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Despite the fact that first-principles methods are critical tools in the study and design of materials today, the
accuracy of density functional theory (DFT) prediction is fundamentally reliant on the exchange-correlation
functional chosen to approximate the interactions between electrons. Although the general improvement in
accurately calculating the bandgap with the Heyd-Scuseria-Ernzerhof (HSE) hybrid-functional method over the
conventional semilocal DFT is well accepted, other properties such as formation energy have not been system-
atically studied and have yet to be evaluated thoroughly for different classes of materials. A high-throughput
hybrid-functional DFT investigation on materials bandgaps and formation energies is therefore performed
in this work. By evaluating over a thousand materials, including metals, semiconductors, and insulators, we
have quantitatively verified that the materials bandgaps obtained through HSE [mean absolute error (MAE) =
0.687 eV] are more accurate than those from the Perdew-Burke-Ernzerhof (PBE) functional (MAE = 1.184 eV)
when compared to the experimental values. For formation energies, PBE systematically underestimates the
magnitude of the formation enthalpies (MAE = 0.175 eV/atom), whereas formation enthalpies obtained from the
HSE method are generally more accurate (MAE = 0.147 eV/atom). We have also found that HSE significantly
increases the accuracy of formation energy prediction for insulators and strongly bound compounds. A primary
application of this new dataset is achieved by building a cokriging multifidelity machine learning (ML) model to
quickly predict the bandgaps with HSE-level accuracy when its PBE bandgap is available from DFT calculations.
The preliminary goal of our ML model, benchmarked in this work, is to select the semiconductors and insulators
which may have been mislabeled as metals from the DFT-PBE calculations in the existing Open Quantum Ma-
terials Database. The performance of the cokriging model in reliably predicting HSE bandgaps with quantified
model uncertainty is analyzed by comparing the results against published experimental data from the literature.
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I. INTRODUCTION

Since its original formulation in the 1960s, density func-
tional theory (DFT) [1] has evolved to become a key method
to discover novel materials computationally and to estimate
their material properties starting with little to no experimental
input [2]. More recently, the versatility of DFT coupled with
the increase in computer power and decrease in CPU costs has
enabled high-throughput calculations of thousands of com-
pounds. The ability to compute efficiently and exhaustively
the properties of crystalline structures has led to the creation
of several materials databases, each encompassing hundreds
of thousands or even millions of different compounds [3–8].

Even though databases of DFT calculations have proven to
be useful for discovering materials for a variety of applications
at 0 K [2,9–11], the accuracy of predictions is fundamentally
limited by the exchange-correlation functional employed
in the calculations. A well-known inaccuracy is the large
difference between experimental bandgaps and the bandgaps
predicted using generalized gradient approximation [12]
(GGA) exchange-correlation (XC) functionals—the current
standard for high-throughput calculations [13]. In many
cases, the bandgap energy can be predicted much more
accurately using techniques such as the modified
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Becke-Johnson (mBJ) potential [13] or hybrid functionals
[14,15]. There are several hybrid-functional approaches, such
as the Becke three-parameter Lee-Yang-Parr (B3LYP),
Perdew-Burke-Ernzerhof (PBE0) and Heyd-Scuseria-
Ernzerhof (HSE06) functionals [14,15], while HSE06 is
particularly relevant for solids. Unfortunately, HSE calcu-
lations can be 2 orders of magnitude more computationally
expensive than GGA calculations, making their use on a large
scale problematic. Furthermore, for an arbitrary material, it
is difficult to know a priori whether HSE calculations will be
significantly more accurate than those with GGA functionals.

The improvement in calculated properties with HSE over
GGA is often not systematic and has yet to be evaluated
thoroughly for different classes of materials even though the
estimation of bandgaps is shown to be generally improved
with HSE06 compared to PBE [13,16]. Pilania et al. [17]
studied 250 A2BB′X6-type elpasolite compounds and ob-
served a roughly linear trend in PBE and HSE bandgaps. For
transition-metal oxides, HSE improves not only the bandgaps
but also the properties related to thermochemistry, which in-
cludes formation energies [18,19]. In an analysis by Chevrier
et al. [20], HSE06 was shown to predict more accurate for-
mation energies than PBE for transition-metal oxides, but
surprisingly, this was not true for non-transition-metal oxides.
Zhang et al. [21] showed that HSE can drastically im-
prove the predicted thermodynamic stabilities (i.e., formation
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energies) in the case of the metallic Cu-Au alloy system,
where PBE fails to accurately predict the formation energies
for the intermetallics with an error approaching 50%. Even
for the prototypical example of the CsCl structure, both PBE
and HSE surprisingly predict CsCl will adopt the NaCl struc-
ture [22]. All these examples show that when (and to what
extent) HSE would provide an advantage over PBE has still
not been well established. Considering that HSE is at least
50–100 times more expensive than GGA when calculating a
typical compound, it would be very useful for computational
materials scientists to have a computationally efficient method
to predict a priori which method would be more appropriate
for predicting a certain property and when both would fail.

