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Incomplete monolayer regime and mixed regime of nanowire growth
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We study theoretically the nucleation and development of sequences of monolayers during the vapor-liquid-
solid growth of semiconductor nanowires, in the case where all material originates from the catalyst nanodroplet.
If at nucleation the droplet content is insufficient, a fractional monolayer forms quickly before propagating more
slowly; the droplet then refills during a random waiting time until next nucleation. We compare the proper
incomplete monolayer regime, where this occurs for each monolayer, with the mixed regime where full or
fractional monolayers may form, depending on the nucleation event. We investigate in detail the most general
case of the mixed regime at arbitrary temperature. Under simple assumptions of the dependence of nucleation and
desorption rates upon liquid state, valid at least for III-V compounds (with low concentration of the volatile group
V atoms in the liquid), we calculate semi-analytically the probability density of the concentration at nucleation
and the statistics of the propagation, waiting and monolayer cycle times, without any growth simulation and duly
accounting for the correlations between successive monolayers. We find that an effective incomplete monolayer
regime, whereby a huge fraction of nucleations produce incomplete monolayers, may prevail over a wide range
of nanowire-droplet geometry and growth conditions, with complete monolayers becoming frequent only at
large nanowire radius, input rate, and temperature. We explain why, in this regime, growth tends to become
quasideterministic, with a very narrow distribution of monolayer cycle times, which is beneficial for a precise
control of nanowire ensembles and heterostructures. We investigate quantitatively the case of self-catalyzed
GaAs nanowires and discuss the extension of our conclusions to other systems.
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I. INTRODUCTION

Various growth modes of semiconductor nanowires (NWs)
have now been observed at atomic resolution in real time
in situ transmission electron microscopy (TEM) experiments
[1–9]. This has confirmed that vapor-liquid-solid (VLS)
growth usually involves the sequential nucleation and prop-
agation of individual biatomic monolayers (MLs) at the
interface between the NW stem and the liquid catalyst
nanoparticle, as described by modern theories of NW growth
[10–14].

In many VLS systems, at least one NW constituent is
present at very low concentration in the liquid droplet. For
III-V NWs, this is the case of the volatile P and As group
V species, the concentration of which is on the order of a
fraction of percent [8,15–17]. This concentration is so low
that, due to the small size of the droplet and the variety of
kinetic processes at play, it may vary significantly during the
cycle of formation of each ML.

In particular, just after the nucleation of a new ML, the
droplet is suddenly depleted from this element. Indeed, once a
critical nucleus forms, the attachment of atoms to the new ML
becomes energetically favorable. We could therefore expect
the rapid formation of a full ML. However, since the droplet
is a nanosize mother phase, the amount of a scarce NW
constituent available at nucleation may even be insufficient
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for this. Recall that, in VLS growth, two main morphologies
of the solid-liquid interface are observed, depending on the
droplet contact angle. The interface can be truncated (with
a solid wedge missing at its periphery) [2–4,7,18] or planar
(with two terraces during ML growth). We consider the latter
case, which prevails at intermediate contact angles and, in
III-V NWs, usually produces the wurtzite (WZ) crystal phase
[4,5,7,8]. The ML can then only grow from atoms provided by
the liquid (as opposed to the deepening of the wedge, which
is another source of material for the ML in case of truncation
[19]).

Previously, we studied two extreme instances of the liquid
depletion effect. Based on ex situ (postgrowth) TEM experi-
ments [16], we first considered the case where there is always
enough group V atoms to build quickly a whole ML after
nucleation. We modeled this complete ML (CML) regime nu-
merically [16] and analytically [20]. These calculations show
that, as observed in our experiments, the distribution of the
numbers of MLs formed during successive equal times may
be sub-Poissonian, contrary to what would result from inde-
pendent nucleation events. This is due to an anticorrelation in
time of the nucleation events: because of droplet depletion,
the chemical potential of a III-V pair in the droplet, and thus
the nucleation probability, are less after a first nucleation event
than just before. We called this effect nucleation antibunching
[16].

To introduce the second extreme case of liquid depletion
(Sec. II A), we note that it may, however, happen that there
is not enough group V element in the droplet for a full ML
to form quasi-instantaneously. Then, a fractional ML (i.e., a
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FIG. 1. Schematics of the formation of a sequence of 4 MLs in
the (a) IML and (b) mixed regimes. The variation of the As content
of the droplet, given in terms of number of atoms (right scale) and
reduced concentration x̃ = x/xeq (left scale), would become linear
in absence of desorption from the liquid. Nucleation events and ML
completions are marked by arrows pointing down and up, respec-
tively, and the droplet contents at nucleation by horizontal arrows.
There is enough As in the droplet at nucleation to form a whole ML
at events (c), after which p = 0, and not enough at events (i). NML,
x̃ML: amount of As in a ML; Neq: droplet content at equilibrium with
solid GaAs. w: waiting time; p: propagation time; τc (τn): ML cycle
time between completion (nucleation) of successive MLs.

ML occupying only part of the interface, given that all MLs,
complete or not, have the same biatomic height) may form
very quickly after nucleation, consuming all atoms available
[events labeled (i) in Fig. 1]. Our theoretical work shows
that, as a first approximation, the depleted liquid reaches
equilibrium with the solid and remains in this state until
ML completion [21]. During this ML propagation time p,
all atoms provided by the vapor thus serve not to enrich
the droplet but to extend the ML. After ML completion, the
droplet can refill and liquid supersaturation builds up; this
waiting time w ends with a new nucleation event (Fig. 1).
From now on, we qualify such MLs as incomplete. The
reset to equilibrium concentration, at which nucleation is for-
bidden, produces another type of nucleation anticorrelation.
Being set by nucleation, the waiting time and the concen-
tration at nucleation vary randomly between MLs. Even in
the case of elementary semiconductors, where the atomic
concentration in the liquid is rather large [22,23], the amount
available above equilibrium may also be low and incomplete
MLs might form at nucleation.

II. THE INCOMPLETE MONOLAYER AND MIXED
REGIMES OF NANOWIRE GROWTH

A. The incomplete monolayer regime
and quasideterministic growth

Apart from the CML regime, the second extreme case of
liquid depletion that we already considered is when (for a

FIG. 2. Schematics of system geometry. R: NW radius; Rd , Rb, β:
droplet radius, base radius, and contact angle; TPL: triple phase line.
(a) Side view. Fractional solid (S) NW MLs of fixed height grow by
step flow (horizontal arrow) via addition of III-V pairs from the liquid
(L) refilled by the vapor (V). Top views of NW-liquid interface with
areas �n (in yellow) allowed for nucleation (b) on whole facet, (c) at
TPL, or (d) at corner, and (b), (c) critical triangular or (d) rhomboidal
nuclei of side rc (in red). In panel (d), each corner nucleation locus
has the same area as the nucleus.

given NW in given growth conditions) there is never enough
group V element in the droplet to allow the ML to form quasi-
instantaneously [Fig. 1(a)] [8,21]. Our in situ observations of
narrow VLS-grown GaAs NWs are a priori compatible with
this strict incomplete monolayer (IML) regime, as shown by
the fact that p > 0 for all MLs [5,8].

