
PHYSICAL REVIEW MATERIALS 8, 044001 (2024)

Size-dependent ferroelectric-to-paraelectric sliding transformations and antipolar-to-ferroelectric
topological phase transitions in binary homobilayers

Alejandro Pacheco-Sanjuan,1,* Pradeep Kumar ,2,† and Salvador Barraza-Lopez 2,3,‡

1Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaíso, CP 2390123, Chile
2Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA

3MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, Arkansas 72701, USA

(Received 12 January 2024; accepted 18 March 2024; published 1 April 2024)

The recent discovery of ferroelectric behavior in few-layer materials, accompanied by the observation of
antipolar domains in hexagonal boron nitride and transition metal dichalcogenide moiré bilayers, is paving the
way for revolutionary advancements in the generation and manipulation of intrinsic electric dipoles through
stacking. In addition, these cutting-edge quantum materials are reshaping our comprehension of phase transi-
tions. Within the present paper, we unveil a size-dependent sliding behavior that marks a significant departure
from conventional ferroelectrics. We also shed light on thermally induced spontaneous hyperlubric sliding within
moiré bilayers, which can be used as a signal to distinguish topological phase transitions from an antipolar onto
a ferroelectric bilayer. Our findings also suggest that the (topological) pinning of AA nodes in antipolar moiré
homobilayers prevents the occurrence of an antipolar-to-paraelectric transformation.
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I. INTRODUCTION

Two-dimensional (2D) ferroelectrics are fundamentally
different from ternary bulk ferroelectric oxides. Those differ-
ences stem from (i) a chemistry that now includes binary [1–4]
or even elemental [5–9] materials, (ii) the presence of new
mechanisms for removing centers of inversion such as relative
rotations within a homobilayer [2] or by the simple creation
of a heterobilayer, and (iii) by the presence of ferroelectric-to-
paraelectric phase transitions [10] by relative sliding [11,12]
(whereby the putative paraelectric structure is a time aver-
age over ferroelectric configurations that change the direction
of their intrinsic electric dipole at discrete sliding events).
Bilayer ferroelectrics are created by a 60◦ rotation of one
binary monolayer on a bilayer stack, away from a ground state
configuration [2], and they feature a macroscopically large
number of degenerate minima [12].

Despite the existence of works displaying double-well
energy potentials [11,12] and of analytical calculations de-
scribing ferroelectric-to-paraelectric phase transitions in those
homobilayers, the size dependence of the propensity for slid-
ing still needs to be addressed. Furthermore, it is difficult to
realize a precise 60◦ rotation among bilayers [13], and a more
likely outcome is to achieve rotations by 60◦ − δ, where δ is a
small angle. As it is well known by now, such mismatch gives
rise to moirés, which have originally been studied for their
unique electronic properties [14–23] but also display antipolar
domains on bilayers made from binary compounds [3,10,24–
28]. According to Bennett and co-workers, binary moiré
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homobilayers are antipolar, not antiferroelectric [29,30]. As
superbly described by Cazeaux and co-workers, such antipo-
lar structures feature AB and BA triangular domains separated
by dislocation lines meeting at AA nodes [28]. Bennett and
co-workers argue that the swap of polarization among AB
and BA domains is tied to a topological winding of the local
intrinsic dipole moment (which thus also includes in-plane
components), with a meron and antimeron texture at AB and
BA domains, respectively [31]. Such topological behavior
may be readable through superlubricity, but a direct com-
parison of the sliding behavior of ferroelectric and antipolar
bilayers has yet to be presented.

In addition, there should be a coupling of such intrin-
sic electric dipole with nontrivial topology to the inherent
topology induced by strain in moiré hexagonal boron nitride
(hBN) bilayers [25,32–34], which have one AA node per
moiré supercell. The density of domains cannot be changed
spontaneously but only by a change of the angle of rotation,
strain, or a combination of both [27,28]. Atomistic reconstruc-
tions take place such that AB and BA domains occupy most
of the bilayer’s area, while AA nodes [28] are topological
in nature [32–39], and their density per unit area cannot be
modified once a relative angle of rotation has been set up.
Molecular dynamics calculations were carried out at the high-
est allowed temperature in a molecular dynamics code to shed
light on this question.

This study is based on molecular dynamics calculations,
whose methodology is described in Sec. II. Results appear in
Sec. III and conclusions in Sec. IV.