In this work, we utilize high-throughput computational
techniques to quantify the level of accuracy expected from
HSE calculations for over 1200 solid-state materials. We find
that HSE performs well in computing materials bandgaps with
a decrease in the mean absolute error of more than 40% to
0.687 eV relative to PBE when compared against experimen-
tal values. For formation energy calculations, we find that
HSE performs remarkably well for compounds with nonzero
bandgaps and for compounds that are strongly bound. For the
rest of the compounds, the improvement from PBE to HSE
is not that significant. Overall, HSE is a significant advance
in describing both bandgaps and formation energies for cer-
tain classes of compounds. However, considering the huge
computational cost of HSE, a data-driven selection strategy
is necessary to wisely choose which method should be used.

Further, to take advantage of having data on both PBE and
HSE bandgaps of materials, we apply multifidelity [17,23–25]
statistical modeling to our dataset. Multifidelity models are
statistical machine learning models employed to fit datasets
where each data point has multiple values available to describe
the same target property. One of these target-property values
for each data point is determined via a less accurate method
(low fidelity), while the other is obtained using a more accu-
rate but relatively expensive strategy (high fidelity). The goal
of a multifidelity model is to predict the target property with
high-fidelity accuracy when a low-fidelity estimation of the
target property is known for the same data point. In this work,
fidelity is defined as the accuracy of a DFT method in cal-
culating bandgaps. For a given material, the high-fidelity and
low-fidelity data correspond to HSE and PBE bandgap values,
respectively. We report the multifidelity model validation de-
tails and predictive ability for a set of materials whose HSE
bandgap values were not calculated in our high-throughput
DFT work. The model uncertainties are also quantified and
analyzed during the training and prediction stages. A subset of
model predictions is analyzed in comparison to experimental
and HSE bandgap values reported in the published scientific
literature. The final multifidelity model is shown to be reliable
for predicting bandgap values in HSE fidelity at the cost of
doing a lower-fidelity DFT calculation to estimate the PBE
bandgap.

II. METHODOLOGY

A. High-throughput calculation framework

This work has extensively utilized the framework of the
Open Quantum Materials Database (OQMD) [4]. In order to

perform hybrid-functional calculations in a high-throughput
manner, we implemented new features into the automated
framework within the PYTHON application programming in-
terface (API) of the OQMD, called QMPY, to handle DFT
calculations with a different functional. These new features
include the support for parallelization of jobs that perform
hybrid-functional DFT calculations using the Vienna Ab initio
Simulation Package (VASP), associated error handling, and
parsing of data from DFT calculation output files unique to
hybrid-functional calculations. The existing version of QMPY

has functionalities (1) to read (write) crystal structure data
from (into) VASP POSCAR and CIF formats, (2) to generate
input files for a DFT calculation using VASP with different
functionals, (3) to generate batch script files to run the cal-
culations on various clusters, (4) to monitor the progress of
the jobs submitted on different clusters, (5) to handle com-
mon run-time errors associated with VASP simulations such as
insufficient convergence of energy and forces, (6) to parse the
output and extract relevant data once the calculations are suc-
cessfully completed, (7) to store the resulting data in a MYSQL

database, (8) to perform thermodynamic analysis to determine
the phase stability and generate phase diagrams, and (9) to
enable simple, but powerful, querying of all the parameters of
the calculations and properties of the compounds stored in the
database via a web API created with the open-source DJANGO

PYTHON API framework.
For each individual material, we perform four individual

DFT calculations in order, starting with an initial full structure
relaxation with the PBE functional. All the subsequent calcu-
lations are done on this PBE-relaxed structure. In the second
step, an accurate wave function for the structure (WAVE-
CAR output file from VASP) is calculated from a single-point
DFT-PBE calculation. The third and final stage involves a
hybrid-functional calculation in which the wave function gen-
erated in the second step is used as input. Based on a few
example test cases, we found that the single-point PBE wave
function calculation before the actual HSE calculation is nec-
essary in order to increase the efficiency of the overall hybrid-
functional calculation. The workflow is illustrated in Fig. 1.

B. Hybrid-functional DFT settings

DFT calculations are performed using the projector
augmented-wave [27] (PAW) method implemented in VASP

[28]. The plane-wave cutoffs were set at 520 and 400 eV for
PBE and HSE, respectively. We employ the recommended
VASP 5.2 PBE PAW potentials for both PBE and HSE cal-
culations. k-point meshes are generated using generalized
Monkhorst-Pack grids with a k-point density of 8000 for PBE
and 2000 for HSE [29]. Spin-polarized calculations are done
for magnetic compounds. The magnetic nature of a compound
during the initialization of the first structural relaxation is de-
termined based on the number of outer shell d and f electrons
in the nonionic states of the constituent elements. The re-
laxation calculation output from VASP contains the integrated
magnetic moments derived from the simulation, which are
used in the input of subsequent static calculations.

