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Two-dimensional (2D) second-order topological insulators (SOTIs) have been extensively studied due to their
unique feature of fractional charge at corners. In order to realize such kind of SOTI in natural materials, we
reveal a class of experimentally synthesized 1T-phase transition metal dichalcogenides (TMDs) monolayers as
candidates of SOTI. Taking the monolayer of 1T-PtSe2 as an example, we identify its second-order topology
by determining the nonzero fractional corner charge using first-principles calculations and symmetry analysis.
Furthermore, we emphasize the role of crystalline symmetry in the emergence of corner states based on an
effective edge theory. Due to the same symmetry and similar band structure, our analysis can be directly applied
to other 1T-TMD monolayers. Our findings uncover the previously overlooked higher-order topology in 2D
1T-TMD materials, which may draw immediate experimental attention.
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I. INTRODUCTION

The discovery of higher-order topological insulators (HO-
TIs) in recent years has expanded our understanding of
topological classification [1–21]. For an nth order topological
insulator in d dimension, there are gapless states at its (d-n)-
dimensional boundary [22,23]. In 2D materials, SOTIs have
gapped states at their edges but gapless states at their corners.
Different from the fact that conventional topological insula-
tors (TIs) are protected by time-reversal symmetry, HOTIs are
protected by crystalline symmetry [24] or chiral symmetry
[25]. In addition, as spin-orbit coupling (SOC) is not neces-
sary for the existence of HOTIs, it is possible to study the
higher-order band topology in the spinless systems [26]. There
are some bulk topological indexes to identify the second-order
topology in diverse systems. For example, the Z4 index for
HOTIs with inversion symmetry [27] is an extension of the
Z2 index [28] for conventional TIs. Another useful indicator
to identify SOTIs in 2D systems with Cn symmetry is the
quantized fractional corner charge Qcorner [29]. The fractional
corner charge originates from the so-called filling anomaly,
which means the charge neutrality condition and crystalline
symmetry can not be simultaneously satisfied under a certain
number of electrons [30]. Beyond HOTIs, other higher-order
topological phases such as the second-order topological su-
perconductors have been studied in magnet-superconductor
heterostructures [31–33].

Monolayers of transition metal dichalcogenides (TMD)
have three common phases: 1T, 2H, and 1T′ [34,35]. Previous
studies have shown that monolayers of some 2H-TMDs are
SOTIs that are protected by C3 rotation symmetry [36–38].
On the other hand, monolayers of some 1T′−TMDs have
been identified as quantum spin Hall insulators which are
characterized by the nontrivial Z2 topology [39]. However,

less is known about the topology of monolayers of 1T-TMDs.
As a representative of 1T-TMDs, monolayers of PtSe2 ma-
terial class [40] have attracted interest in both experimental
and theoretical studies due to their excellent characteristics,
such as helical spin texture [41] and unique magnetic ordering
[42]. Recently, some 2D 1T-TMD films have been identified
as HOTIs, which are protected by inversion symmetry and
characterized by the topological Z4 index [43]. However, due
to the improper rotation symmetry S6 in monolayers of the
PtSe2 material class, their fractional corner charge and the
underlying mechanism of the second-order topology remain
to be further explored.

In this work, we perform a comprehensive study on the
higher-order topological characteristics of monolayers of the
PtSe2 material class. Based on first-principles calculations,
we identify monolayer PtSe2 as a SOTI, as evidenced by the
quantized fractional corner charge Qcorner that is derived from
symmetry eigenvalues at high-symmetry points in the first
Brillouin zone. Moreover, we explicitly show the existence of
corner states via the real-space charge distribution of the PtSe2

nanodisks. To further elucidate the origin of the higher-order
topological corner states, we develop an effective model to
establish the bulk-edge-corner correspondence for the system,
which coincides with first-principles calculations. Due to the
shared crystalline symmetry and similar band structures, this
analysis can be directly applied to other 2D 1T-TMD mono-
layers, which verifies the previously overlooked second-order
topology in abundant TMD materials.