II. METHODS

Atomistic models for hBN bilayers were constructed with
an initial interatomic distance of 1.47 Å and an interlayer
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FIG. 1. Initial hBN bilayer structures after atomistic optimization at 1 K; false color indicates the relative height among layers, and the
dimmest yellow locations indicate AA nodes (which are topological defects; see Ref. [27]). (a) A ferroelectric (δ = 0◦) sample initially set into
a (global) AA relative configuration. Moiré hBN bilayers with (b) δ = 1.02◦ and 50 444 atoms, (c) δ = 2.01◦ and 12 944 atoms, (d) δ = 3.15◦

and 5216 atoms, and (e) δ = 3.89◦ and 3408 atoms. All structures were drawn using the same length scale for a direct comparison.

distance of 3.33 Å. The models consisted of commensurate
periodic hBN bilayers with a relative rotation angle of 60◦ −
δ, with δ = 0◦ for a ferroelectric configuration, or δ = 1.02◦,
2.01◦, 3.15◦, and 3.89◦, for moiré antipolar configurations.
The studied structures contain 50 444, 12 944, 5216, and 3408
atoms, respectively. Two additional ferroelectric bilayers with
either 200 or 400 atoms were also considered to better under-
stand the drastically different sliding behaviors of ferroelectric
and antipolar bilayers.

Structures with δ = 0◦ were initially set into an AA config-
uration, and forces were allowed to equilibrate in this position
of (unstable) equilibrium in LAMMPS [40]. Moiré homobilay-
ers were optimized in a similar way. Molecular dynamics
simulations were performed with the same numerical tool
afterwards. Intralayer energetics were described by the Tersoff
potential with parameters fitted for hexagonal boron nitride
(hBN) [41,42]. This interatomic potential accurately repro-
duces the strain energy response, equilibrium lattice constant,
and phonon dispersion relations of hBN nanostructures with
data obtained from x-ray scattering experiments and density
functional theory (DFT) calculations. The anisotropic inter-
layer potential (ILP) for hBN [43] was utilized to represent
interlayer interactions. The velocity Verlet scheme was used
for the time integration of the resulting equations of motion
with a constant time step of 0.001 ps. The interlayer energy
Eint was minimized until reaching a force threshold of 10−6

eV/Å. This permits elucidating AA nodes on moiré homobi-
layers, which occur at the longest interlayer separation. An
NPT equilibration stage (in which the number of atoms is
fixed, pressure is set to 0 Pa, and temperature oscillates around
700 K) of 5 × 104 time steps was performed using the Nosé-
Hoover thermostat [44,45]. Last, a “production stage” was
set in an NV E ensemble (where the number of atoms, the

volume, and total energy remain constant) for 5 × 106 time
steps (5 ns) and a sampling rate of 0.5 ps. Each monolayer’s
center-of-mass coordinates were recorded to detect their rela-
tive motion. Additional molecular dynamics calculations were
carried out at 300 K on a moiré bilayer with a 3.15◦ relative
rotation to determine the evolution of diffusion coefficients
with temperature.

III. RESULTS

A. Size-dependent sliding propensity

Structures optimized in forces at zero temperature are de-
picted in Fig. 1. Figure 1(a) is a ferroelectric hBN bilayer (δ =
0◦) with identical size to a moiré bilayer with δ = 3.15◦. The
green color indicates a constant relative height among mono-
layers for the ferroelectric configuration. Figures 1(b)–1(e)
depict moiré bilayers with increasing δ (and a concomitant
decrease in the number of atoms n). The regions in which in-
dividual constituent monolayers are farthest apart are colored
in yellow. Those are energetically unfavorable AA-stacked
nodes [28,46].

A precision concerning size effects and periodic boundary
conditions is necessary: Even when under periodic bound-
ary conditions, a system with N atoms can only support 3N
vibrational modes. Within the present context, the periodic
boundary serves the goals of avoiding (i) dangling chemical
bonds and (ii) large out-of-plane excursions commonly seen
at the edges of (nonperiodic) finite-size flakes.