Formation energies are calculated by

�E f = E −
∑

i

xiμi, (1)
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FIG. 1. The workflow for hybrid-functional calculations imple-
mented within the QMPY package. For given input structure(s), QMPY

generates the VASP input files to perform a relaxation run with the
PBE functional, followed by a calculation to generate the electronic
wave function (wfc) and, finally, the hybrid-functional calculation.
The TASKSERVER and JOBSERVER modules communicate with High-
Performance Computing Cluster (HPCC) resources, monitor running
jobs, and transfer data between local database storage and HPCC
servers. The final calculation data undergo thermodynamic analysis
and are stored in a MySQL database. The web interface of the Open
Quantum Materials Database (OQMD) [26] provides convenient
database access to the research community.

where E is the total energy of a compound containing xi

atoms of element i in the formula unit and μi is the elemental
chemical potential. Unless specified otherwise, all formation
energies mentioned in this work are calculated by taking DFT
total energies of elemental ground states at 0 K as the cor-
responding elemental chemical potentials. As an additional
step to improve the accuracy of formation energy calculations,
the experimental, room-temperature formation energy data
available from external databases can be used to correct the
DFT-based elemental chemical potentials [30]. This method
is discussed separately in detail in Sec. III C. In this work, we
make the assumption that the pressure-volume (pV) contribu-
tions to the enthalpies are small for solid materials at ambient
pressure and therefore �E f ≈ �Hf , where the latter is the
formation enthalpy.

C. Statistical modeling

The goal of statistical modeling in this work is to learn in-
formation from the calculated HSE bandgap data (also called
training data) and use it to predict the same property for the
set of materials whose HSE calculations have not been carried
out. To achieve this, we perform multifidelity modeling based
on cokriging [31–33]. Cokriging is an extension of the kriging
interpolation, also known as Gaussian process regression in
the machine learning literature. Each material in the training
dataset has an HSE bandgap EHSE

g and a PBE bandgap EPBE
g

derived via high-throughput DFT calculations in this work.
EHSE

g is the value with higher fidelity, while EPBE
g is the cor-

responding low-fidelity data. A cokriging-based multifidelity
machine learning model was created and trained over this
training data with the goal of predicting a higher-fidelity EHSE

g

value for a candidate material when its EPBE
g value is known.

The set of candidate materials for prediction (called the search
space) is curated here as the set of stable materials in OQMD
whose PBE calculations have already been carried out but
whose HSE calculations have not. The search space contains
24 967 materials available in the OQMD [26] which fall on
the convex hull of ground-state-stable compositions. Each
material is represented by a set of input features generated
using the MAGPIE [34] package based on its crystal structure
and chemical composition. A simplified representation of the
cokriging model is given in the following equation, while a
detailed discussion of the theory of and algorithm for cokrig-
ing modeling is provided by Pilania et al. [17]:

ZHSE(x) = ρZPBE(x) + Zd (x). (2)

Here, ZHSE(x) and ZPBE(x) are Gaussian processes rep-
resenting EHSE

g and EPBE
g , respectively. The term ZPBE is

multiplied by a scaling parameter ρ whose value is optimized
during the model training via maximum likelihood estimation
(MLE) [35]. The MLE method finds the values of the Gaus-
sian process parameters that maximize the joint probability
of the training dataset being sampled by the associated sta-
tistical model. The third term, Zd , is the Gaussian function
representing the difference between the high-fidelity process
and the scaled low-fidelity process. In the original cokriging
models, the low-fidelity data are not required to be known for
all the data points, and thus, they learn to predict both ZPBE

and Zd for a given set of input features. But in this work,
all the materials in both the training data and search space
have a known value of EPBE

g . So slightly diverging from the
original cokriging procedure, EPBE

g was added as an input
feature in addition to MAGPIE features, thereby making the
prediction of ZPBE obsolete while placing more importance
on the calculation of Zd . The main advantage of performing
cokriging in this work is attributed to the involvement of a
much larger set of hyperparameters to define the Gaussian
processes, quantification of model prediction uncertainties,
and consideration of a relatively higher-dimensional covari-
ance matrix [17,32] compared to other regression models. In
addition, the importance of the EPBE

g value is emphasized in
the model because it is explicitly present in Eq. (2), while
all other input features are used only while constructing the
covariance matrix. In this work, the cokriging algorithm is
implemented in PYTHON primarily using the OPENMDAO [36]
library.

III. RESULTS

A. Bandgap: HSE vs PBE vs experiment

We first evaluate the performance of bandgap predictions
between PBE and HSE based on 1135 compounds compared
to the experimental values. In Fig. 2, we observe that almost
all bandgap energies calculated by PBE are smaller than those
calculated by HSE. Furthermore, HSE found more nonzero
bandgap materials than PBE. For 106 compounds, PBE pre-
dicts a zero bandgap, but HSE predicts a nonzero bandgap.
To conclude whether HSE outperforms PBE in bandgap pre-
diction, a comparison with the experimental measurements
is carried out below. The experimental data are taken from
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FIG. 2. Comparison of bandgaps for 1135 compounds between
PBE and HSE.

the Database of Forbidden Zones of Solids (DFZS) [37]. The
bandgap values listed in DFZS are accumulated from several
handbooks and articles reporting results from one of sev-
eral experimental bandgap characterization techniques such
as Hall measurement, photoconductivity measurement, etc.
The comparison between DFT-calculated and experimentally
measured bandgaps for 146 materials is shown in Fig. 3.
In general, PBE calculations significantly underestimate the
bandgaps, but HSE calculations greatly increase the accuracy
in estimating bandgaps.