II. METHOD

We performed the first-principles calculations based on
the density functional theory with the projector augmented
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FIG. 1. Atomic and band structure of monolayer PtSe2. (a) Crystal structure of monolayer PtSe2 from top and side view. The symbols Se
and Se′ denote the selenium atoms situated in the upper and lower layers, respectively. The x direction is along the twofold rotation axis of the
system. The z direction is perpendicular to the atomic plane. (b) Orbital-resolved band structure of monolayer PtSe2 without SOC. The size of
blue and red dots represents the contribution from px,y, and pz orbitals of Se atoms. ± marks Bloch states having opposite parities with respect
to inversion operations at � and M. The size of green, violet, and orange dots represents the contribution from dxy,x2−y2 , dxz,yz, and dz2 orbitals
of Pt atoms, respectively.

wave method, as implemented in the Vienna ab initio
simulation package (VASP) [44]. The generalized-gradient
approximation in the form of the Perdew-Burke-Ernzerhof
functional was employed for the exchange-correlation
potential [45]. The kinetic energy cutoff for plane wave expan-
sion was set to 400 eV. The electronic structure is computed
twice, one is the spinless case and the other is the spinful
case with SOC. The Brillouin zone was sampled using the
Monkhorst-Pack method with a 12 × 12 × 1 k-mesh for 2D
PtSe2 and with a single � point for PtSe2 nanodisks. The
thickness of the vacuum layers along the z direction was
set to be greater than 12 Å for 2D PtSe2 and its nanodisks.
The irreducible representations of electronic states were ob-
tained by the IRVSP program [46]. We constructed maximally
localized Wannier functions for Se-p and Pt-d orbitals us-
ing the Wannier90 package [47] and calculated edge states
of PtSe2 nanoribbons using the WannierTools package [48].
The crystal structure and charge density were plotted by
VESTA [49].

III. RESULTS

A. Atomic and band structure

The physics in monolayers is essentially the same for a
series of 1T-TMD materials, described below using PtSe2 as
an example [50,51]. Structurally, PtSe2 can be regarded as
strongly bonded 2D Se-Pt-Se layers that are stacked along the
c axis via van der Waals interactions. Within each monolayer
of PtSe2, the Pt layer is sandwiched by the top and bottom
Se layers, where the Pt atom is coordinated by the six neigh-
boring Se atoms in an octahedral geometry [Fig. 1(a)]. The

monolayer of 1T-PtSe2 belongs to the space group P3̄m1 (No.
164, D3d ), which contains a threefold rotation along the z-axis
C3z, a two-fold rotation along the x-axis C2x, an inversion P ,
and an improper rotation symmetry S6 (≡ PC6z ).

Figure 1(b) shows the orbital-resolved band structure of
monolayer PtSe2 without SOC. Because the system exhibits
second-order topology in the presence or absence of SOC as
we discuss later, hereafter we simply focus on the spinless
case without SOC for brevity, unless otherwise specified. As
shown in Fig. 1(b), the monolayer PtSe2 is an insulator with a
band gap of 1.35 eV, which is consistent with previous studies
[40,41]. The bands around the gap are dominated by the p
orbitals of Se atoms and the d orbitals of Pt atoms. Due to
the strong in-plane and out-of-plane anisotropy, the px,y and
pz orbitals split, leaving the conduction and valence bands
mainly composed of px,y orbitals of Se atoms. It is noted that
there are also some contributions from the Pt dxy and dx2−y2

orbitals in the conduction bands around � and the valence
bands around K, implying a strong p-d hybridization because
the px,y orbitals on the top and bottom Se layers hybrid with
the dxy,x2−y2 orbitals on the central Pt layer, which leads to
an effective coupling between top and bottom Se layers and
opens a large gap. As a result, both the conduction and valence
bands at � are formed by degenerate doublet states, which
corresponds to the 2D irreducible representation �+

3 and �−
3

of the D3d group, respectively.

B. Topological index

To identify the second-order topology in monolayer PtSe2,
we calculate the quantized fractional corner charge Qcorner in
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TABLE I. Fractional corner charge Qcorner in both spinless and spinful cases and energy gap Eg (eV) of monolayers of 1T-TMDs.