Figure 2 contains the first result from this work: Tang and
Bauer [11] and Marmolejo-Tejada et al. [12] stated specific
values for a critical temperature (TC) on ferroelectric sliding
bilayers by the onset of sliding events and—starting from
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FIG. 2. Sliding of ferroelectric (δ = 0◦) hBN bilayers at 700 K
starting from an AA relative configuration. Bilayers containing 200
and 400 atoms [(a) and (b)] undergo telegraph-noise-like discrete
displacements �x and �y that sample the honeycomb lattice, similar
to those described in Ref. [12]. The right panels contain the squared
relative displacement of the monolayer’s centers of mass as a func-
tion of time 〈�r(τ )〉2. As bilayers increase their size [(c)–(f)], the
single shear mode underpinning a whole concerted relative motion
by one interatomic distance becomes suppressed, as seen by the
straight lines and the comparatively smaller in-plane sliding scale.
This means that a critical ferroelectric-to-paraelectric critical tem-
perature cannot be uniquely assigned, as it depends on the bilayer’s
size. In (c)–(f), the bilayer quickly moves from the unstable AA
configuration into stable local minima (either AB or BA), and it
does not move from those local minima for the remainder of the
simulation; insets show the relative displacement of one monolayer
as the bilayer falls into the energy minima.

an unstable AA configuration—Figs. 2(a) and 2(b) do show
discrete, telegraph-noise in-plane sliding (�x,�y) events [see
the left panels in Figs. 2(a) and 2(b)] consistent with discrete
displacements resembling the honeycomb lattice on molecular
dynamics calculations at 700 K when the number of atoms is
either 200 or 400 [see the sampling of the honeycomb lattice
on the right subplots in Figs. 2(a) and 2(b)]. Nevertheless, the
frequency of those discrete steps decreases with the number
of atoms (as do the relative displacements of the center of
mass) until the frequency of those displacements turns into
a complete halt [see the straight lines that imply no discrete

jumps on Figs. 2(c)–2(f), where the number of atoms ranges
from 3408 to 50 444]. This is to say that ferroelectric bilayers
by sliding should have a propensity to slide that depends not
just on an inherent energy barrier, but also on the sample’s
size. Similar size-dependent sliding events have been reported
on graphene bilayers [47].

The observed phenomena can be explained as follows:
Assuming that barrier crossing can be described by a one-
dimensional Smoluchowski equation [48], the rate of sliding
events of ferroelectric bilayers rs could be written as

rs = Dβωminωmax

2π
e−β�U , (1)

where D is the diffusion coefficient (to be determined momen-
tarily), β = 1/kBT is the inverse temperature, ωmin and ωmax

are the frequencies at the minimum and the maximum of the
potential well, and �U is the barrier height. The dependency
of D on the size of the bilayer, and on its ferroelectric or moiré
antipolar phase, will be studied in Sec. III B

To quantify the relative sliding of monolayers seen in
Figs. 2(a) and 2(b), we calculated the square of the dis-
placement of the atom nearest to the center of mass on one
monolayer as a function of time 〈�r(τ )〉2 defined as

〈�r(τ )〉2 = 〈|r0(τ + t ) − r0(t )|〉2 (2)

[where r0(t ) is the relative sliding of the center of mass among
monolayers at time t], and shown within the insets in the right
subpanels of Figs. 2(a) and 2(b).

B. Superlubric moiré bilayers

The main difficulty in assembling moirés is the sudden,
spontaneous unwanted relative motion of monolayers [13] due
to a loss of commensuration [49] upon rotation [50]. A direct
comparison among Figs. 2 and 3 illustrate the different sliding
behavior of ferroelectric and antipolar binary bilayers, which
provides a mechanism to tell them apart.

To begin with, ferroelectric structures with 3408, 5216,
12 944, and 50 444 atoms have all commensurate unit cells
containing four atoms which turn them “rougher” against
relative thermally induced displacements [this is the meaning
of the straight lines on Figs. 2(c)–2(f)]. The left subplots in
Fig. 3 display the in-plane sliding of the two monolayers in a
moiré configuration. Even though they have the same number
of atoms as the structures in Figs. 2(c)–2(f), a relative slid-
ing without discrete telegraphlike jumps can now be clearly
observed. Even more, the displacements occur over a range
of 100 Å, much larger than that seen in ferroelectric bilayers.
The larger sliding of moiré bilayers with a lack of registry
of the honeycomb lattice is evident in the right panels of
Fig. 3, in which a chosen atom moves in what appears to be a
continuous and random fashion.

We produced additional molecular dynamics calculations
at 300 K for the bilayer at 3.15◦ (containing 5216 atoms)
and present those results in Fig. 4. Contrasted against the
results shown in Fig. 3(b), the motion is restricted at the lower
temperature because the diffusion coefficient D is reduced
from 0.0879 Å2/ps at 700 K, down to 0.0727 Å2/ps at 300 K.