In the following, we consider a single NW with fixed radius
and droplet contact angle (neglecting the small changes due to
intermittent consumption combined with steady refill [21]),
growing at temperature T [Fig. 2(a)]. For sake of simplic-
ity and in line with our previous work [8,17], we formulate
the problem in terms of self-catalyzed GaAs NWs (Ga-As
droplet), although our results apply to other materials and to
catalyst droplets involving a foreign metal. If NL

i is the instan-
taneous number of atoms of species i in the liquid, NL

As � NL
Ga

and the relative variations of NL
Ga are negligible. When calcu-

lating the As atomic concentration x = NL
As/NL

tot � 1 (which
fully defines the state of the binary liquid at given tempera-
ture), we thus consider the total number NL

tot of atoms (Ga, As
and possibly the foreign catalyst) in the droplet as constant
and, for a given NW, we can reason indifferently in terms of
NL

As or x.
A striking property of the IML regime is that growth may

become self-regulated, with each ML cycle lasting exactly
the same time [8]. To understand why, let us assume growth
conditions such that (A1) the IML regime is realized and (A2)
group V desorption from the liquid is negligible, as occurs at
relatively low temperature. The As concentration after waiting
time w is x(w) = xeq + Fw, where xeq is the equilibrium con-
centration and F a constant describing the input of As in the
droplet, depending on geometry and external flux. The linear
time variation follows from assumption (A2) and the fact that
x = xeq at w = 0 from assumption (A1), which guarantees
that the liquid is at equilibrium during propagation of the
previous ML. The fractional ML formed quickly after nucle-
ation (bringing the liquid back to equilibrium) thus contains a
number of As atoms corresponding to xeq + Fw − xeq = Fw.
During ML propagation, the input F p to the droplet is entirely
used for ML growth (there is neither storage in the liquid nor
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desorption). At the end of propagation, exactly one ML has
formed, hence Fw + F p = xML, with xML corresponding to 1
ML-worth of As in the droplet. Under these conditions, the
ML cycle time τc = w + p, measured between ML comple-
tions (Fig. 1), is thus the same, τc = xML/F , whatever the
ML. This remarkable property is achieved although w varies
between MLs due to the stochasticity of nucleation. It clearly
results from a compensation between random waiting time
and following propagation time. If w is long, a large ML
fraction is formed right after nucleation, and the time p needed
to complete it is short.

Conditions (A1) and (A2) must be met for this strictly
deterministic growth regime to be realized. Assume for in-
stance that (A1) holds, but not (A2). Then, after waiting time
w, x(w) = xeq + g(w), with g a certain sublinear function
of time (since desorption increases with concentration). If
desorption consumes fraction ζ of input at xeq, then g(w) +
(1 − ζ )F p = xML, which shows that τc varies between MLs,
because w does. In the opposite case where (A2) is met, but
not (A1), consider a complete ML that formed quickly after
nucleation since there was enough As in the liquid [events
(c) in Fig. 1(b)]. For this ML, p = 0 and the concentration
after ML formation is some x0 > xeq. Then, for the next ML,
x(w) = x0 + Fw, the fraction of ML formed at nucleation is
x0 + Fw − xeq, and x0 + Fw − xeq + F p = xML. Therefore,
τc = (xML + xeq − x0)/F varies between MLs since x0 (which
itself results from random nucleation at x0 + xML) has no
reason to be the same after the fast formation of different com-
plete MLs. We may also simply notice that, for these complete
MLs, p = 0, hence τc = w with w random [Fig. 1(b)].

Note that, strictly speaking, assumptions (A1) and (A2) are
incompatible: in absence of desorption, x increases linearly
with time as long as there is no nucleation, and there is a prob-
ability that it will overcome xeq + xML (Fig. 3, dashed line),
in which case the next ML will form quasi-instantaneously.
However, this probability may be extremely low, as will be
discussed later.

Achieving quasideterministic growth despite the random-
ness of nucleation events and waiting times is important.
Controlling the length of a NW section to within 1 ML is
crucial in quantum axial heterostructures, be they based on
alternating different materials (or alloys of different composi-
tions [24]) or different crystal structures of the same material
(crystal phase heterostructures [25–28]). Although the instant
feedback offered by in situ TEM allows one to tailor at least
the latter type of structures by changing the droplet contact an-
gle [7], finding growth conditions minimizing intrinsic length
fluctuations would open the way for producing them blindly in
a standard growth setup devoid of real time in situ monitoring,
simply by selecting the appropriate growth time, with which
the section length would scale.

B. The mixed regime

We previously performed detailed measurements of the
propagation and waiting times in a single NW at differ-
ent growth temperatures, using the NanoMAX in situ TEM
facility [8]. The observation of fractional MLs after each
nucleation was compatible with an IML regime. At the
lowest growth temperature, we found some evidence of self-

FIG. 3. Schematics of the variation of the reduced As concentra-
tion x̃ in the droplet with waiting time before nucleation. x̃ cannot
exceed concentration x̃s at which desorption balances input. Con-
centration x̃ML + 1 corresponds to 1 ML worth of As available in
the liquid. If x̃ML + 1 > x̃s, the system is surely in the IML regime
(green lines). If not, there is a finite probability that the waiting time
exceeds wML (at which 1 ML becomes available in the liquid) and the
mixed regime prevails (red lines), as is also the case in the absence of
desorption. The figure remains valid if waiting time starts at x̃ > 1.
r1, r2, r3 are the nucleation ranges discussed in Sec. VII.

regulation: the τc-distribution was narrower than expected for
independent waiting and propagation times (as also observed
in the vapor-solid-solid growth of II-VI NWs [9]), although
not the very narrow distribution anticipated from the above
considerations. This is in large part due to the limited time
resolution of our experiments and we discussed other possible
experimental and intrinsic sources of fluctuations. In addition
to numerical growth simulations, we performed analytical
calculations of the distributions of the various characteristic
times [w, p and the ML cycle time, which can be measured
between ML completions (τc) or between nucleations (τn; see
Fig. 1), with possibly very different statistics [8] ], albeit only
in the strict IML regime and at low temperature, i.e., precisely
under assumptions (A1) and (A2) above.

However, due to the stochasticity of nucleation, the waiting
time and thus the initial droplet content is different for each
ML, and we need not be in either of the extreme CML or IML
regimes. We have just shown that the IML regime is necessary
for strict self-regulation (identical τc for each ML), but it is
important to evaluate quantitatively the deviation from this
ideal situation depending on deviation from the IML regime.

The present work is devoted to this most general case of
a mixed regime, with enough atoms in the liquid to form
a complete ML at some nucleation events and not enough
at others [labeled (c) and (i), respectively, in Fig. 1(b)]. We
concentrate on analytical calculations, which allow us to ex-
plore wide ranges of parameters without any lengthy growth
simulation. Such calculations are more difficult than for the
strict IML regime (with systematic reset) studied previously
[8] because of the correlations between successive MLs: after
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a type (c) event, the next cycle starts at a higher concentration
than after a type (i) event, which will tend to shorten the
waiting time [Fig. 1(b)]. We also lift further restrictions that
limited the scope of our previous works. Namely, we allow
for three possible nucleation loci on the NW hexagonal top
facet. Most importantly, we include desorption from the liquid
and thereby extend our analytical calculations of the statistical
properties of the distributions of the various characteristic
times to the whole temperature range.