NiO2 NiS2 ZrS2 ZrSe2 HfS2 HfSe2 PtO2 PtS2 PtTe2 TiS2

Qspinless
corner

2
3 e 2

3 e 2
3 e 2

3 e 2
3 e 2

3 e 2
3 e 2

3 e 2
3 e 2

3 e

Qspinful
corner

4
3 e 4

3 e 4
3 e 4

3 e 4
3 e 4

3 e 4
3 e 4

3 e 4
3 e 4

3 e

Eg 1.41 0.48 1.12 0.46 1.30 0.61 1.81 1.84 0.79 0.06

both spinless and spinful cases. For 2D spinless insulators
with S6 and T symmetries, Qcorner can be evaluated as [52]

Qspinless
corner = e

4
[M̃ (i)

+ ] + e

6

[
K̃ (3)

1

]
mod e, (1)

where [M̃ (i)
+ ] = #M̃ (i)

+ − #�̃
(i)
+ is the difference in the number

of occupied bands with inversion eigenvalue even between M
and �. [K̃ (n)

p ] = #K̃ (n)
p − #�̃(n)

p is the difference in the number

of occupied bands with Cn-rotation eigenvalues exp[ 2π i(p−1)
n ]

for p = 1, 2, …, n between K and �. Based on the first-
principles calculations, we have [M̃ (i)

+ ] = 0 and [K̃ (3)
1 ] = −2.

Therefore, Qspinless
corner = 2

3 e for monolayer PtSe2 in the spinless
calculations.

For the spinful case with SOC included, the formula of the
corner charge Qcorner becomes [53]

Qspinful
corner = − e

4
[M (i)

− ] − e

3

[
K (3)

2

]
mod 2e, (2)

where [M (i)
− ] ([K (3)

2 ]) is the difference in the number of occu-
pied bands with P (C3z) eigenvalue −1 between M (K) and �.
Our spinful calculations with SOC show that [M (i)

− ] = 0 and
[K (3)

2 ] = 2, which leads to Qspinful
corner = 4

3 e for monolayer PtSe2

in the presence of SOC. Therefore, we verify the nontrivial
second-order topological nature of monolayer PtSe2 in both
spinless and spinful cases.

Previous work [53] has demonstrated that there is a one-
to-one mapping between the C3 eigenvalues of the spinful and
spinless cases: [K (3)

2 ] = −[K̃ (3)
1 ]. It implies that(

− e

4
[M (i)

− ] − e

3

[
K (3)

2

])
/2 = e

8

[
M (i)

+
] + e

6

[
K̃ (3)

1

]
. (3)

Upon introducing spin, each spinless parity contributes two
spinful parities by taking into account the fact the inversion
eigenvalues are equal for Kramers partners. Due to the large
band gap of monolayer PtSe2, the SOC cannot induce any
band inversions, which yields a simple mapping between spin-
less and spinful parities [M (i)

+ ] = 2[M̃ (i)
+ ] due to the doubling

of the number of bands. We, therefore, arrive at Qspinful
corner =

2Qspinless
corner , indicating that the doubling of the corner charges

comes with going from spinless to spinful cases. Conse-
quently, we will discuss later the formation of corner charges
by constructing a spinless effective model for the sake of
simplicity.

In addition to monolayer PtSe2, we also examine the topo-
logical index of monolayers for a series of 1T-TMD materials
through first-principles calculations. Because these materials
share the same symmetry and have similar band structures, the
above analysis is also applicable to them. As shown in Table I,
despite different energy gaps, all of these materials exhibit

the same Qspinless
corner = 2

3 e and Qspinful
corner = 4

3 e, indicating their non-
trivial second-order topology. In addition, by examining the
results with and without SOC, we further confirm that Qcorner

of 1T-TMDs monolayers remain the same, which indicates the
robustness of the SOTIs against the SOC effect. Noting that
all the materials listed in Table I are insulators, while other
1T-TMD materials such as MoS2 or CrS2 are metallic in their
monolayer forms and therefore, are considered here.

