
PHYSICAL REVIEW MATERIALS 8, 044201 (2024)
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The spin Hall effect (SHE) maintains a distinct, pivotal role within spintronics. In this study, we systematically
investigate the intrinsic SHE of topological semimetals with a single Dirac nodal ring (DNR) in the half-Heusler
ABC family of compounds (HfCoAs, HfCoP, HfNiAs, ZrCoP, TaCoGe, TiSiNi, NbCoSi). Taking HfCoAs as
an example, we show that an ideal single DNR lies within the My mirror plane adjacent to the Fermi surface
when spin-orbit coupling (SOC) is absent, as protected by combined space-time inversion (PT ) symmetry and
My mirror-reflection symmetry. With the inclusion of the SOC, the DNR is gapped out resulting in plenty of
minimal band gap near the Fermi level, which yields a large spin Hall conductivity owing to the large spin Berry
curvature hotspots around the nodal ring. Our research provides a comprehensive understanding of spin transport
properties inherent in the simplest topological DNR semimetals, providing a solid foundation for exploring
and engineering more complicated nodal line semimetals. This work may also offer practical applications in
advancing spintronics device development with suitable SHE materials.
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I. INTRODUCTION

In recent years, the rapid advancement of electronic
devices has been driven by continuous miniaturization. How-
ever, there exists a fundamental limit to this process as the size
of electronic components approaches the atomic scale, which
is limited by the quantum size effect [1,2]. To overcome this
threshold, researchers have been exploring new approaches to
electronic devices, such as spintronics, which use the spin of
electrons as an information carrier instead of the electronic
charge employed in traditional electronics (e.g., CMOS de-
vices) [3–6]. One important ingredient of spintronics is the
use of the spin Hall effect (SHE) [7,8] to enable electrons
with different spin directions to move and accumulate in a
predetermined direction, obviating the necessity for an ex-
ternal magnetic field [9]. This creates opportunities for spin
manipulation in nonmagnetic materials.

Topological semimetals (TSM) [10–14] have attracted sig-
nificant attention due to their unique electronic properties.
Since the intrinsic spin Hall conductivity (SHC) is intimately
related to the spin Berry curvature of the electronic bands
and SOC [7,9,15], these materials show an enhanced intrinsic
SHC around the nontrivial band crossings near the Fermi sur-
face along with nontrivial Berry phases [16]. Simultaneously,
their minimal density of states near the Fermi surface results
in a correspondingly small longitudinal charge conductivity.
Consequently, the spin Hall angle (SHA) [17], delineated
as the ratio of the SHC to the charge conductivity, could
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surpass that of topological metals [18]. These properties make
topological semimetals promising candidates for spintronics
applications.

Topological semimetals can be classified based on
the dimension of their band crossing, extending from
zero-dimensional nodal points [19–24], one-dimensional
nodal lines/rings [25–31], to two-dimensional nodal surface
semimetals [32–34]. Compared to the case of isolated nodal
points, a nodal line/ring or nodal surface comprising a con-
tinuous assembly of nodal points in the Brillouin zone (BZ)
could significantly enhance the SHE, given their increased
number of band anticrossing points [35]. Nevertheless, those
systems usually host complex electronic structures with mixed
nodal and bulk states, adding difficulties in distinguishing the
pure contribution from the nodal states and unraveling the
underlying mechanism for the enhancement of SHE. Con-
sidering these factors, topological semimetals with a single
Dirac nodal ring (DNR) may serve as an ideal starting point
for studying the fundamentals of intrinsic SHE and exploring
their potential SHE enhancement mechanisms.

In this study, based on ab init io calculations and symmetry
analysis, we propose a family of topological DNR semimet-
als in the half-Heusler (ABC) compounds when the SOC is
ignored. The representative material HfCoAs shows a dis-
tinguished clean single nodal ring near the Fermi level, a
feature uncommonly observed among topological nodal line
semimetals. Further, we undertake a comprehensive examina-
tion of the topological properties and the intrinsic SHC within
the material HfCoAs in the presence of SOC. The DNR is
fully gapped with plenty of minimal band gap, and spin Berry
curvature is large along the gapped nodal ring, which results in
a considerable SHC in the system. Additionally, we examine
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the family of half-Heusler ABC compounds (HfCoAs, Hf-
CoP, HfNiAs, ZrCoP, TaCoGe, TiSiNi, NbCoSi), which show
similar band structures that serve as promising SHE materi-
als. Our work reveals a promising platform for studying the
interplay between SHE and the topological band crossings in
nodal line systems. It is worth noting that the HfCoAs family
of materials have been synthesized experimentally [36], which
lays the crucial foundation for their practical application in
spintronics, for example, as magnetic switching materials.