III. MODEL

A. Monolayer cycle and desorption

As recalled above, each ML cycle can be decomposed into
three stages [8,21]. Right after nucleation, the coverage θ of
the interface by the new ML first increases abruptly (stage 1).
This transfer of As atoms to the ML depletes the liquid and
reduces its supersaturation. In the mixed regime [Fig. 1(b)],
the two following situations occur:

(i) If there is not enough As in the liquid at nucleation to
form a full ML, fast initial growth stage 1 ends when the liquid
reaches equilibrium with the ML [21,29]. We assume that the
As concentration at this point can be taken as the equilibrium
concentration xeq with the bulk solid. This is justified if the
ML edge energy is low enough [21] and it simplifies the
calculations, since xeq depends only on temperature (and not
on the shape and size of the fractional ML). Hence, in terms of
the reduced As concentration x̃ = x/xeq (hereinafter “concen-
tration”), x̃ = 1 at the end of stage 1 [events (i) in Fig. 1(b)].
Assuming that nucleation took place at concentration x̃0, case
(i) thus occurs when x̃0 < x̃ML + 1, with x̃ML = xML/xeq. A
low enough ML edge energy also allows us to assume that,
during ML propagation (stage 2), x remains fixed to xeq [21],
which means that all As atoms fed to the droplet and not lost
via desorption serve to extend the ML.

(c) Conversely, if x̃0 � x̃ML + 1 at nucleation, there is
enough As available in the liquid for a full ML to form at
stage 1, at the end of which x̃ = x̃0 − x̃ML, stage 2 vanishes
and p = 0 [events (c) in Fig. 1(b)].

In both cases, once the ML is complete, no further growth
occurs over a finite waiting time w (stage 3), during which
the droplet refills before the next nucleation. In experiments
reported previously (where only case (i) was observed), we
could not detect any ML propagation during stage 1 [5,8],
which means that the time between nucleation and reaching
equilibrium is surely very short with respect to characteristic
times p and w. In the following, we simply assume that stage
1 is instantaneous, both in cases (i) (as previously [8]) and (c).

At stage 3, concentration x̃ first increases, which increases
the desorption rate. However, x̃ cannot exceed the value x̃s at
which desorption balances the external As input (Fig. 3). At
variance with xeq, x̃s is not an intrinsic quantity but depends
on NW geometry and vapor flux in addition to temperature.

More precisely, the rate of desorption from the liquid of
any molecule is proportional to its equilibrium pressure with
this liquid [30], which increases with composition and tem-
perature [17]. On the basis of available thermodynamic data
[31], we find that, at least in the case of As, the equilibrium
pressure of the group V dimers (As2) is much larger than

those of all other species (such as As or As4) [17]. Desorp-
tion then occurs overwhelmingly via dimers, and since their
equilibrium pressure very nearly scales with the square of the
liquid composition (see below), so does the desorption rate
[21]. During waiting time, x̃ thus obeys equation

dx̃

dt
= V − Dx̃,2 (1)

with V the constant input rate of As into the liquid in terms
of x̃ and D a desorption coefficient (to be calculated below).
Then, if concentration is x̃1 at time t = 0, in the absence of
nucleation, concentration x̃ at a later time t is such that t =
t̂ (x̃1, x̃) with

t̂ (x̃1, x̃) = 1

2αV

[
ln

1 + αu

1 − αu

]u=x̃

u=x̃1

(2)

and α = (D/V )1/2. Concentration thus varies with time as

̂̃x(x̃1, t ) = 1

α

F (x̃1)e2αV t − 1

F (x̃1)e2αV t + 1
. (3)

with

F (u) = 1 + αu

1 − αu
, (4)

and it remains less than x̃s = 1/α = (V/D)1/2.
t̂ and ̂̃x are inverse functions that describe the evolution of

the composition starting from a given value x̃1. This evolution
(but not x̃1) is independent of the previous history of the
system and remains deterministic until the next nucleation.

Coefficients V and D can be expressed using the system pa-
rameters. Assuming a Knudsen evaporation coefficient equal
to one (i.e., that all molecules impinging the liquid surface
escape to the vapor) [17,30], the atomic desorption flux writes

Je = 2p2√
2πMkBT

, (5)

with M the mass of the As dimers and p2(T, x) their equi-
librium pressure with a (Ga,As) liquid of composition x [17].
Calculations using the thermodynamic data of Ansara et al.
[31] for bulk phases confirm that, at a given temperature, the
quadratic approximation p2 = Ad (T )x2 leading to Eq. (1) is
very good [17].

We consider a NW with hexagonal section of radius (side)
R and a spherical cap droplet with base radius Rb and con-
tact angle β (Fig. 2), which determine its radius Rd , outer
area Sd and volume Vd [17]. This geometry allows us to
consider various nucleation loci on the NW top facet [see
Figs. 2(b)–2(d) and Sec. III B] while retaining the possibility
of analytical calculations. We mitigate the resulting shape
mismatch by writing Rb = αbR, with αb � 1 a constant that
can be chosen according to different possible rules. In all fol-
lowing calculations, we take αb = 33/4/(2π )1/2 � 0.90939.
This corresponds to equating the areas of NW top facet and
base of the spherical cap [Fig. 2(b), dashed circle], which
reduces the mismatch as compared with the simple choice
αb = 1 [Fig. 2(b), dash-dotted circle]. The atomic desorption
current is JeSd and NL

As = x̃xeq Vd/	, with 	 = Vd/NL
tot the

average atomic volume in the liquid. Hence,

D = c1(T )g1(β )

R
, (6)
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with c1(T ) = 12Ad xeq 	α−1
b /

√
2πMkBT and g1(β ) =

sin β/[(1 − cos β )(2 + cos β )].
On the other hand, V = VMLx̃ML, with VML the input rate in

terms of MLs per unit time and

x̃ML = c2(T )g2(β )

R
, (7)

with c2(T ) = 6	/[α3
ba2xeq ] (where 	, lattice parameter a

and xeq depend on temperature) and g2(β ) = 3 sin3 β/[π (1 −
cos β )2(2 + cos β )].

From the GaAs thermodynamic data [31], we find
the fits ln Ad (T ) = −88.66682 + 0.22027T − 1.88842 ×
10−4T 2 + 5.99272 × 10−8T 3 and ln xZB

eq (T ) = −41.59917 +
0.06611T − 2.94528 × 10−5T 2 for the zinc blende (ZB)
phase, for 500 K � T � 900 K. Even better values can be
obtained by fitting the same data at a given temperature over
the restricted composition range effectively explored by the
system (see Sec. VI B).

B. Nucleation rate and nucleation locus

In the framework of classical nucleation theory (CNT)
adapted to nanostructures, we can take into account various
possible nucleation loci by writing the probability of nucle-
ation per unit time as [17,32]

Pn = Jn�n, (8)

with �n the area available for nucleation (see below) and Jn

the composition-dependent two-dimensional (2D) nucleation
rate (per unit area and unit time) [17,33]:

Jn = Ax

(

μ

kBT

)1/2

exp

(
−
Gc

kBT

)
. (9)

In Eq. (9), prefactor A is independent of composition but
may depend on temperature, 
μ is the difference of chemical
potential per III-V pair between the liquid of composition
x and binary solid, 
Gc is the nucleation barrier and kB

is Boltzmann’s constant. Recall that, in Eq. (9), the term
x[
μ/(kBT )]1/2 originates from jointly accounting for the
attachment rate to the critical nucleus and for the Zeldovich
factor [33]. The 1 ML high nuclei have linear size r, perime-
ter α1r and area α2r2, with α1, α2 constants depending on
the nucleus shape. The size of the critical nucleus is rc =
b/
μ and the nucleation barrier is 
Gc = B/
μ, with b =
α1a3γe/(8α2) and B = α2

1a4γ 2
e /(16

√
3α2). Here, γe the av-

erage effective surface energy of the vertical edge of the
nucleus (see below) and a the ZB lattice parameter (assuming
NWs growing along the 〈111〉 ZB or 〈0001〉 WZ axes and
neglecting the differences of lattice spacings and pair volumes
between ZB and WZ).