C. Corner and edge states

Next, we perform a first-principles calculation to directly
verify the existence of corner charges. Due to filling anomaly,
the fractional corner charge depends on the occupation of
corner states [30]. We analyze the energy spectrum and the
charge distribution of states around the Fermi level for three
nanodisks with different shapes: hexagon, triangle, and rhom-
bus. It is noted that these samples have two types of corners
with angles 2π

3 and π
3 , respectively. As shown in Figs. 2(a)

and 2(d), there are six nearly degenerate states around the
Fermi level for the hexagonal nanodisk and their charges
are distributed at the six corners. For the rhombus one, the
charge distributions of two states around the Fermi level are
mainly localized at the 2π

3 corners, with no charge gathered at
π
3 corners [see Figs. 2(b) and 2(e)]. Conversely, the triangle
nanodisk does not exhibit localized corner charges at any π

3
corners [see Fig. 2(c)]. The calculated results are consistent
with the symmetry requirement for the existence of fractional
corner charge in S6-symmetric higher-order topological insu-
lators [29,30]. Additionally, we examine the energy spectrum
of PtSe2 nanoribbons with zigzag and armchair edges, con-
firming the gapped edge spectrum, as shown in Fig. 3.

D. Effective model analysis

To reveal the underlying origin of the corner states in
monolayer PtSe2, we construct an effective model based on
the symmetry of monolayer PtSe2 and derive an edge theory
to explain the nontrivial fractional corner charge. To do so, we
first establish a spinless model with D3d and T symmetries
at the � point. The generators for the D3d point group are
chosen as the threefold rotation C3z, the twofold rotation C2x,
and inversion P . We consider two upper valence bands and
two conduction bands near the band gap, both of which are
doubly degenerate at the � point. Since these four bands
are mainly composed of the Se px,y orbitals and Pt dxy,x2−y2

orbitals, we select the following four states as the bases:
d+ = − 1√

2
(dxy + idx2−y2 ), d− = 1√

2
(dxy − idx2−y2 ), p+ =

− 1√
2
(px + ipy), and p− = 1√

2
(px − ipy). Therefore, the
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FIG. 2. Corner charges of monolayer PtSe2. (a), (b), (c) Top view of the real-space charge distributions of corner states around the Fermi
level for the hexagonal (553 atoms, isosurface level = 0.0006 electron bohr−3), rhombus (407 atoms, isosurface level = 0.001 electron bohr−3),
and triangle (358 atoms, isosurface level = 0.0003 electron bohr−3) nanodisks. The gray (green) balls represent Pt (Se) atoms. (d), (e) Energy
spectrum of hexagonal and rhombus nanodisks. The red circles represent corner states. (f) Schematic illustration of the corner charge at the
intersection of two edges. The new coordinate system x1-x2 is rotated counterclockwise by θ = π

3 relative to the original xy coordinates. The
two edges are cut along the y and x2 axes, respectively.

symmetry operations are represented by

C3z =

⎡
⎢⎢⎢⎢⎢⎣

ei 4π
3 0 0 0

0 e−i 4π
3 0 0

0 0 ei 2π
3 0

0 0 0 e−i 2π
3

⎤
⎥⎥⎥⎥⎥⎦,

C2x = s3 ⊗ τ1,P = s3 ⊗ τ0, T = s0 ⊗ τ1K,

(4)

where K is the complex conjugate operator. s and τ are
Pauli matrices. s0 and τ0 are the 2 × 2 identity matrix. Con-
strained by these symmetries, the effective model expanded to
k-quadratic order reads

H = w0 + w1k2 + (m0 − Bk2)s3 ⊗ τ0

+ v(kxs1 ⊗ τ3 − kys2 ⊗ τ0)

+ (
k2

x − k2
y

)
(c1s0 + c2s3) ⊗ τ1

+ 2kxky(c1s3 + c2s0) ⊗ τ2. (5)

The coefficients are material-dependent parameters that can
be determined by fitting the energy spectrum of the effective
Hamiltonian to that of first-principles calculations. Our fitting
yields w0 = 1.23 eV, w1 = -254.76 eVÅ2, m0 = 1.46 eV, B =
362.22 eVÅ2, v = 20.47 eVÅ, c1 = 172.42 eVÅ2, and c2 =
119.28 eVÅ2.