II. METHOD

To investigate the electronic band structure, topological
properties, and intrinsic SHE, we have performed first-
principles calculations based on the density functional theory
(DFT). All first-principles calculations were conducted em-
ploying the Vienna ab init io simulation package (VASP)
[37,38], which is treated by the projector augmented wave
(PAW) [39] method and utilizes a plane wave basis set.
The exchange and correlation terms were considered at the
level of generalized gradient approximation (GGA) [39]
within the scheme of the Perdew-Burke-Ernzerhof (PBE)
[40] functional. The plane-wave cutoff energy is chosen as
500 eV, accompanied by an 8 × 13 × 7 k-point grid used for
self-consistent calculations. The topological properties asso-
ciated with HfCoAs system, including topological number Z2

[25,28,29,41,42], the evolution of Wilson loop [43], surface
states [25], Berry phase [43], and so on, are investigated by
constructing the maximally localized Wannier functions with
Wannier90 [44,45] and WannierTools [46]. For symmetry
analysis, we also utilize the Irvsp package [47] to get the
irreducible representation of the energy band.

By calculating and analyzing the fatband structure (SM
[48]) [49], the Bloch states of low energy spectrum can be
projected into highly symmetric atomic orbitals like Wannier
functions (specifically, Hf-d , Co-d, and As-p orbitals). The
tight-binding Hamiltonian is constructed and used to compute
the SHC, which is based on the linear-response Kubo formula
approach [50,51]. Note that we implemented this scheme in a
module of the Wannier90 package [44,45,52]. To include SOC
in our analysis, we introduce an additional term Hαβ

SOC ∝ σ · L
to the Hamiltonian, effectively coupling the spin with the an-
gular momentum. This addition, as implemented in the VASP

package, is pivotal for accurately computing the SHC [53].
The SHC, σ

spin γ

αβ , can be mathematically expressed as

σ
spin γ

αβ (ω) = e

2

1

V Nk

∑

k

�
spin γ

αβ (k), (1)

where V is the cell volume, and Nk represents the number of k
points used for sampling the Brillouin zone. Analogous to the
ordinary Berry curvature, �

spin γ

αβ (k) is a k-resolved spin Berry
curvature term, which sums over occupied bands [54]:

�
spin γ

αβ (k) =
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n

fnk�
spin γ

n,αβ (k), (2)

where fn�k = f (εn�k ) is the Fermi-Dirac distribution for the nth
band, and �

spin γ

n,αβ (k) is the band-projected spin Berry curvature
term:

�
spin γ

n,αβ (k) = h̄2 ∑
m �=n

−2 Im [〈nk| 1
2 {σ̂γ ,v̂α}|mk〉〈mk|v̂β |nk〉]

(εnk−εmk )2−(h̄ω+iη)2 . (3)

The unit of the �
spin γ

n,αβ (k) and σ
spin γ

αβ are denoted in Å2 and
(h̄/e)S/cm, respectively. The spin current operator is repre-
sented by ĵ

s,γ
α = 1

2 {v̂α, ŝγ } with the spin operator ŝγ = h̄
2 σ̂γ ,

which flows along the α direction with the spin polariza-
tion along γ , generated by an electric field Eβ along the β

direction, i.e., js,γ
α = σ

γ

αβEβ . The velocity operator is given

by vβ = 1
h̄

∂H
∂kβ

, where α, β, γ = x, y, z are Cartesian compo-
nents. |nk〉 is the eigenvector for the Hamiltonian H at the
eigenvalue Enk. In the following section, we will focus on
the direct current (dc) spin Hall conductivity, which means
ω = 0.

For the computation of intrinsic SHC, we employed a
Brillouin Zone summation on a 70×70×70 k grid and set
adapted k mesh equal to seven (convergence test in the SM
[48]), a procedure intended to deal with the dramatic variation
in the spin Berry curvature. It is worth noting that the spin
matrix file, .spn file, required for the Wannier90 SHC calcu-
lation was generated using the WannierBerri package in our
work [55,56].