The 2D nucleus may form at different nonequivalent posi-
tions in the solid-liquid interface, corresponding to different
areas �n (Fig. 2). This is crucial for growth, and in particular
for polytypism [13]. Nucleation can occur equiprobably over
the whole interface, of area SH = 3

√
3R2/2 [Fig. 2(b)], and

then �n = SH , or only in a narrow band along the triple phase
line (TPL) boundary of the interface (of length PH = 6R),
the width of which scales with the critical radius [Fig. 2(c)]
[13,32]. In both cases, we consider equilateral triangular nu-
clei of side r, which mimic the symmetry of the (111) plane

TABLE I. Parameters relative to the three possible nucleation
loci and associated nucleus shapes and effective edge energies. The
triangle is equilateral and the rhomboid angles are π/3 and 2π/3.
rc: side of critical nucleus; PH , SH : perimeter and area of the NW
top facet. γnL , γ eff

nV : energy per unit area of the nucleus-liquid and
nucleus-vapor lateral interfaces.

Locus Interface TPL Corner
shape triangle triangle rhomboid

α1 3 3 4
α2

√
3/4

√
3/4

√
3/2

�n SH PH rc

√
3/2 6α2r2

c

κ 1/2 −1/2 −3/2
η 0 1 2
χ 3

√
3/2 3

√
3 6

γe γnL (2γnL + γ eff
nV )/3 (γnL + γ eff

nV )/2

[13]. In the second case, the width of the band is the altitude
of the critical nucleus. Our previous work (based on molecular
beam epitaxy experiments) shows that nucleation can even be
restricted to the vicinity of the hexagon corners, with rhom-
boidal nuclei [Fig. 2(d)] [5] (a similar geometry was recently
observed using chemical vapor epitaxy [34]). In this special
case of nucleation at the TPL, and with equiprobable corners
(as reported in Ref. [34]), �n is simply six times the critical
nucleus area

√
3r2

c /2. The parameters α1, α2 defining the
geometry of the nucleus and the expressions of �n are listed
in Table I, along with expressions for energy γe, including
contributions from the step portions in contact with liquid
(with energy γnL per unit area) and vapor. The latter is an
effective value γ eff

nV accounting for the liquid area eliminated
when the nucleus forms at the TPL [8,13] (Fig. 2). Note that
the nucleation rate [Eq. (9)] depends on nucleation shape and
locus via 
Gc.

In addition, as discussed previously, for III-V compounds,
at a given temperature T , 
μ is very well approximated by
expression


̂μ(x, T ) = αμkBT ln (x̃), (10)

with αμ a temperature-dependent constant very close to one
[8,17]. The equilibrium concentration, which appears in the
definition of x̃, also depends on temperature (and on group
III concentration in the liquid for metal-catalyzed growth
[15]) and on crystal phase. Equation (10) implies that xWZ

eq =
xZB

eq exp[δEcoh/(αμkBT )], with δEcoh the difference of cohe-
sive energy between the two phases (δEcoh = 24 meV/pair for
GaAs [35]). Given that the planar solid-liquid interface co-
occurs with WZ in GaAs NWs [4,5,7,8], we take xeq = xWZ

eq
and, on the basis of previous work [5,34], assume corner
nucleation [Fig. 2(d)].

From Eqs. (8)–(10), using the expressions of �n for the
three nucleation loci (Table I) and recalling that rc = b/
μ

and 
Gc = B/
μ (with b and B given above), we obtain the
general expression

Pn(x̃) = Acx̃(ln x̃)κ exp

(
− BT

ln x̃

)
, (11)
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with

Ac = χAxeq ακ
μbη

T R2−η, (12)

bT = (kBT )−1b, (13)

BT = α−1
μ (kBT )−2B, (14)

and parameters χ , κ , and η given in Table I for each nucleation
locus. Note that the different dependencies on ln x̃ result from
the fact that the critical radius appears in �n with exponents
0, 1, and 2 for the three nucleation loci, respectively.

The finite size of the top facet imposes a maximum critical
nucleus size and hence a minimum value of 
μ at nucleation.
This in turn sets a minimum value x̃min of x̃ at nucleation,
namely, exp[bT /(αμR)] for corner or TPL nucleation and
exp[bT /(

√
3αμR)] for the full top facet, but these are only

marginally larger than one.
During waiting time, concentration x varies significantly

and subcritical clusters form and dissolve. We expect the
lifetime of such clusters to be much shorter than w, which
justifies considering the nucleation probability as a slowly
varying function of instantaneous concentration in Eqs. (8)–
(11).

IV. PROBABILITY DENSITY OF THE CONCENTRATION
AT NUCLEATION

A. Definitions and governing equation

In a given NW, successive nucleation events occur at dif-
ferent values of the concentration x̃. We define the probability
density of the concentration at nucleation, function πx̃, such
that, over the entire growth sequence of this NW (ideally in-
finite), the probability that nucleation occurs at concentration
x̃, within interval δx̃, is πx̃(x̃)δx̃. We show in Sec. V that the
statistical properties of all characteristic times, namely, p, w,
τc, and τn, can be calculated from πx̃. In the present section,
we derive a differential equation governing this function.

To this end, we first define four related conditional proba-
bility densities. The first two, π (1)

w (w|x̃1) for waiting time w

and π
(1)
x̃ (x̃|x̃1) for concentration x̃ at which nucleation occurs,

are conditional to concentration being x̃1 at the start of the
waiting time. They are related by

π (1)
w (w|x̃1)dw = π

(1)
x̃ (x̃|x̃1)dx̃, (15)

with w = t̂ (x̃1, x̃) or x̃ = ̂̃x(x̃1,w) and dx̃/dw given by
Eq. (1). Density π (1)

w is obtained from the nucleation probabil-
ity [Eq. (11)] and the increase of concentration during waiting
time [Eq. (3)] [8,20,36]:

π (1)
w (w|x̃1) = Pn (̂x̃(x̃1,w)) exp

{
−

∫ w

0
Pn (̂x̃(x̃1, t ))dt

}
.

(16)

The last two densities, π (0)
w (w|x̃0) and π

(0)
x̃ (x̃|x̃0), are

conditional to the previous nucleation having occurred at con-
centration x̃0. The pairs are thus linked by

π (0)
u (u|x̃0) = π (1)

u [u, x̃1(x̃0)] for u = x̃ or w, (17)

with x̃1(x̃0) = 1 in case (i) and x̃1(x̃0) = x̃0 − x̃ML in case (c)
[Fig. 1(b)].