The differences in sliding can be further ascertained by a
comparison of the slopes of the 〈�r(τ )〉2 vs τ plots, which
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FIG. 3. Sliding of moiré hBN bilayers at 700 K. Similar to
Figs. 2(a) and 2(b), the left subpanels show in-plane sliding displace-
ments. The relative motion of the centers of mass of the individual
monolayers no longer tracks the honeycomb lattice [compare the
right panels to those in Figs. 2(a) and 2(b)], and the diffusion is
orders of magnitude larger due to a lack of atomic registry upon
relative rotation. Panels to the right contain 〈�r(τ )〉2 as well and
permit observing a suppressed diffusion as size increases.

depend on the number of atoms n. The idea is that, for diffu-
sive dynamics, 〈�r(τ )〉2 is related to the 2D diffusion constant
D(n) by

〈�r(τ )〉2 = 4D(n)τ. (3)

D(n), plotted in Fig. 5, further confirms the striking difference
in relative sliding among ferroelectric and antipolar bilayers.

FIG. 4. Sliding of the moiré hBN bilayers with δ = 3.15◦ at
300 K. The left subpanels show in-plane sliding displacements. The
right panel contains 〈�r(τ )〉2 and, when contrasted against Fig. 3(b),
permits observing a suppressed diffusion as temperature decreases.
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FIG. 5. Diffusion coefficient D(n) obtained from the slope of
〈�r(τ )〉2 = 4D(n)τ . A power-law fit is included. The diffusion coef-
ficients for two smaller ferroelectric bilayers are shown as well; note
how they are orders of magnitude comparatively smaller for a given
number of atoms.

In connection to the ferroelectric-to-paraelectric transition in
ferroelectric bilayers by sliding, one observes a quick decay of
D to zero as the number of atoms increases on the ferroelectric
bilayer (inset in Fig. 5). The frequency of sliding effects rs is
then shown to go to zero in Eq. (1) along with D(n), such
that the critical temperature for a ferroelectric-to-paraelectric
transition by sliding is size dependent.

An analysis of friction of moiré bilayers is provided next.

C. Friction within moiré bilayers

We first calculate the coefficient of friction μ between the
monolayers from our simulations at T = 700 K. μ is defined
here as

μ =
〈

Ff

Fz

〉
, (4)

where Fz � 0 and Ff are the instantaneous normal and fric-
tion forces, respectively, and 〈·〉 denotes a time average. The
variation of 〈Fz〉, 〈Ff 〉, average interlayer energy 〈Eint〉, and
the coefficient of friction μ as a function of the number of
atoms n (and, implicitly, on the relative rotation angle δ)
for moiré hBN bilayers are depicted in Fig. 6. The friction
and normal forces increase with n, but they follow different
trends. The coefficient of friction remains in the superlubricity
regime (μ < 0.01) [51] for all values of n (δ). Rue et al. de-
termined μ = 0.005 for MoS2/MoSe2 heterostructures [52] at
300 K for δ = 5◦ and 〈Fz〉 = 0.2 nN/atom. In our calculations
at 700 K and for the largest angle we studied (δ = 3.89◦),
〈Fz〉 = 0.0183 nN/atom, and the coefficient of friction was
0.0016, which is comparable with that of the MoS2/MoSe2

heterostructure.
At this point, we use the Green-Kubo formalism to cal-

culate the interlayer friction constant λ. There, the interlayer
friction constant λ is defined as [53–57]

λ = lim
t→∞

1

2kBTA

∫ t

0
c(t ′)dt ′, (5)
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FIG. 6. Dependence of (a) average friction force 〈Ff 〉, (b) av-
erage normal force 〈FN 〉, (c) average interlayer energy 〈Eint〉, and
(d) coefficient of friction μ on the number of atoms (i.e., on the angle
δ) for moiré hBN bilayers. The recorded values of μ imply that these
are superlubric.

where kB is the Boltzmann constant, T is the temperature,
A is the contact area, and c(t ) is the lateral (in-plane) force
correlation function defined as

c(t ) = 〈F‖(t )F‖(0)〉. (6)

The force autocorrelation function c(t ) is shown in
Fig. 7(a) for moiré hBN bilayers of different sizes (δ) at
T = 700 K. For all values of n, c(t ) decreases rapidly and
decays to zero at a timescale of order of 200 ps. In order to
investigate the frequency response of the friction constant, we
next looked the Fourier transform of c(t ):

c(ω) =
∫ ∞

0
c(t )e−iωt dt . (7)