III. SINGLE DIRAC NODAL RING

It has been known that in the absence of SOC or when the
SOC is negligible, the 3D nodal line could exist if the system
has PT symmetry, and further, if the system also has mirror
symmetry, the position of the nodal lines will be constrained
accordingly [29,41]. To study the system with a single nodal
ring, we focus on material systems that have PT symmetry,
also with one mirror symmetry, i.e., the half-Heusler ABC
compounds, which share the orthorhombic lattice structure
with space group Pnma/mmm (No. 62). The primitive unit cell
and front views of the conventional cell of the representative
HfCoAs are illustrated in Figs. 1(a) and 1(b), respectively. In
Fig. 1(b), it is clear that the system contains one mirror plane
My. Through DFT calculations, the compound is found to be
a nonmagnetic system. Moreover, we should note the HfCoAs
system contains d-orbital electrons, which are known for un-
derestimated electronic correlation effects in the conventional
exchange-correlation functionals, like the generalized gradi-
ent approximation (GGA). To account for potential errors
in exchange correlation, the Hubbard term with the on-site
Coulombic (U ) and exchange (J) terms are usually applied
[57].

However, upon testing the impact of varying U values
in our system, we found that the influence on the overall
system was relatively minimal. Notably, at U = 0, the lattice
constants obtained from the structural relaxation of the system
aligned more closely with the experimental values. Therefore,
we choose U = 0 for the subsequent calculations; see more
calculation details in the SM [48].

We further calculated the electronic band structures and
density of states (DOS) of HfCoAs, as shown in Fig. 1(c).
Note that the Fermi energy is set to zero for reference. On
the left panel, the solid lines represent the DFT calculated
band structure, in which dark and green lines denote the bands
without and with spin-orbit coupling (SOC), respectively. In
the absence of SOC, the emergence of band crossing points
is apparent at � − X and � − Z [insets in Fig. 1(c)], which
are labeled as D1 and D2, respectively. To further check the
existence of other potential crossing points, we perform a
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FIG. 1. (a) The orthorhombic primitive unit cell of HfCoAs. Hf, Co, and As atoms are colored yellow, dark green, and light green,
respectively. (b) The front view of the conventional cell of HfCoAs and the My symmetry can be seen (dotted line). The black lines indicate
the unit cell. (c) Calculated electronic band structure of HfCoAs, without and with SOC, as well as the projected density of states (PDOS). In
the absence of SOC (solid black lines), Dirac crossings are visible along � − X and � − Z , which become fully gapped in the presence of SOC
(solid green lines) as shown in the insets. The wannier-interpolated band structure is indicated by dotted pink lines. (d) The three-dimensional
(3D) band structures of HfCoAs without SOC. The topological nodal ring on the kx-kz plane is highlighted by dotted blue lines and the
dispersion range of the nodal ring is E = 193.6 meV, which is shown as insets. (e) Illustration of the nodal rings in the ky = 0 plane shows
the full loop.

careful calculation of the 3D band structure and the energy
gap between the two bands near the Fermi level: gap (k) =
EUpper-fermi(k) − ELower-fermi(k). It is found that crossing points
actually persist along all directions around the � point in the
ky = 0 plane, resulting in a single nodal ring, as indicated by
dotted blue lines in Figs. 1(d) and 1(e). Note that the nodal
ring has an energt range (−84.4, 109.2) meV with an energy
dispersion, E , about 193.6 meV, as illustrated in the inset of
Fig. 1(d). Since both time-reversal and inversion symmetries
are present, each band is doubly degenerate. Therefore, the
nodal ring is fourfold degenerate, resulting in a Dirac nodal
ring semimetal.

While SOC is included, the fourfold degenerate DNR be-
comes fully gapped out, resulting in two twofold degenerate
states near the Fermi level. The insets of Fig. 1(c) display the
small gap regions, with ED1 ≈ 19 meV, ED2 ≈ 11 meV,
and the range of gap for all the points on the nodal ring
is 4 ∼ 88 meV (SM [48]). This gapping out along a large
number of k points plays a central role in producing the
large SHC, a topic we shall delve into subsequently. Note
that the small DOS [right panel of Fig. 1(c)] near the Fermi
level usually suggests a relatively small charge conductivity
that could yield a large SHA, which is beneficial for the
energetic efficient spintronics applications. To calculate the
topological and transport properties, we fitted the DFT cal-
culated bands both with and without SOC using Wannier90
utilizing 104 Wannier orbits (52 for each spin), as shown in
Fig. 1(c) with dotted pink lines for the case without SOC.
The comparison reveals a perfect match between the DFT
calculated and Wannier-represented bands near the Fermi
energy ±2 eV.