Using Eqs. (16), (15), and (17), we obtain

π
(0)
x̃ (x̃|x̃0) = Qn(x̃) exp

[
−

∫ x̃

x̃1(x̃0 )
Qn(u)du

]
, (18)

where

Qn(x̃) = Pn(x̃)

V (1 − α2x̃2)
. (19)

Equation (18) holds if x̃1(x̃0) � x̃ < x̃s; if not, π
(0)
x̃ (x̃|x̃0) = 0.

Function πx̃ must satisfy the following integral equation:

πx̃(x̃) =
∫ x̃sup(x̃)

x̃inf (x̃)
π

(0)
x̃ (x̃|x̃0)πx̃(x̃0)dx̃0. (20)

The integration limits are found by noting that a nucleation
at x̃ can follow any nucleation at x̃0 such that x̃1(x̃0) � x̃,
i.e., x̃0 � x̃ML + 1 in case (i) and 1 � x̃0 − x̃ML � x̃ in case
(c). Hence, x̃inf(x̃) = x̃min � 1, x̃sup(x̃) = min(x̃ + x̃ML, x̃s) =
m1(x̃). Equation (20) becomes

πx̃(x̃) = Qn(x̃)

H (x̃)

[
πML +

∫ m1(x̃)

x̃ML+1

H (x̃0 − x̃ML)πx̃(x̃0)dx̃0

]
,

(21)

with

H (x̃) = exp

(∫ x̃

x̃min

Qn(u)du

)
, (22)

πML =
∫ x̃ML+1

x̃min

πx̃(x̃0)dx̃0. (23)

πML is thus the fraction of type (i) nucleation events. In the
IML regime, where x̃s < x̃ML + 1, the upper integration limit
in Eq. (23) is x̃s and the integral in Eq. (21) cancels. We now
consider the proper mixed regime.

Since function πx̃ may diverge when x̃ → x̃s, we prefer
handling function K , defined by

K (x̃) = V (1 − α2x̃2)πx̃(x̃), (24)

in terms of which Eq. (21) becomes

K (x̃) = φ(x̃)

[
πML +

∫ m1(x̃)

x̃ML+1

H (x̃0 − x̃ML)

V
(
1 − α2x̃2

0

)K(x̃0)dx̃0

]
, (25)

with

φ(x̃) = [H (x̃)]−1Pn(x̃). (26)

Integral equation (25) is finally rewritten as a differential
equation:

dK

dx̃
= d ln φ(x̃)

dx̃
K (x̃)

+ φ(x̃)H (m1(x̃) − x̃ML))

V [1 − α2(x̃ + x̃ML)2]

dm1

dx̃
K (m1(x̃)). (27)

B. Semi-analytical solution

Solving Eq. (27) requires in particular calculating function
H , from which function φ [Eq. (26)] and its derivative can
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be obtained. To this end, we derive analytical expressions for
the three different nucleation loci. From Eq. (22) and a series
expansion of the denominator of Qn [Eq. (19)], we find, by
using the general expression (11) of the nucleation probability,
that

ln H (x̃) = Ac

∞∑
q=0

α2qLq(x̃), (28)

with

Lq(x̃) =
∫ x̃

x̃min

u2q+1(ln u)κ exp

(
− BT

ln u

)
du. (29)

We consider in turn the three nucleation loci.

1. Corner nucleation (κ = −3/2, superscript c)

Setting f (x̃) = (ln x̃)−1/2, we get

Lc
q(x̃) = 2

∫ f (x̃min )

f (x̃)
exp

(
2(q + 1)

v2
− BT v2

)
dv, (30)

and, using result 7.4.34 in Ref. [37],

Lc
q(x̃) =

√
π

4BT

{
e

2(q+1)
v2 −BT v2

[
ω

(√
2(q + 1)

v
+ i

√
BT v

)

+ω

(
−

√
2(q + 1)

v
+ i

√
BT v

)]} f (x̃)

f (x̃min )

, (31)

with i the imaginary unit and ω the Faddeeva-Kramp function
[37–39], already encountered in our calculation for corner
nucleation with no desorption [8]. Given the symmetries of
function ω [37], this can be rewritten as

Lc
q(x̃) =

√
π

BT
[Re{ψq[ f (x̃)]} − Re{ψq[ f (x̃min)]}], (32)

where Re denotes the real part of a complex number and

ψq(v) = e
2(q+1)

v2 −BT v2

ω

(√
2(q + 1)

v
+ i

√
BT v

)
. (33)

Recall that x̃min is close to one, a value for which f (x̃) → ∞
and ψq[ f (x̃)] cancels. For q = 0, Eqs. (32) and (33) coincide
with our previous calculation in absence of desorption [8].

2. TPL nucleation (κ = −1/2, superscript TPL)

Here, with change of variable v = f −1(u),

LTPL
q (x̃) = 2

∫ f −1(x̃)

f −1(x̃min )
exp

(
2(q + 1)v2 − BT

v2

)
dv, (34)

and, using result 7.4.33 in Ref. [37],

LTPL
q (x̃) =

√
π

2(q + 1)
(Im{ψq[ f (x̃)]} − Im{ψq[ f (x̃min)]}),

(35)

where Im denotes the imaginary part of a complex number
and Im{ψq[ f (x̃min)]} � 0.

3. Nucleation over the whole top facet (κ = 1/2, superscript HEX)

In this case, a simple integration by parts yields

LHEX
q (x̃) = 1

2(q + 1)

[
hq(x̃) − BT Lc

q(x̃) − 1

2
LTPL

q (x̃)

]
,

(36)

with

hq(x̃) = x̃2(q+1)(ln x̃)1/2 exp

(
− BT

ln x̃

)
. (37)

Here, hq(x̃min) = 0 if x̃min is set to one.
The alternative analytical expressions (32), (35), and (36),

each pertaining to a particular nucleation locus, can be
evaluated using efficient numerical implementations of the
Faddeeva function [39], and then summed in series [Eq. (28),
where we use up to 500 000 terms] to yield values of functions
H and φ at any point. These values are used in the numerical
solution of differential equation (27), which proceeds as fol-
lows.

From Eq. (24), K (x̃) = 0 for x̃ � x̃s. For x̃min � x̃ < x̃s,
the equation can be solved sequentially in at most two main
descending intervals.

If x̃s − x̃ML � x̃ < x̃s, m1(x̃) = x̃s, dm1/dx̃ = 0 and
Eq. (27) reduces to d ln K/dx̃ = d ln φ/dx̃. Thus, K (x̃) =
Cφ(x̃), with C an integration constant to be determined. Of
course, resolution is completed if x̃s − x̃ML � x̃min.

If not, Eq. (27) is solved numerically in the remaining in-
terval [x̃min, x̃s − x̃ML]. There, m1(x̃) = x̃ + x̃ML and Eq. (27)
is akin to a delay differential equation, since the derivative
at the current point depends on the function value at a point
translated by a fixed quantity, namely, x̃ML. The solution is
thus computed in descending subintervals of width x̃ML. In
each subinterval, the solution is calculated at any desired
discrete set of points by an IMSL routine [40], which requires
to have available the coefficients of the differential equation at
any point in the subinterval. In the uppermost subinterval
[x̃s − 2x̃ML, x̃s − x̃ML], these are readily obtained from the cal-
culation of H and by noting that K (x̃ + x̃ML) = Cφ(x̃ + x̃ML).
In the subinterval below, [x̃s − 3x̃ML, x̃s − 2x̃ML] (if needed),
K (x̃ + x̃ML) is obtained for any x̃ by interpolation between the
discrete points of subinterval [x̃s − 2x̃ML, x̃s − x̃ML] where it
has just been calculated. This process is repeated until the
whole interval [x̃min, x̃s − 2x̃ML] has been treated. The whole
solution is obtained modulo multiplicative constant C, which
we finally determine by equating the integral of πx̃ over
[x̃min, x̃s] to one.