FIG. 7. (a) Time autocorrelation of the lateral force between
the monolayers. (b) Fourier transform of the force autocorrelation
function. (c) Time dependence of λ(t ). (d) Friction constant λ as a
function of the number of atoms n.

c(ω) was calculated for different values of δ in Fig. 7(b). We
find that c(ω) exhibits two peaks—one at lower frequency
(≈0.1 THz), and another at slightly higher frequency (≈2.0
THz). The amplitude of the lower-frequency peak becomes
smaller and moves to slightly higher frequency, while the
amplitude of the high-frequency peak becomes weaker upon
decreasing n. In Fig. 7(c), we show the behavior of λ(t ) for
four different values of n. The values of the friction constant
obtained from the long-time behavior of λ(t ) are shown as a
function of n in Fig. 7(d); λ increases monotonically with in-
creasing n. The behavior of the friction constant is consistent
with the increasing value of friction force with n discussed in
Fig. 6(a).

D. Observations on an antipolar-to-paraelectric
phase transitions

AB and BA domains on moiré bilayers form a network
separated by dislocation lines meeting at AA nodes [27,28].
Engelke and coauthors posited that one can map the local
relative sliding configurations in individual unit cells though
the moiré into a closed space akin to a punctured torus,
where the punctured section is precisely the AA node. In this
map, the torus is the closed surface in which the winding of
a local displacement field turns out to be topological [27].
And so, the last item for discussion is the possibility of a
mechanism by which the density of topologically protected
AA nodes alluded to above [27,28] could be thermally altered.
That possibility was the reason to perform molecular dynam-
ics calculations at 700 K in the first place (which was the high-
est we could achieve without facing numerical instabilities in
the code).

Figure 8 presents a qualitative answer to the question.
Figures 8(a)–8(c) show the relative height among the two
monolayers in the δ = 1.02◦ configuration at three different
times (2.05, 2.15, and 2.30 ns) along the molecular dynamics
evolution. The darkest hue is a 3.5 Å cutoff, above which the
local bilayer has a local AA stacking. Similarly, Figs. 8(d)–
8(f) display the moiré bilayer at 700 K when δ = 2.01◦ at
the following simulation times: 4.295, 4.345, 4.395 ns. The
point is that, though those move around, four AA-stacked
sections always remain visible on the snapshots.

We just showed by molecular dynamics calculations that
the AA nodes cannot be thermally removed. Therefore, to pro-
duce a transition onto a ferroelectric or paraelectric phase, the
only options are either (i) a quantum phase transition, or (ii) a
topological one. As the temperature is high, a quantum phase
transition is discarded as well, and a topological transition sig-
nified by the removal of AA nodes is the only possibility left.
Indeed, the rotation by −δ renders the antipolar moiré onto a
ferroelectric configuration which may be unstable to sliding
events depending on the samples’ size and temperature.

IV. CONCLUSION

To conclude, we undertook a study of hBN bilayers
in the ferroelectric (δ = 0◦) and moiré antipolar (δ > 0◦)
configurations. We first established the fact that ferroelectric-
to-paraelectric transitions by sliding occur at temperatures
dependent on system size. Then, using configurations with
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(a) (b) (c)

(d) (e) (f)

FIG. 8. The number of topological defects (dark-colored patches corresponding to AA-stacked sections [27,28]) for the moiré hBN bilayer
with δ = 1.02◦ at (a) 2.05 ns, (b) 2.15 ns, and (c) 2.30 ns and at 700 K. (d)–(f) display the moiré bilayer at 700 K at 2.01◦ at 4.295, 4.345, and
4.395 ns, respectively. In both cases, a diameter of about 50 Å can be observed for the AA nodes.

an identical number of atoms, we found an easier propensity
to slide of antipolar moiré bilayers. This study included the
calculation of the diffusion coefficient, and of parameters μ

and λ that indicate superlubric behavior. The work ends by the
observation that the area density of topological defects (given
by AA nodes) remains protected at the highest temperature
of 700 K, in which molecular dynamics simulations could
run without developing numerical instabilities. Therefore, the
only possibility for the removal of AA nodes is a rotation

out of the topologically nontrivial moiré conformation onto
a (trivial) configuration with a single realization of relative
sliding among monolayers across all unit cells.
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86, 115410 (2012).
[42] C. Sevik, A. Kinaci, J. B. Haskins, and T. Çağin, Phys. Rev. B
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