IV. TOPOLOGICAL PROPERTY

A system is said to be topologically nontrivial if the filled
bands can’t be adiabatically deformed into an atomic insulator
without closing the gap, meaning that some topological invari-
ants [42,58–60] cannot be changed continuously. Topological
invariants can be determined directly from the band structure
of the material, using various algorithms like Wilson loop
calculations [43], the Berry phase method [61–63], etc. These
methods typically require solving the full band structure.
On the other hand, the theory of band representations (BR)
[64] provides another more general and systematic approach,
which is the basis of topological quantum chemistry (TQC)
[65–68]. It leverages the symmetry of the crystal and its wave
function, which is encoded in the irreducible representation
of the high symmetry points (and lines/planes if needed), to
identify the topology [67,69–71]. To characterize the topolog-
ical nature of the HfCoAs system, we utilize both the concept
of topological invariants and the BR theory in the following.

From the band structure shown in Fig. 1(c), one observes
that when SOC is not considered, there are two nodes located
at � − X and � − Z . Due to the presence of PT symmetry
[72–75] in HfCoAs, the system could host more Dirac nodes
beyond the two Dirac nodes D1 and D2, forming a nodal ring
[41], as we have verified. Note that PT symmetry is enough
to guarantee DNR, and to check this, we calculate the Berry
phase [73] for a closed k path in the 3D BZ. For a path not
enclosing the nodal ring, the Berry phase is zero, while for a
path encircling the nodal ring, the Berry phase is π (±π , with
the sign depending on the path direction) [28,29], confirming
the topological feature of this DNR.
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FIG. 2. Surface spectra on (010) surface without (a) and with
(b) SOC. The redness of color represents a larger density of the states
from the surface. Surface spectra on (100) and (001) surfaces without
(c) and with (d) SOC.

In addition, we found that the DNR is located in the mirror-
invariant ky = 0 plane, which is actually induced by the extra
My mirror symmetry of the half-Heusler compounds [76,77].
To further evaluate the topological feature of this My mirror
symmetry, we compute the irreducible representations of the
energy bands along high-symmetry paths: � − X − S − Y −
� − Z − U . Taking point D1 as an example, at the � point,
the two states near the Fermi level belong to irreducible rep-
resentation GM3+ and GM1+, corresponding to −1 and +1
My mirror eigenvalues. While at the Z point, the My mirror
eigenvalues of the two states near the Fermi level, which
belong to irreducible representation Z1 and Z2, are +2 and
−2. As a result, the compatibility relation [67] is not satisfied
on the high-symmetry line connecting the points � and Z .
Consequently, an obligatory energy band crossing between
the conduction band and the valence band is necessitated.
Similarly, we extend this analysis to the � − X path, which
confirms the occurrence of band inversion. Since the two
crossing bands have different mirror eigenvalues, we could
indeed confirm that the DNR is topological and protected by
the My mirror symmetry.

Furthermore, the band inversions at the Dirac nodes D1

and D2 suggest the existence of topological nontrivial surface
state [20,22,30,78]. Therefore, we calculate the surface state
of HfCoAs (010) surface without and with the SOC, as shown
in Figs. 2(a) and 2(b), respectively. We notice that some Fermi
arc states connecting the Dirac nodes are observed in the
DNR semimetal phase of HfCoAs when the SOC is neglected
[Fig. 2(a)]. When the SOC is included, topological protected
surface states appear on the Z − � and � − X paths being
clearly visible [Fig. 2(b)] due to the spin splits and the gap
opening of the node line, revealing the transition from a topo-
logical semimetal to a 3D small-gap topological insulator (TI).
The gapped system is further confirmed to be topologically
nontrivial with Z2 indices (1;000) [42], which is obtained by
examining the evolution of the Wannier charge center across
six time-reversal invariant planes in the Brillouin zone (more
details can be found in the SM [48]). In addition, there is
another approach to compute the Z2 topological invariant by

computing the lattice Chern number for half of the Brillouin
zone [79,80]. Both methods offer insights into the topolog-
ical properties of materials through different computational
frameworks. We note that the DNR is fully gapped while con-
sidering SOC in the HfCoAs system, which, however, is not
an ideal topological insulator but a compensated semimetal
because of the crossing bands at the Fermi level.