Next, we derive an edge model from the effective Hamil-
tonian (5). Because the w0 + w1k2 term is an overall energy
that does not affect the relative energy level, we omit this term
in the following discussion for simplicity. We also neglect the
last two k-quadratic terms temporarily and reintroduce them
as a perturbation later. With these assumptions, the Hamilto-
nian is simplified as

H̃ = (m0 − Bk2)s3 ⊗ τ0 + v(kxs1 ⊗ τ3 − kys2 ⊗ τ0). (6)

This Hamiltonian resembles the well-known Bernevig-
Hughes-Zhang (BHZ) model of quantum spin Hall insulators
[54], where doubly degenerate Kramers pairs exist at time-
reversal-invariant momentum. However, in our spinless sys-
tem, the double degeneracy only occurs at � and is protected
by crystalline symmetry s3 ⊗ τ2K instead of the time-reversal
symmetry.

To solve the simplified Hamiltonian (6) on an arbitrary
edge, we define a new coordinate system x1-x2, which is
rotated counterclockwise by θ relative to the original x-y
coordinates [see Fig. 2(f)]. The bases of the new coordinates
are �e1 = cos θ �ex + sin θ �ey and �e2 = − sin θ �ex + cos θ �ey. The
transformations between the new coordinates and the original
x-y coordinates in both spatial and momentum spaces are
given by [55]{

x = x1 cos θ − x2 sin θ, kx = k1 cos θ − k2 sin θ,

y = x1 sin θ + x2 cos θ, ky = k1 sin θ + k2 cos θ.
(7)
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FIG. 3. Energy spectrum of PtSe2 nanoribbons with (a) zigzag and (b) armchair edges. The red color represents the edge spectrum. The
insets in each panel show the structure of nanoribbons from the top view.

Substituting Eq. (7) into Eq. (6), we obtain the Hamiltonian in
the new coordinates,

H̃ = (m0 − Bk2)s3 ⊗ τ0 + v(k1 f1 + k2 f2), (8)

where k2 = k2
1 + k2

2 , f1 = cos θs1 ⊗ τ3 − sin θs2 ⊗ τ0, and
f2 = − sin θs1 ⊗ τ3 − cos θs2 ⊗ τ0.

To further derive the effective Hamiltonian for the edge
states along the �e2 direction, we consider the Hamiltonian
(8) on the half-space x1 > 0 in the x1-x2 plane and make the
substitution k1 −→ −i∂x1 at k2 = 0, which yields

H̃ (x1) = (
m0 + B∂2

x1

)
s3 ⊗ τ0

− iv∂x1 (cos θs1 ⊗ τ3 − sin θs2 ⊗ τ0). (9)

Solving this 1D Hamiltonian across the edge, we arrive at two
zero-energy edge modes:

ψ1(x1) = C sin(γ1x1)e−γ2x1

(−ieiθ

1

)
⊗

(
1
0

)
,

ψ2(x1) = C sin(γ1x1)e−γ2x1

(
ie−iθ

1

)
⊗

(
0
1

)
, (10)

where the normalization factor C =
√

2γ2(γ 2
1 + γ 2

2 )/γ 2
1 , γ1 =√

m0
B − v2

4B2 , and γ2 = v
2B [56]. Note the condition for the solu-

tions to exist is m0
B > 0 and we also assume v

B > 0 here, which
is consistent with our fitting result. By expanding Eq. (8)
around k2 = 0 on the bases of these two states, we obtain the
1D edge mode,

Hedge = −vk2σ3, (11)

where σ are Pauli matrices acting on the subspace of
{ψ1(x1), ψ2(x1)}.

Then, we reintroduce the last two k-quadratic terms in
Eq. (5) as a perturbation and study its effect on the edge states.
We perform the same rotational transformation (7) and get the

k-quadratic terms in the new coordinates

H ′
p = (

k2
1 − k2

2

)
g1 + 2k1k2g2, (12)

where g1 = cos 2θ (c1s0 + c2s3) ⊗ τ1 + sin 2θ (c1s3 + c2s0) ⊗
τ2 and g2 = − sin 2θ (c1s0 + c2s3) ⊗ τ1 + cos 2θ (c1s3 +
c2s0) ⊗ τ2.