Prediction errors for different groups of materials are pre-
sented in Table I. In group 1, both PBE and HSE calculate zero
bandgaps for these 20 cases. Experimental data have shown
that these materials have nonzero bandgaps, but the values
are relatively small. The average bandgap value for these
materials is only 0.45 eV. In group 2, we found 23 cases where
HSE successfully identifies the nonzero bandgaps but PBE
fails to. The mean absolute error using HSE is only 0.55 eV,
which is smaller than that of PBE, with a mean absolute error
of 0.82 eV. Furthermore, both PBE and HSE are able to predict
the nonzero bandgaps for the materials in group 3. For these
materials, HSE significantly decreases the prediction error

FIG. 3. Comparisons between DFT (left: PBE, right: HSE) and
experimental bandgaps for 146 compounds. The experimental data
are taken from the Database of Forbidden Zones of Solids (DFZS)
[37].

TABLE I. Prediction errors (mean absolute error) of bandgaps
calculated using PBE and HSE when compared to the experimental
values. In group 1, both PBE and HSE found zero bandgaps. In group
2, PBE found zero bandgaps, but HSE found nonzero bandgaps. In
group 3, both PBE and HSE found nonzero bandgaps.

Group Count MAEPBE (eV) MAEHSE (eV)

1 20 0.45 0.45
2 23 0.82 0.55
3 103 1.41 0.76

from 1.41 to 0.76 eV. The numbers of materials correctly
classified as metals or nonmetals by HSE and PBE compared
to experimental data are given in Table II. All four materials
with zero bandgap in the experimental data are predicted to
have zero bandgap by the PBE and HSE calculations as well.
Among all the nonmetals, 11% are predicted correctly to be
nonmetals by HSE but incorrectly classified to be metals by
PBE. In 19% of the cases, both PBE and HSE misclassify the
nonmetals as metals.

B. Formation energies: HSE vs PBE vs experiment

Formation energy values for all 1135 compounds were
calculated using both PBE and HSE functionals (shown in
Fig. 4). We observed a strong linear relationship between
PBE-calculated and HSE-calculated formation energies. A
linear regression fitting was performed between PBE and
HSE, and the slope of the linear fitting line is 0.887. This
result indicates that there are systematic differences between
PBE and HSE when computing materials formation energies.
To better evaluate the reliability of both methods, we compare
our DFT-calculated formation energies using both methods to
their corresponding experimental measurements. The exper-
imental formation energy data come from two sources: the
Scientific Group Thermodata Europe Solid Substance (SSUB)
database [38] and the thermodynamic database of the Ther-
mal Processing Technology Center at the Illinois Institute of
Technology (IIT) [39], where the IIT database mostly focuses
on intermetallic compounds. The absolute errors of calculated
formation energies are shown in Fig. 5 (PBE on the left and
HSE on the right). For PBE, most of the data are in the right
section of this plot, indicating that PBE generally underes-
timates the magnitude of the formation energy. The overall
mean absolute error (MAE) is 0.175 eV/atom, and �Hf for
a few metal oxides are poorly estimated. On the other hand,

TABLE II. Prediction of the existence of a nonzero bandgap
from HSE and PBE among all the 142 nonmetallic materials in the
experimental dataset (EEXP

g > 0eV). Only four metals are present in
the experimental dataset (EEXP

g = 0eV), and they all are predicted to
have zero bandgaps from HSE and PBE as well.

EHSE
g = 0 eV EHSE

g > 0 eV

EPBE
g = 0 eV 27 (19%) 16 (11%)

EPBE
g > 0 eV 0 99 (70%)

Total
(
EPBE

g � 0 eV
)

27 (19%) 115 (81%)
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FIG. 4. Comparison of �Hf between PBE and HSE.

formation energies calculated by HSE (in the right plot) ap-
pear to be more accurate, with a decreased mean absolute error
of 0.147 eV/atom. By comparing the distributions of both
methods, we find the data points from HSE are more sym-
metric. Therefore, the HSE method statistically outperforms
PBE considering both variance and bias in the distribution.