These calculations will be illustrated in Secs. VI B and VII.
Once density πx̃ is determined, the distributions of the various
characteristic times can be calculated, as shown in the next
section.

V. STATISTICS OF THE CHARACTERISTIC TIMES

A. Propagation time

All propagation times following a type (c) nucleation are
zero. The fraction of these is 1 − πML. After a type (i) nu-
cleation at droplet content x̃0 � x̃ML + 1, an ML fraction
corresponding to x̃0 − 1 is quickly grown. During the follow-
ing propagation time p(x̃0), the liquid remains at equilibrium
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with solid (x̃ = 1) and, from Eq. (1), the concentration x̃ avail-
able for extending the ML from the external source verifies
dx̃/dt = Ve with Ve = (1 − α2)V the net input rate (input
minus desorption) at equilibrium. Hence,

p(x̃0) = x̃ML − x̃0 + 1

Ve
. (38)

The probability density of the propagation time, πp, is such
that πp(p)d p = −πx̃dx̃0. Hence,

πp(p) = Veπx̃(x̃ML + 1 − Ve p) (39)

for p � ps, with ps = p(x̃min) (the largest possible propaga-
tion time), and πp(p) = 0 for p > ps.

B. Waiting time

The probability density of the waiting time is

πw(w) =
∫ x̃s

x̃min

π (0)
w (w|x̃0)πx̃(x̃0)dx̃0. (40)

We first express density π (1)
w in terms of functions H [Eqs. (22)

and (28)] and φ [Eq. (26)], after change of variable t → x̃ =̂̃x(x̃1, t ) [Eq. (3)] in the integral of Eq. (16):

π (1)
w (w|x̃1) = φ (̂x̃(x̃1,w))H (x̃1). (41)

π (0)
w (w|x̃0) is then calculated from Eq. (17) and inserted into

Eq. (40). Distinguishing again nucleation events at x̃0 of types
(i) [x̃1(x̃0) = 1] and (c) [x̃1(x̃0) = x̃0 − xML], we find that
πw(w) = Ji(w) + Jc(w), where

Ji(w) = πMLφ (̂x̃(1,w)), (42)

Jc(w) =
∫ x̃s

x̃ML+1
πx̃(x̃0)φ (̂x̃(x̃0 − x̃ML,w))H (x̃0 − x̃ML)dx̃0.

(43)

Of course, Jc = 0 if x̃s � x̃ML + 1 (IML regime).

C. Monolayer cycle time

Here, we exclude the strict IML regime (Sec. II A), which
ensures that α(x̃ML + 1) < 1. Consider a ML cycle starting
with the completion of the preceding ML at x̃ = x̃1 and end-
ing with ML completion after time τc. The ML nucleates
within the cycle at concentration x̃ � x̃1, after waiting time
w = t̂ (x̃1, x̃) [Eq. (2)]. If x̃ < x̃ML + 1 [case (i)], the ML cycle
comprises a nonzero propagation time and τc = ϕ(x̃1, x̃), with
ϕ(x̃1, x̃) = t̂ (x̃1, x̃) + p(x̃). If x̃ � x̃ML + 1 [case (c)], then
p = 0 and τc = t̂ (x̃1, x̃).

Setting τm = x̃ML/Ve and τM = t̂ (1, x̃ML + 1), we find (see
Fig. 4) that case (i) requires τc � τM and x̃−

1 (τc) � x̃1 �
x̃+

1 (τc) with

x̃−
1 (τc) =

{
x̃ML + 1 − Veτc, if 0 � τc � τm

1, if τm � τc � τM,
(44)

x̃+
1 (τc) = 1

α

F (x̃ML + 1)e−2αV τc − 1

F (x̃ML + 1)e−2αV τc + 1
if 0 � τc � τM,

(45)

with function F given by Eq. (4). Since

∂ϕ

∂ x̃
= α2(x̃2 − 1)

Ve(1 − α2x̃2)
, (46)

FIG. 4. Relationship between duration τc of ML cycle and
droplet composition x̃1 at its beginning. Couples (x̃1, τc ) in domains
(i) (between curves x̃−

1 and x̃+
1 , pink shaded) and (c) (above curve

x̃+
1 ) give rise to incomplete and complete MLs at nucleation within

the cycle, respectively. The left borders of the domains (x̃1 = 1)
correspond to all nucleations having produced an incomplete ML
during the previous ML cycle, and the inner parts to those having
produced a complete ML, at concentration x̃1 + x̃ML. The horizontal
segments illustrate the allowed ranges of x̃1 for a few values of τc.
The striped shaded area is forbidden.

ϕ is a monotonically increasing function. Hence, for any x̃1

within range [x̃−
1 (τc), x̃+

1 (τc)], there is a single nucleation con-
centration x̃ = x̃(n)(τc, x̃1) such that τc = ϕ(x̃1, x̃) (which can
be expressed using the r-Lambert function [41]). Moreover,
the probability density of the ML cycle time conditional to its
start at concentration x̃1, πτc (τc|x̃1), verifies the equation

πτc (τc|x̃1)
∂ϕ

∂ x̃
(x̃1, x̃) = π

(1)
x̃ (x̃|x̃1). (47)

Using Eqs. (15) and (41) and recalling that ̂̃x(x̃1, t̂ (x̃1, x̃)) = x̃
and α = 1/x̃s, we replace πx̃(x̃|x̃1) by φ(x̃)H (x̃1)∂ t̂/∂ x̃ in this
equation, which yields

πτc (τc|x̃1) =
(
x̃2

s − 1
)
H (x̃1)

[x̃(n)(τc, x̃1)]2 − 1
φ(x̃(n)(τc, x̃1)). (48)

Case (c) occurs either when τc � τM and x̃1 > x̃+
1 (τc), or

when τc > τM for any x̃1 (Fig. 4). The concentration at nucle-
ation is then simply x̃ = ̂̃x(x̃1, τc) and

πτc (τc|x̃1) =
(
x̃2

s − 1
)
(1 − α2x̃2)H (x̃1)

x̃2 − 1
φ(x̃). (49)

Finally, when τc < τm, values x̃1 < x̃−
1 (τc) are excluded

(part of striped shaded area in Fig. 4).
It now remains to take into account all possible values of x̃1

at beginning of ML cycle (at given τc). Value x̃1 = 1 has total
probability πML, corresponding to all previous nucleations at
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FIG. 5. Distributions of characteristic times for a self-catalyzed
GaAs NW of radius R = 100 nm growing at T = 878 K under an in-
put of 1 ML s−1 (with β = 100◦). The histograms of the waiting (w)
and propagation (p) times and cycle times between ML completions
(τc) are obtained by growth simulation (for a total of 381 654 MLs)
and the corresponding curves (p,w) by semi-analytical calculation.
The bar (simulation) and circle (calculation) at p = 0 give the num-
ber of complete MLs formed at nucleation, and the dashed curve the
distribution of the ML cycle time between nucleations (τn). The inset
shows in more detail the distributions of τc simulated (over twice the
time) and calculated (curve).

x̃0 of type (i), whereas values x̃1 > 1 have probability density
πx̃(x̃1 + x̃ML), corresponding to previous nucleations of type
(c) (Fig. 4). Finally,

πτc (τc) = πMLπτc (τc|1) +
∫ +∞

x̃−
1 (τc )

πτc (τc|x̃1)πx̃(x̃1 + x̃ML)dx̃1.