In analogy to the above derivation of edge states, we found
that the edge Hamiltonian (11) would generally be gapped by
an effective mass term

HM ≈ −|
|m0

B
(cos ϕσ1 + sin ϕσ2), (13)

where 
 = e−iϕ |
| = c2ei4θ + ieiθ (c1 − c2) sin(3θ ) is a
Dirac mass. This effective mass term opens an edge gap
proportional to |
|m0/B, and the phase ϕ determines
the fractional corner charge according to Moore’s theory
[57]. Specifically, a mass kink arises from the effective
mass term at corners between two adjacent edges, and
the phase shift of �ϕ results in a corner state with a
fractional charge of Qcorner = e|�ϕ

2π
|. For the hexagonal

nanodisk with respect to the S6 symmetry [see Fig. 2(a)], the
angle θ = nπ

3 , (n = −2,−1, 0, 1, 2, 3). Therefore, the angle
difference �θ = π

3 leads to Qcorner = e|�(4θ )
2π

| = 2
3 e, which

coincides with the topological index Qspinless
corner given by Eq. (1)

for S6-symmetric higher-order topological insulators.

IV. CONCLUSION

We have shown SOTIs in 2D monolayers of the PtSe2

material class. We prove their nontrivial second-order topol-
ogy by directly calculating the fractional corner charge in
both spinless and spinful cases using first-principles calcula-
tions. Based on symmetry analysis, we construct an effective
model to illustrate the underlying mechanism analytically.
By projecting the bulk Hamiltonian onto edges, we derive
the 1D massive Dirac model for the gapped edge states and
find that the k-quadratic terms in the bulk Hamiltonian in-
duce an edge-direction dependent mass term, leading to the
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emergence of fractional corner charge. Our findings not
only reveal the higher-order topological properties of a large
class of 1T-TMD monolayers but also greatly extend exper-
imentally synthesizable material candidates of SOTIs. The
proposed SOTIs are expected to inspire future experimental
studies and the fractional corner charge can be detected by
local probes such as scanning tunneling microscopy.

Note added. Recently, we became aware of independent
works on arXiv [58,59], which have some overlaps with our
work.
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APPENDIX: THE EDGE-STATE SOLUTIONS
OF THE EDGE HAMILTONIAN

We consider the Hamiltonian (8) on the half-space x1 > 0
in the x1-x2 plane and make the substitution k1 −→ −i∂x1 at
k2 = 0, which yields

H̃ (x1) = (
m0 + B∂2

x1

)
s3 ⊗ τ0

− iv∂x1 (cos θs1 ⊗ τ3 − sin θs2 ⊗ τ0). (A1)

For Pauli matrix τ3, it satisfies

τ3

(
1
0

)
=

(
1
0

)
, τ3

(
0
1

)
= −

(
0
1

)
. (A2)

Therefore, the Hamiltonian (A1) can be solved within the
subspace of different eigenvalues of τ3. For the subspace with
τ3 eigenvalue 1,

H̃1(x1) = (
m0 + B∂2

x1

)
s3 − i∂x1v(cos θs1 − sin θs2). (A3)

Because this Hamiltonian has particle-hole symmetry, we
expect that a special edge state with E = 0 can exist, i.e.,
H̃1(x1)ψ (x1) = 0. Suppose ψ (x1) = eλx1φ, we have

[(m0 + Bλ2) + λv(cos θs2 + sin θs1)]φ = 0. (A4)

Therefore, φ is the eigenstate of t = (cos θs2 + sin θs1) and
we can define tφ± = ±φ±. The general solution is

ψ (x1) = (aeλ1x1 + beλ2x1 )φ− + (ce−λ1x1 + de−λ2x1 )φ+,

(A5)

where λ1,2 = v±
√

v2−4Bm0

2B , λ1 + λ2 = v
B , and λ1λ2 = m0

B . The
coefficients a, b, c, and d can be determined by imposing
the open boundary condition ψ (0) = 0. Together with the
normalizability of the wave function in the region x1 > 0, we
have the condition for the existence of edge states: Re(λ1,2) <

0 (c = d = 0) or Re(λ1,2) > 0 (a = b = 0). The condition can
only be satisfied when m0

B > 0, which is the band inversion
condition for the BHZ-like model. Moreover, when v

B < 0, we
have Re(λ1,2) < 0, while when v

B > 0, we have Re(λ1,2) > 0.
Therefore, the wave function for the edge states at the k2 = 0

point is given by

ψ (x1) =
{

a(eλ1x1 − eλ2x1 )φ−, v
B < 0,

c(e−λ1x1 − e−λ2x1 )φ+, v
B > 0.

