme
is a first-order algorithm unlike the previously used fourth-
order Runge-Kutta method, the convergence is achieved by
decreasing the integration time step down to δt = 0.2 fs.
The simulations reveal the emerging nutation of sublattice
magnetizations and quantitative changes in their precessional
dynamics. Namely, the frequencies and wave numbers of the
generated monochromatic spin waves shift towards higher
or lower values depending on the sign of τp (see the cross
and circle symbols in Fig. 6). Importantly, the parameters
of these waves extracted from the simulation data show a
good agreement with the crossing-point frequencies and wave
numbers predicted by the analytical calculations. Therefore,
the spin inertia should not prevent the generation of THz
antiferromagnetic magnons in NiO subjected to picosecond
acoustic pulses with sufficiently small durations.

V. CONCLUSION

In this paper, we theoretically studied the spin dynamics
and magnetoelastic effects induced in the single-crystalline
NiO by picosecond acoustic pulses. To quantify the energy
density of NiO, we introduced a two-sublattice model, which
employs effective intersublattice and intrasublattice exchange
interactions and properly describes the magnetocrystalline
and magnetoelastic anisotropies as functions of the Néel-
vector components. The involved parameters of exchange
interactions and magnetocrystalline anisotropies were evalu-
ated by fitting the experimental data on the spin dynamics
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in NiO [54,61,62], while the magnetoelastic constants were
determined by reproducing the measured spontaneous strains
of the NiO single crystal [47]. By adjusting our homemade
software [39–41] to the two-sublattice model, we carried out
micromagnetoelastic simulations of the coupled dynamics
of sublattice magnetizations and lattice strains in the (100)-
oriented NiO film subjected to the “bipolar” acoustic pulses
with durations ranging from 1 to 10 ps.

The simulations show that the strain-induced spin dynam-
ics has the form of correlated precessions of the sublattice
magnetizations depicted in Fig. 1. The precessions’ ampli-
tudes reach maximal values near the pulse front and decrease
nonmonotonically down to much smaller values far behind the
front (Fig. 3). The frequency spectrum of the magnetization
oscillations strongly depends on the pulse duration τ , being
very similar to the smooth pulse spectrum at τ = 10 ps but
having pronounced features at τ � 7 ps. Namely, the spa-
tiotemporal analysis of the simulation data reveals that the
spin dynamics induced by the pulses with τ � 7 ps com-
prises a monochromatic spin wave with the frequency ν ≈
450 GHz and the wave number k ≈ 40 × 105 rad cm−1. More-
over, a second monochromatic spin wave with ν ≈ 2 THz
and k ≈ 180 × 105 rad cm−1 emerges at τ � 3 ps. Since
the characteristics of such waves are close to the crossing
points of the dispersion relations νAFM(k) and νL(k) shown
in Fig. 5, their generation is attributed to the phenomenon
of magnetoacoustic resonance, which occurs when spin and

elastic waves have similar frequencies and wavelengths. As
the generated monochromatic magnons modify the spectrum
of elastic excitations, they could be regarded as antiferromag-
netic magnetoelastic waves propagating in the NiO crystal.
The magnetoelastic coupling between spins and strains also
manifests itself in the revealed generation of a small pulse of
shear strains εxy and εxz, which is created by the precession of
the sublattice magnetizations induced by the primary pulse of
the longitudinal strain.

Our theoretical results demonstrate that picosecond acous-
tic pulses propagating in the single-crystalline NiO can
generate antiferromagnetic magnons with THz and sub-THz
frequencies in the absence of external magnetic fields. Since
such acoustic pulses can be created with the aid of femtosec-
ond laser pulses [63], an efficient strain-driven generation
of high-frequency magnons in antiferromagnets by optome-
chanical transducers is envisioned. Owing to the presence of
magnetoacoustic resonances at sub-THz and THz frequencies
and high magnetoelastic constants, NiO should be regarded
as a promising material for the development of high-speed
information processing devices.
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