V. INTRINSIC SPIN HALL EFFECT

Induced by spin-orbit coupling, the gap opening near the
band anticrossing points can contribute strong spin Berry cur-
vature (SBC) in analogy to the ordinary Berry curvature [9],
meanwhile, the small energy denominator in the Kubo expres-
sion contributes to an augmented SHC significantly [50,51].
To maximize the SHC, it is essential to increase the number
of band anticrossing points, i.e., hotspots, which can be poten-
tially achieved in topological Dirac nodal line or nodal surface
systems. The Dirac nodal line semimetal studied here, i.e.,
HfCoAs, hosts an ideal single topological DNR, which incurs
a gap along the DNR when SOC is introduced and may lead
to a large SHC. To calculate the intrinsic SHE, we constructed
the tight-binding (TB) model Hamiltonian including SOC,
and computed the intrinsic SHC through the Kubo formula
approach following Eq. (1) [52,81].

The SHC tensor, σ k
i j , is a second-order tensor with 27

elements. Symmetry not only restricts certain elements to
be zero but also imposes conditions on the independence of
the remaining nonzero elements [82]. In the HfCoAs system,
there are six nonzero and independent elements of the SHC
tensor, where all three directions of spin flow, charge flow,
and spin polarization are mutually perpendicular, i.e., σ z

xy,
σ z

yx, σ
y
zx, σ

x
zy, σ

x
yz, and σ

y
xz. We note that the integrity of the

symmetry within the TB model Hamiltonian is essential to
determine the SHC accurately. To verify the accuracy of
the fitted Wannier function for the HfCoAs system, we first
calculate elements that symmetry requirements dictate to be
zero [82,83], and we present these elements in Fig. S9 of the
Supplemental Material [48]. The results show that except for
some negligible numerical errors, the SHC is indeed close
to zero, which indicates that the Hamiltonian we constructed
has the necessary symmetries, especially the My mirror
symmetry. This confirms that the Wannier90 fitted TB model
Hamiltonian is correctly applied.

Further, we determine the values of the six nonzero
SHC tensors at the Fermi energy, σ z

xy ≈ 97.25, σ z
yx ≈

−102.05, σ
y
zx ≈ 74.84, σ x

zy ≈ −218.16, σ x
yz ≈ 238.97, and

σ
y
xz ≈ −42.36 (h̄/e)S/cm (shown in the SM [48]), which

shows sizable values and is comparable to other semimetals
[35,84–86]. Notably, these six elements differ from each
other, reflecting the anisotropy of the crystal structure. The
accuracy of the calculated SHC was double checked by the
symmetry analysis, ensuring the validity of our findings. To
better understand the interplay between the DNR and the
large SHC, we presented the energy-dependent SHC of the
usually studied σ z

xy and a relatively larger σ x
zy component.

First, we can clearly see an obvious SHC peak near the Fermi
level, e.g., P1 and P2 for σ z

xy and σ x
zy in Figs. 3(a) and 3(d),

respectively, which locates within the energy range of the
DNR (−84.4, 109.2) meV (highlighted by dashed gray lines).
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FIG. 3. (a) Calculated intrinsic conventional SHC σ z
xy is in in

units of (h̄/e)S/cm. (b) Top panel: Band structure along symmetry
lines � − X − S − Y − � − Z , colored by the band-projected Berry
curvaturelike term �spin z

n,xy (k). Bottom panel: k-resolved Berry curva-
turelike term �spin z

xy (k) along the same path in the BZ, note the log
scale on the vertical axis. (c) The k-resolved term �spin z

xy (k) inside the
(010) mirror plane. The blue and red colors show the dominant con-
tributions from the gaped-out nodal ring in units of Å2. Intersections
of the Fermi surface with this plane are shown as black lines. (d), (e),
(f) Analogous to (a), (b), (c), but for the case of component σ x

zy.

Considering only DNR exists at that energy range that could
be the spin Berry curvature (SBC) resources, it suggests the
SBC contribution from the DNR to the overall SHC (more
details can be found in the SM [48]).

To further verify the DNR enhancement of SHC, we have
further calculated and analyzed the k-resolved spin Berry
curvature distribution along both the high-symmetry k path
and k plane that host the DNR, as well as the energy-resolved
spin Berry curvature distribution for the whole band along
the high-symmetry k path. Take σ z

xy as an example: by us-
ing Wannier interpolation [52,81], we calculate the band
structure, colored by the band-projected spin Berry curvature
results [upper panel of Fig. 3(b)], �

spin z
n,xy (k) [see Eq. (3)], and

the energy-resolved spin Berry curvature distribution [lower
panel of Fig. 3(b)] �

spin z
xy (k) [see Eq. (2)] along the path

� − X − S − Y − � − Z in the BZ. The results shown in
Fig. 3(b) show a noticeable contribution of spin Berry curva-
ture (hotspots colored in red and blue) around the DNR with
negligible spin Berry curvature from the other bands (colored
in green). Similarly, the k-resolved spin Berry curvature plot
(lower panel) for the Fermi-energy on points D1 (red dashed

line) or D2 (dark gray dashed line) reveals large spikes at
D1 or D2 points. We note that there are certain abnormal
spin Berry curvature fluctuations along S–X and S–Y k paths,
which are mostly numerical errors that have negligible in-
fluence on the SHC results, as supported by the calculation
results from different SHC elements (see the SM for more
details [48]).