(A6)

On the other hand, for the subspace with τ3 eigenvalue −1, we
have

H̃2(x1) = (
m0 + B∂2

x1

)
s3 + i∂x1v(cos θs1 + sin θs2). (A7)

Supposing this is a zero-energy state ψ (x1) = eλx1φ′, satisfy-
ing H̃2(x1)ψ (x1) = 0, we arrive at

[(m0 + Bλ2) + λv(− cos θs2 + sin θs1)]φ′ = 0. (A8)

Therefore, φ′ is the eigenstate of t ′ = (− cos θs2 + sin θs1)
and we can define t ′φ′

± = ±φ′
±. The solution is (with the same

definition of λ1,2 and condition m0
B > 0)

ψ (x1) =
{

a(eλ1x1 − eλ2x1 )φ′
−, v

B < 0,

c(e−λ1x1 − e−λ2x1 )φ′
+, v

B > 0.
(A9)

We specify φ+, φ′
+ as

φ+ = 1√
2

(−ieiθ

1

)
,

φ′
+ = 1√

2

(
ie−iθ

1

)
, (A10)

and further define γ1 =
√

m0
B − v2

4B2 , γ2 = v
2B [56], then λ1 =

γ2 + iγ1, λ2 = γ2 − iγ1. Without loss of generality, we sup-
pose v

B > 0, then there are two zero energy solutions in total,

ψ1(x1) = C sin(γ1x1)e−γ2x1

(−ieiθ

1

)
⊗

(
1
0

)
,

ψ2(x1) = C sin(γ1x1)e−γ2x1

(
ie−iθ

1

)
⊗

(
0
1

)
, (A11)

where the normalization factor C =
√

2γ2(γ 2
1 + γ 2

2 )/γ 2
1 .

Around k2 = 0, considering the linear term Hp = vk2 f2 as
perturbation and neglecting the k2

2 term, the projected Hamil-
tonian on the edge can be obtained by

Hαβ

edge(k2) =
∫ +∞

0
dx1ψ

∗
α (x1)Hpψβ (x1), (A12)

where α, β = 1, 2. Therefore, we get the effective Hamilto-
nian for gapless edge states

Hedge = −vk2σ3, (A13)

where σ are Pauli matrices acting on the subspace of
{ψ1(x1), ψ2(x1)}.

To get second-order topology, we need to open the gap by
a mass term. The last k-quadratic terms in the bulk Hamil-
tonian which we have dropped out before play the role of
the mass term. They break the crystalline symmetry s3 ⊗ τ2K
and thus split the double degeneracy of original bands. By
reintroducing them back and performing the same rotational
transformation (7), we get the k-quadratic terms in the new
coordinates,

H ′
p = (

k2
1 − k2

2

)
g1 + 2k1k2g2, (A14)

044203-6



SECOND-ORDER TOPOLOGICAL INSULATORS IN … PHYSICAL REVIEW MATERIALS 8, 044203 (2024)

where g1 = cos 2θ (c1s0 + c2s3) ⊗ τ1 + sin 2θ (c1s3 +
c2s0) ⊗ τ2 and g2 = − sin 2θ (c1s0 + c2s3) ⊗ τ1 +
cos 2θ (c1s3 + c2s0) ⊗ τ2. Here we also replace k1 by −i∂x1

and neglect the unimportant k2
2 term, then

H ′
p = −∂2

x1
g1 − 2i∂x1 k2g2. (A15)

In the same way as Eq. (A12), we eventually get the expres-
sion of the mass term

HM ≈ −m0

B

[
0 



∗ 0

]
, (A16)

where 
 = c2ei4θ + ieiθ (c1 − c2) sin 3θ .
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