However, we cannot draw the conclusion that HSE forma-
tion energies are always more accurate than PBE formation
energies. There are certainly a number of compounds for
which HSE either overestimates (e.g., some intermetallic
compounds) or underestimates (e.g., Mo2C, CuO, etc.) the
magnitude of the formation energies. In order to analyze these
errors separately, we partition the compounds into two groups
based on PBE-calculated formation energies. We choose to
classify strongly bound compounds with �Hf (PBE) < −1
eV/atom and the rest as weakly bound compounds, following
a similar strategy in a related work [40]. It is worth noting
that the choices of PBE-calculated formation energies and
the threshold of −1 eV/atom are somewhat arbitrary but
fair enough to perform a reasonable analysis. Some slight
variations of these choices will not lead to large changes

FIG. 5. �Hf comparisons between DFT (left: PBE, right: HSE)
and experiments.

in the conclusions discussed below. Using this convention,
we consider mean error, MAE, and root-mean-square error
(RMSE) to make comparisons, and the results are shown in
Fig. 6. For each subset of compounds, all three error metrics
qualitatively follow the same trend. In general, HSE signifi-
cantly outperforms PBE for strongly bound compounds by all
error metrics, whereas HSE is only slightly better than PBE
for weakly bound compounds.

Similarly, we also group the compounds into metals, small-
bandgap materials, and large-bandgap materials based on the
PBE-computed bandgap value. We define materials with a
PBE bandgap <1.0eV as small-bandgap compounds and the
rest as large-bandgap compounds. Here, we find that PBE
has a slightly lower MAE than HSE for metals, which is
the only case where PBE is statistically better than HSE.
Within these three groups, PBE provides a sizable error for
small-bandgap compounds and a slightly lower error for large-
bandgap compounds. On the other hand, errors in formation
energy predicted by HSE are relatively the same between
metals and small-bandgap compounds but much smaller for
large-bandgap compounds. In Fig. 7, we show the relation
between formation energy error and calculated bandgaps. We
find that several oxide compounds, including VO, NiO, CuO,
etc., have large deviations in the PBE-calculated formation
energy. There are also some outliers like ScN, YN, EuO,
EuS, and CaSe for which HSE significantly underestimates
the magnitude of the formation energy. The box plot in the
right panel of Fig. 7 implies that HSE significantly outper-
forms PBE in formation energy prediction for these nonzero
bandgap compounds. Furthermore, we compare the errors
between experimental and DFT-predicted formation energies
for a variety of material classes using PBE and HSE. The
MAEs in formation energy calculations for six different mate-
rial classes are shown in Fig. 8. For alkali, alkaline earth, and
halide compounds, HSE significantly increases the accuracy.
However, for basic metal, semimetal, and transition-metal
compounds, the two methods estimate formation energy val-
ues with a similar MAE.

C. Elemental chemical potential corrections

Up to this point, the formation energies reported in this
work used DFT total energies of elements at 0 K as the
elemental chemical potential, as explained in Sec. II. But this
strategy disregards the changes in elemental ground states
when the temperature is raised from 0 K to room tempera-
ture and also the inaccuracies in DFT for the calculation of
liquid and gas phase reference states. One of the available
methods to work around this issue and improve the accuracy
of formation energy estimations is to make small corrections
to the DFT total-energy elemental chemical potentials based
on the available experimental formation energies [5,30,41].
Hence, to improve the accuracy of DFT-predicted formation
energies, we here perform a simultaneous least-squares fitting
[41] of the elemental chemical potential μ for all available
elements. For all 290 compounds with DFT-calculated and
experimentally measured formation energies, both the MAE
and RMSE of �H are reduced when the chemical poten-
tial corrections are made. The computed chemical potential
corrections are plotted in Fig. 9. We find, consistent with
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FIG. 6. Comparisons of errors in calculating the formation energies via PBE and HSE relative to experiment. Compounds are partitioned
into groups: all compounds, strongly bound compounds, weakly bound compounds, all metals, small-bandgap compounds, and large-bandgap
compounds. ME, MAE, and RMSE refer to mean error, mean absolute error and root-mean-square error, respectively. The numbers of
compounds in each group are denoted in parentheses.

previous work [40], significant positive PBE corrections for
electronegative elements such as O, S, F, Br, and Cl. These
large corrections are caused by PBE tending to underestimate
the magnitude of the formation energy for compounds that
have these elements in them. On the contrary, the HSE chem-
ical potential corrections for these electronegative elements
are much smaller. In addition to these elements, we find that,
in general, HSE chemical potential corrections are smaller
than PBE corrections in magnitude, which implies chemical
potential fitting will have less influence on HSE formation
energies than PBE ones. However, there are elements with
large HSE corrections like Ge and Ga due to the fact that HSE
systematically underbinds compounds like GaP, GaAs, GeP,
and GeSe compared to PBE. We also want to point out that

FIG. 7. Left: DFT errors in prediction �Hf with respect to cal-
culated bandgaps for nonzero bandgap compounds. Right: Box plots
for DFT calculation errors in formation energy for nonzero bandgap
compounds.

Ni, Fe, Se, Rb, Hf, U, and Pu have opposite signs for chemical
potential corrections between HSE and PBE and the rest of the
elements have the same signs.