(50)

Here, in the first term of the sum (which appears only if
τc � τm), πτc (τc|1) is given by Eqs. (48) and (49) for τm �
τc � τM and τc � τM , respectively; in the integral, πτc (τc|x̃1)
is given by Eqs. (48) and (49) for x̃−

1 (τc) � x̃1 � x̃+
1 (τc) and

x̃1 � x̃+
1 (τc), respectively (only the second case occurs for

τc � τM).
For sake of completeness, we can also calculate the distri-

bution of the ML cycle time τn between nucleation events. We
find

πτn (τn) = H (1)
∫ τn

0
πp(p)φ (̂x̃(1, τn − p))d p + Jc(w), (51)

where the two terms of the sum correspond to initial nucle-
ations of types (i) and (c), respectively.

Figure 5 illustrates the calculations of the various char-
acteristic times, to be discussed further in Secs. VI B and
VII, and the excellent agreement between simulations and
semi-analytical results. Here and in all following calcula-
tions, we take β = 100◦ and use nucleation rate parameters
(see Sec. III B) from our joint experimental and theoretical
study of statistics of the characteristic times, namely, γe =
0.206 J m−2 and ln A(T ) = ln A(T0) + Ea(T − T0)/(kBT0T ),
with T0 = 838 K, ln A(T0) = 59.5, Ea = 3.84 eV, and A in
m−2 s−1 [8].

FIG. 6. Average growth rate of a self-catalyzed GaAs NW at
different temperatures, as a function of NW radius, for an input
VML = 1 ML s−1 (β = 100◦).

During each ML cycle, the liquid explores a wide and
variable concentration range and the desorption rate varies ac-
cordingly. Thus, the average growth rate cannot be calculated
directly from input rate and temperature, as if concentration
remained constant [17]. Instead, we find it as the inverse of
the average ML cycle time 〈τc〉 = ∫ ∞

0 τcπτc (τc)dτc. As an
example, Fig. 6 shows, for a fixed input of 1 ML s−1, the effect
on 〈τc〉 of the overall increase of desorption with temperature,
which depends little on NW radius, apart from a strong en-
hancement in very thin NWs, due to the Kelvin effect.

VI. CRITERIA FOR THE INCOMPLETE
MONOLAYER REGIME

A. Strict condition

As already noticed, without even calculating πx̃, on the sole
basis of Eqs. (1)–(4), we can be sure that the IML regime is
realized if x̃s < x̃ML + 1 (Fig. 3). We formulate this condition
in terms of system geometry and growth conditions. Using the
expressions of V and D [Eq. (6)] from Sec. III A, we find

x̃s = c3(T ) cos (β/2)V 1/2
ML , (52)

with

c3(T ) = 1

αbaxeq

(
3
√

2πMkBT

πAd

)1/2

. (53)

Apparently, x̃s does not depend on R. Actually, x̃s results from
a balance between input and desorption currents. In terms of
numbers of atoms, the latter and the direct and re-emitted
contributions to the former all scale with R2. If these are
the only input pathways, then VML, and hence x̃s, are truly
R-independent, since NML also scales with R2. If however dif-
fusion (which scales with R) contributes to group V input [42],
then VML depends on R. VML also depends on contact angle β,
since input and desorption currents depend differently on it
[42–44].
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Equations (7) and (52) yield the condition for the IML
regime as

c3(T ) cos (β/2)V 1/2
ML < 1 + c2(T )g2(β )

R
. (54)

This corresponds to low growth rates (for desorption to bal-
ance input at low enough concentration) and narrow NWs (a
ML may then amount to a large fraction of the total As content
of the droplet).

These calculations ignore the Kelvin and Gibbs-Thomson
effects related to the curvature and small size of the droplet
[17]. The Kelvin effect enhances desorption, since the
equilibrium pressure of group V dimers over a liquid of
any composition is multiplied by exp 
̃μK , where 
̃μK =
4	V γL sin β/(RbkBT ), with 	V � 	 the volume of a group
V atom in the liquid and γL the surface tension of the liquid
[17]. The VLS-specific Gibbs-Thomson effect results in the
addition to 
μ of 
μGT = 2δ	pγL sin β/Rb, with δ	p the
difference of the volumes of a III-V pair between liquid and
solid phases, which can be of either sign [17,32]. We can
still write 
μ = αμkBT ln(x̃) using modified concentration
x̃ = x/xeq (R), where xeq (R) = xeq exp(−
̃μGT ), with xeq

the bulk value and 
̃μGT = 
μGT /(αμkBT ). By consider-
ing desorption and input, we find that Eq. (1) still holds,
provided we use this new variable and coefficients V and
D are changed to V (R) = Ve
̃μGT and D(R) = De
̃μK −
̃μGT ,
respectively. Consequently, upper bound x̃s becomes x̃s(R) =
x̃se
̃μGT −
̃μK /2. The condition for the IML regime is x̃s(R) <

x̃ML(R) + 1, with x̃ML(R) = x̃MLe
̃μGT . Small size effects thus
complicate the simple inverse R-dependence of Eq. (54).
Since the Gibbs-Thomson effect involves only a difference
of atomic volumes, it has much less impact than the Kelvin
effect. The modification tends to be modest for xeq, whereas
desorption may increase and xs decrease significantly (since

μK > 0). This greatly extends the IML regime domain, as
shown in Fig. 7.

B. Statistical approach: The effective incomplete
monolayer regime

Criterion (54) (modified for small size effects) may be
unduly demanding. In practice, the incomplete ML regime
only requires that πx̃ � 0 for x̃ � x̃ML + 1. We expect πx̃

to be a function with a single maximum tending to zero at
low and high values of x̃: for x̃ small (of course larger than
one), 
μ is too low for nucleation to occur, whereas the high
values cannot be reached since, due to the rapid increase of
the nucleation rate with concentration, all nucleations occur
at lower values.

This is illustrated in Fig. 8, where distribution πx̃ is shown
at two different growth temperatures and for widely different
input rates in the droplet. In both cases, although x̃ML + 1 <

xs, which should in principle lead to the mixed regime, the
IML regime effectively prevails, since πx̃ becomes negligible
for values of x̃ well below x̃ML + 1. Then, nearly all nucle-
ation events give rise to an incomplete ML. It thus becomes
interesting to investigate how NW geometry and growth con-
ditions govern this effective IML regime. We propose two
approaches.

FIG. 7. Variation with NW radius of the input rate of As atoms
in the droplet below which the strict condition for IML regime is
realized, at growth temperatures of 818 K (green) and 878 K (blue).
Full and dashed curves are obtained from semi-analytical calcula-
tions without and with small size effects, respectively. The proper
IML domains lie under the curves. Symbols and red fitting curves
correspond to effective IML regimes at T = 878 K: for (R,VML)
couples under the curves, less than 0.1% (disks) or 1% (circles) of
the nucleation events produce a complete ML.