To gain a better understanding of the entire gapped-out
DNR contribution to the SHC, which is obtained by calcu-
lating the spin Berry curvature term at each k point, we plot
a heatmap of �

spin z
xy (k) in the ky = 0 mirror plane, as shown

in Fig. 3(c). Intersections of the Fermi surface with the (010)
plane are denoted by the dark line that also corresponds to
the distribution of the DNR. The results show clearly that the
largest absolute values (colored in red and blue), e.g., large
spin Berry curvature, are located around the DNR, further
validating the DNR contribution to the SHC. We also calculate
and compare the differences between different SHC compo-
nents, especially the one (σ x

zy) with a relatively large SHC, as
shown in Fig. 3(d). The band and band-projected character-
istics are shown in Fig. 3(e), bearing a similarity to σ z

xy. In

Fig. 3(f), we also calculated the �
spin x
zy (k), consistent with the

discussions of Fig. 3(c) and the SHC is mainly contributed
from the nodal ring. However, in this case, there are more
blue contributions than red, which leads to the negative σ x

zy
with positive σ z

xy values.
In fact, the enhanced SHC near the Fermi level is not only

due to the large spin Berry curvature along the nodal ring, but
also highly related to stationary points in the energy dispersion
of the nodal ring [87,88]. So we also calculated the energy
dispersion and DOS from the nodal rings eigenvalues and
found sharp peaks (van Hove singularities) in the DOS, which
is consistent with the peaks of the SHC results. This better
demonstrates the connection between the DNR and enhanced
SHC (more details can be found in the SM [48].)

VI. PROMISING MATERIAL CANDIDATES

The family of half-Heusler semimetal ABC (HfCoAs, Hf-
CoP, HfNiAs, ZrCoP, TaCoGe, TiSiNi, NbCoSi) share the
same orthorhombic lattice structure with the space group of
Pnma/mmm (No. 62). These compounds were extracted from
the ICSD database provided by the material project [89]. To
be noted, all the ABC compounds studied in this work are
realistic materials that have been synthesized in experiments
[36,90–94]. Using HfCoAs as a representative example, we
have proved that this is a promising material candidate that
can provide large SHC due to the presence of a small gap in
the nodal ring. As shown in Fig. 4, based on ab init io calcu-
lations, we further calculate the band structure of the other
materials (TaCoGe, TiSiNi, ZrCoP, HfCoP, NbCoSi, HfNiAs)
in the same family without and with SOC. We notice that the
essential features, including the nodal ring and small band gap
induced by SOC, are also shared by other members of this
material family. Due to these favorable properties, we expect
that other compounds in this family also possess large intrinsic
SHE, which is a fascinating property for the development of
future spintronic devices.
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FIG. 4. (a)–(f) Electronic band structure of half-Heusler materials (TaCoGe, TiSiNi, ZrCoP, HfCoP, NbCoSi, HfNiAs), while without SOC
(Solid black lines) and with SOC (Solid red lines) are presented in dark and red. The band crossings that constitute the DNR are highlighted
by green circles.

VII. CONCLUSION

In conclusion, our analysis establishes that HfCoAs, an
experimentally synthesized compound, behaves as a topo-
logical Dirac nodal ring (DNR) semimetal when spin-orbit
coupling (SOC) is disregarded. This DNR is maintained by
both PT and My symmetries. The inclusion of SOC results in
a small gap along the original DNR near the Fermi energy, and
because of the small energy difference, spin Berry curvature
is large there, leading to a large SHC. Moreover, compared
to pure metals, these topological semimetals are anticipated
to exhibit significantly reduced charge conductivity, leading
to a larger spin Hall angle. The insight gathered from this

study bolsters our understanding of the fundamental charac-
teristics of DNR’s contribution to SHC in HfCoAs, marking
a crucial step toward the development of future spintronic
devices.
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