The overall MAEs and RMSEs for corrected PBE and
HSE formation energies are shown in Fig. 10. With elemental
chemical potential fitting, the MAE reduces from 0.187 to
0.102 eV/atom for PBE and 0.147 to 0.100 eV/atom for HSE.
Similarly, the RMSE drops from 0.287 to 0.173 eV/atom for
PBE and 0.219 to 0.164 eV/atom for HSE. For both errors,
we can see that HSE always outperforms PBE with or without
elemental fitting, but the gap gets closer when corrections
are utilized. Furthermore, we find that the �H RMSEs for

FIG. 8. Mean absolute errors in DFT estimation of �Hf using
PBE and HSE when compared against experimental data among
different classes of binary compounds.
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FIG. 9. Elemental chemical potential corrections δμ obtained via
fitting for PBE and HSE. Within each cell, the upper triangle shows
HSE chemical potential corrections, and the lower triangle shows
PBE corrections. Elements with positive corrections are colored red,
and negative ones are colored blue. The elements for which we are
currently unable to compute the chemical potentials are enclosed in
solid squares without a diagonal line.

metals after fitting are very close between PBE and HSE. But
HSE outperforms PBE by 20 meV/atom in predicting �H
for insulators (in Table III). The elemental correction values
for five diatomic molecules are given in Table IV alongside
the correction values reported by Grindy et al. [42].

D. Predictions from multifidelity modeling

The multifidelity cokriging model benchmarking results
for different data environments are shown in Fig. 11. Fig-
ures 11(a) and 11(b) show the optimistic and pessimistic data
situations, respectively. In Figs. 11(a), the data are split in
such a way that most of the known data (80%) are used to
train the model and the testing is done only on the rest of the
data (20%) to assess the best performance of the cokriging
algorithm in the HSE bandgap dataset when most of the in-
formation is provided to the model. In Fig. 11(b), the model
is trained on a very small subset of known data (10%), and
the test data are significantly larger (90% of all known data)

FIG. 10. MAE and RMSE for corrected PBE and HSE formation
energies for the cases of fitting μ for no elements (“Fit-none”) and
all elements (“Fit-all”).

TABLE III. Formation energy RMSEs (in eV/atom) for PBE and
HSE before and after elemental fitting.

All Metals Insulators

Fit none Fit all Fit none Fit all Fit none Fit all

PBE 0.287 0.173 0.251 0.183 0.339 0.154
HSE 0.219 0.164 0.235 0.180 0.190 0.133

than the training data. This is a situation where the training
data do not well represent the feature vector space spanned
by the test data. The cokriging models show a reliable fit
in both data situations with a low MAE. In addition to the
prediction accuracy, another important aspect of cokriging is
the quantification of model uncertainty, also called epistemic
uncertainty. In Fig. 11(c), we show the usefulness of uncer-
tainty quantification. Among the materials with an absolute
error of more than 0.1 eV between the model-predicted HSE
bandgap and DFT-calculated HSE bandgap in both data opti-
mistic and data pessimistic cases, more than half of them have
a quantified model uncertainty greater than 0.1 eV. We set the
upper threshold of 0.1 eV to analyze the model predictions
in a scenario that demands very high accuracy in bandgap
values. In the optimistic case with a train:test ratio of 8:2,
only 12% of the materials have inaccurate predictions without
a significant value for predicted uncertainty. The magnitude
of the quantified uncertainty can be used to focus only on
the reliable predictions from the model in a materials de-
sign workflow. In both the optimistic and pessimistic models
shown in Fig. 11(c), the uncertainty quantification helps avoid
selection of more than half the materials with incorrectly
predicted values. Such a filter is preferable in situations where
a false-negative prediction is more desirable over a false-
positive prediction.

This shows that the uncertainty value which is quantified as
the standard deviation of the Gaussian process is an important
factor to consider while selecting design candidates based
on cokriging model predictions. A final model trained on a
train:test data split ratio of 9:1 was used to predict EHSE

g of
materials in the search space.

TABLE IV. Elemental chemical potential corrections for five
diatomic molecules as reported by Grindy et al. [42] and this
work for comparison. The chemical potential correction values of
the rest of the elements calculated in this work are provided in
the OQMD+ data portal [65]. Perdew-Wang 1991 generalized gra-
dient approximation (PW91-GGA); Perdew-Zunger Local-density
approximations (PZ-LDA).

From Grindy et al. (eV/atom) This work (eV/atom)

Element PBE-GGA PW91-GGA PZ-LDA PBE-GGA HSE

O −0.599 −0.4445 0.127 0.8698 0.2384
H −0.142 −0.091 0.085 0.0535 −0.0403
N −0.446 −0.3345 0.2195 0.1128 0.0202
F −0.442 −0.3515 −0.042 0.4378 0.1652
Cl −0.483 −0.417 −0.185 0.4914 0.218
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FIG. 11. Multifidelity cokriging model benchmarking results for
the HSE bandgap dataset of 1135 materials. Some of the full training
data are split and set aside as test data during the training of the
model. The trained model’s predictions on the test data are plotted.
The plot in (a) has an optimistic train:test split of 8:2, which imitates
a situation where training data are large enough to reliably learn
the correlation between input features and the target property EHSE

g .
In such a situation, the vector space spanned by input features is
sufficiently sampled by the training data. The plot in (b) shows the
predictions from a different model trained and tested on a pessimistic
train:test data split of 1:9. The pessimistic benchmarking was done
to examine the prediction capability of the cokriging model in situa-
tions where training data are not large enough to fully represent the
relatively larger portion of the feature space spanned by the candidate
materials. In (c), the uncertainty quantified for each test data point by
the cokriging model during the prediction is analyzed.

The results from multifidelity cokriging model predictions
of bandgaps with an HSE fidelity, referred to as EpredHSE

g , for
all materials in the search space (stable OQMD compounds
with no available HSE calculations) are provided in Fig. 12.
As shown in the plot, 55% of the materials in the search space
have no bandgap according to their PBE calculations, while
more than half of them are predicted by the machine learning
(ML) model to have a nonzero bandgap when calculated using
the HSE functional. In total, the cokriging predictions and
PBE disagree upon whether a given compound is metallic
or not for 30% of the materials in the search space. Among
different classes of materials, oxides have the best agreement
between PBE and cokriging predictions when classifying a
material as metallic. In the same criterion, pnictides and
halides are predicted to disagree the most based on the frac-
tions of their total size.

We attempted to validate these multifidelity cokriging
model predictions by searching for experimental and calcu-
lated (HSE) bandgaps in previously published studies. None
of these experimental or HSE bandgaps were used in the
ML model training, and they were collected from a literature
survey that was conducted only after the final cokriging model
predictions were made. A comparison of cokriging-predicted
bandgap EpredHSE

g to the reported DFT-derived EHSE
g and ex-

FIG. 12. (a) Bandgap openings predicted by the multifidelity
model. E predHSE

g refers to the HSE-fidelity bandgap value predicted
from cokriging. In about 30% of all materials in the search space, the
PBE results and cokriging model predictions disagree on whether
a material is metallic or not. (b) Elemental distributions among the
materials in the search space with the highest values for model
uncertainty. The ordinate of the bar plot represents the percentage
of the compounds with a high uncertainty prediction among all the
compounds in the search space that contain the element specified on
the abscissa of the plot. The bars of only those elements that have
an ordinate value of more than 2% are shown. Such a cutoff is kept
to make the relevant information stand out and skip other elements
such as O, F, etc., which have less than 2% of the compounds
predicted to have a high uncertainty value. The model uncertainty
is quantified as the standard deviation of the predicted cokriging
Gaussian distribution of E predHSE

g .

perimental bandgap EEXP
g for a small subset of materials from

the search space is provided in Table V. We were able to
find 13 materials which were predicted correctly as semi-
conductors by the cokriging model but classified as metallic
by PBE calculations. Another 15 materials whose experi-
mental or DFT-derived EHSE

g were more accurately predicted
by the cokriging model compared to their corresponding
DFT-derived EPBE

g values are also listed. The 28 materials
listed in Table V were not included in the high-throughput
HSE study, and thus, they were not included in the training
data. As shown in Fig. 12(a), the best agreement between
DFT-PBE calculations and cokriging predictions (with HSE
fidelity) happens in the case of oxides, followed by halides
and chalcogenides. The data in Table V show the capability
of the cokriging model to serve as an initial screening method
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TABLE V. Literature comparison of cokriging model predictions for the search space. The E predHSE
g column refers to the HSE bandgap value

predicted by the cokriging model. These materials are selected based on the difference in their E predHSE
g and DFT-derived EPBE

g . Information
about many other materials which were filtered out from the search space based on their bandgap value differences did not have any reported
values for DFT-derived EHSE

g or the experimental bandgap in the scientific literature within the scope of our search. Further details about the
listed materials, including the crystal structure and DFT (with PBE XC functionals) calculation details, can be found on the material’s web
page identified by OQMD ID [26].

Material OQMD ID Space group EPBE
g (eV) E predHSE

g (eV) EEXP/HSE
g (eV)

Ti2O3 678225 R-3 (148) 0.0 0.8 ± 0.3 0.03-0.14 (EXP) [43]
Ti3O5 66123 C2/m (12) 0.0 0.8 ± 0.3 0.14 (EXP) [44]
Co3S4 4563 Fd-3m (227) 0.0 1.6 ± 0.2 1.45 (EXP) [45]
Mn2O3 33709 Ia-3 (206) 0.0 0.7 ± 0.3 1.4 (EXP) [46]
TiO 10207 C2/m (12) 0.0 0.4 ± 0.3 1.9 (EXP) [47]
TiF3 5608 R-3m (166) 0.0 1.1 ± 0.3 2.87 (HSE) [48]
Ni3S4 6716 Fd-3m (227) 0.0 1.5 ± 0.2 2.8 (EXP) [49]
MnF3 3777 C2/c (15) 0.0 0.9 ± 0.3 3.03 (HSE) [48]
NiF3 15556 R-3 (148) 0.0 1.4 ± 0.3 3.28 (HSE) [48]
VF3 5882 R-3 (148) 0.0 1.0 ± 0.3 3.40 (HSE) [48]
MnSe 30752 P63mc (186) 0.0 1.5 ± 0.2 3.5-3.8 (EXP) [50]
MgTiO3 692959 R-3 (148) 0.0 0.7 ± 0.3 3.7 (EXP) [51]
MnS 646143 P63mc (186) 0.0 1.4 ± 0.2 3.7, 3 (EXP) [52,53]
V2O3 678210 R-3 (148) 0.3 2.2 ± 0.5 1.51 (EXP) [47]
Mn3O4 5975 I41/amd (141) 0.8 3.5 ± 0.4 2.91 (EXP) [54]
ZnO 4908 P63mc (186) 1.0 3.2 ± 0.3 3.29, 3.44 (EXP) [54,55]
Fe2O3 92501 Ia-3 (206) 1.1 4.0 ± 0.4 1.97 (EXP) [25]
SnO2 2477 P42/mnm (136) 1.2 2.6 ± 0.3 3.32 (EXP) [54]
MnO2 677684 I4/m (87) 1.2 3.9 ± 0.3 2.5, 2.7(HSE) [56,57]
LaVO3 682189 Pnma (62) 1.2 3.4 ± 0.4 1.44 (EXP) [47]
CdS 5970 P63mc (186) 1.3 2.7 ± 0.2 2.58, 2.48 (EXP) [55]
CrF3 4854 R-3c (167) 1.4 4.0 ± 0.3 4.91 (HSE) [48]
GaP 7553 F -43m (216) 1.8 2.4 ± 0.1 2.26, 2.33 (EXP) [58,59]
TiO2 2575 I41/amd (141) 2.0 4.5 ± 0.3 3.2 (EXP) [60]
SrTiO3 827052 R-3c (167) 2.0 4.0 ± 0.3 3.2 (EXP) [51]
LaCrO3 682305 Pnma (62) 2.1 3.6 ± 0.4 3.39 (EXP) [61]
ZnS 7652 F -43m (216) 2.3 3.4 ± 0.1 3.84 (EXP) [55]
BeSe 647324 F -43m (216) 2.8 3.9 ± 0.2 5.15 (EXP) [55]

in materials design challenges to achieve bandgap predictions
at HSE fidelity without having to do the computationally
expensive DFT-HSE calculations. In Fig. 12(b), the cokriging
model prediction uncertainties are analyzed. The uncertainty
value is high important when exploring the material spaces
in an optimization-based iterative materials design [62–64].
The highest quantified uncertainty was 0.6 eV, and it was
assigned for 72 compounds in the search space. Out of these,
52 had hydrogen as a constituent element in their composition.
Hydrogen stands out as the only element with a relatively
high value on the y axis in Fig. 12(b), indicating difficulty
in learning the mapping between input features and the target
property of hydrides during the model training. Such uncer-
tainty is not solely due to the limited amount of training
data since there are roughly similar numbers of hydrides and
oxides in the training data (∼4%) but the oxides in the search
space are predicted with much less uncertainty than in the
case of hydrides. The quantified uncertainty can also be used
to filter out material classes from the search space when the
high-accuracy prediction of the bandgap with high confidence
in trusting the results is significantly more important than

investigating less explored material classes. The cokriging
predictions availed in our work can be used to identify the
best candidates to conduct further DFT-HSE calculations to
find the semiconductors or insulators that are misidentified as
conductors in PBE calculations.

IV. CONCLUSION

To accelerate the design and discovery of novel materi-
als using computational data, we generated large amounts of
computational data on materials and used advanced strate-
gies to efficiently mine these datasets to describe materials
properties. In this work, we constructed datasets of bandgaps
and formation energies using advanced exchange-correlation
functionals (HSE). By analyzing over 1000 materials together,
we found that the HSE method in general improves materials’
bandgap and formation energy estimation accuracy. However,
there are still cases where the computationally efficient PBE
outperforms HSE. Therefore, machine learning models are
beneficial to define decision rules for identifying when using
HSE would significantly improve the theoretical predictions
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over PBE. One such approach we reported here based on the
cokriging model successfully filtered out a set of materials that
were incorrectly predicted as being metallic by DFT calcula-
tions using PBE functionals. The multifidelity model achieved
reliable accuracy in the prediction of bandgaps with HSE
fidelity at the cost of conducting a much cheaper estimation
of bandgap using the DFT calculation with PBE function-
als. Cokriging also quantifies the epistemic uncertainty in
model predictions, which is an important factor in statistical
optimization-based materials design workflows.

An interactive user interface is hosted by the Open Quan-
tum Materials Database [65] and contains the three datasets
generated in this work: (1) the high-throughput DFT-HSE and
DFT-PBE data of material bandgaps and formation energies,
(2) elemental chemical potentials and corrections from DFT-
PBE and DFT-HSE, and (3) the predicted DFT-HSE bandgap
values along with quantified uncertainty from the multifidelity
cokriging model for more than 20 000 materials. Alterna-
tively, all of the above data are also available in plain CSV
format [66].
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