The As content of the droplet at nucleation may equiva-
lently be defined in terms of concentration x̃ or of available
fraction of ML, namely,

θ = (x̃ − 1)xeq a2R

6g2(β )	
. (55)

θ � 1 simply means that there is more than enough As at nu-
cleation to form a full ML, so that stage 2 will vanish (p = 0).

FIG. 8. Probability density of the reduced As concentration in
the Ga droplet at nucleation, calculated analytically at growth tem-
perature T = 838 K for a GaAs NW of radius R = 30 nm under
input rate VML = 0.2 ML s−1 (dashed red curve) and at T = 878 K
for R = 50 nm, VML = 1 ML s−1 (full blue curve). In both cases,
concentration xs at which As desorption balances input is larger than
that insuring that one ML is available for growth (both marked by
vertical arrows, using same line styles), but all nucleations effectively
occur below the latter.
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FIG. 9. Variations with NW radius of characteristic ML fractions
θ1 (dashed lines) and θ99 (full lines) available in the droplet at nucle-
ation. Only 1% of nucleations occur at available fraction θ � θ1 and
1% at θ � θ99. θ1 and θ99 were calculated semi-analytically for input
rates of 0.1 ML s−1 and 1.5 ML s−1 at growth temperatures of 818 K
(blue and gray lines, respectively) and 878 K (orange and red lines).
For given growth conditions and NW radius, 98% of nucleations
occur in interval [θ1, θ99]. Shading or stripes help visualize these
ranges for three of our four growth conditions.

To visualize the range of ML coverages realized at stage 1,
we introduce cover θ1 such that only 1% of the nucleation
events occur at a lower available ML fraction, and cover θ99

such that only 1% of the nucleation events occur at a higher
ML fraction. In other words, 98% of the initial coverages fall
between θ1 and θ99 (if θ99 � 1). Figure 9 shows the variations
of θ1 and θ99 with NW radius (for a fixed β = 100◦) at two
growth temperatures and for two widely different input rates
in the droplet (0.1 and 1.5 ML s−1).

A more comprehensive picture appears if we map the
fraction of nucleation events giving rise to a full ML in the
(R,VML) plane (Fig. 10).

The general conclusion is that, at a given temperature, the
domain of NW radius and As flux where an effective IML
regime prevails (with the vast majority of nucleation events
occurring at an available As concentration in the liquid equiv-
alent to less than one ML) is much broader than the domain
where desorption guarantees that all nucleations occur in this
sub-ML limit (see also Fig. 7). This explains why a slow prop-
agation of the ML step is reported in many in situ studies of the
growth of WZ sections in GaAs NWs, despite the variety of
methods, NW radius and growth conditions employed [4–7].

It may seem surprising that the effective IML domain
shrinks with increasing temperature (Fig. 10), whereas the
opposite occurs for the strict IML domain (Fig. 7). In the latter
case, the boundary is set by the balance between As input
and desorption (Sec. VI A). When T increases, desorption
increases and a lower As concentration suffices to balance a
given input, which means that the IML condition is easier to
achieve. On the contrary, the effective IML regime requires
that most nucleations occur in the sub-ML concentration
range. At given As concentration, the nucleation rate de-

FIG. 10. Maps of the fractions of nucleation events giving rise to
the formation of a complete ML at stage 1, for T = 838 K and T =
878 K. Data are not plotted in the range R � 25 � 78 nm, where the
fractions remain less than 10−5. The purple domain at the lower-left
corner of the top map corresponds to critical nuclei too large to be
accommodated on the NW top facet.

creases with increasing T , since the decrease of the chemical
potential more than offsets the easier thermal activation [17].
Hence, nucleations tend to occur at higher As concentration,
making the sub-ML regime less likely.

Since these calculations confirm that nucleation may occur
at low As concentration (Figs. 8 and 9), we must examine a
possible limitation to the use of Eq. (9). In nanosize systems,
the number of particles may indeed be so small that the very
formation of a cluster of the new phase can deplete the mother
phase enough to diminish significantly the chemical potential
[45] (see other references in Ref. [8]). Using Eq. (9), with
a nucleation barrier fixed by the concentration just before
nucleation, might then be inaccurate. Since nucleation occurs
in a narrow x range (Figs. 8, 9, and 11), the number Nn of
As atoms in the liquid at nucleation scales approximately as
R3 whereas the number Nc of As atoms in the critical nucleus
(as calculated in Sec. III B) is independent of R. Hence, any
effect of depletion on nucleation itself would decrease quickly
as R increases. To find out if this may become significant at
small radius, we evaluate the ratio Nc/Nn. For R = 10 nm,
we find ratios in the ranges 0.025–0.05 at T = 818 K and
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0.04–0.15 at T = 878 K (depending on As input). It is only
for our narrowest NWs (R = 5 nm) that the ratio may become
sizable (0.17–0.36 at T = 818 K and 0.3–0.5 at T = 878 K).
However, the present work is mainly concerned with the char-
acteristics of the proper mixed regime and with the transition
between IML and mixed regimes, which only occur at much
higher radii. For instance, at R = 50 nm (where the IML
regime still prevails; see Fig. 10), the ratio remains well below
10−3.

VII. QUASIDETERMINISTIC GROWTH IN THE
EFFECTIVE INCOMPLETE MONOLAYER REGIME

We showed in Sec. II A that strict IML regime and ab-
sence of desorption [conditions (A1) and (A2)] are necessary
for a fully deterministic growth regime, where all intervals
between ML completions last exactly the same time τc. We
now examine if the effective IML regime, which we have
shown to occur over a wide range of growth parameters
(Sec. VI B, Figs. 7–10), could result in a quasideterministic
growth regime, defined by a narrow distribution of ML cycle
times τc.

Figure 11 shows the variations with NW radius of the
average 〈x̃n〉 and standard deviation σx̃n of the concentration
x̃n at nucleation [Figs. 11(a) and 11(b), upper panels] and of
the average and standard deviation of the ML cycle time τc,
both normalized by input rate [Figs. 11(a) and 11(b), lower
panels], for low and high As input rates. Arsenic desorption is
moderate at T = 838 K [Fig. 11(b)] and strong at T = 878 K
[Fig. 11(a)].

Before turning to statistics, let us briefly discuss how 〈x̃n〉
varies with the growth parameters. 〈x̃n〉 depends only weakly
on R and VML, albeit systematically. This can be understood
as follows: At a given temperature, the nucleation probability
per unit time [Eqs. (8) and (11)] increases with x̃, which itself
increases over waiting time in a given fashion (set by input
and desorption) at a given radius [Eq. (3) and Fig. 3]. If the
waiting time starts from x̃ � 1 (IML or effective IML regime),
the total nucleation probability up to any concentration x̃
thus decreases when VML increases, since the liquid spends
a shorter time in the range up to x̃. Nucleation will thus
occur on average at a higher concentration: at fixed R, 〈x̃n〉
increases with VML. Conversely, at fixed VML, since the atom
input rate scales with R2, the rate of increase of x̃ during w

scales with R−1 when desorption is low and anyway decreases
when R increases. Hence, the larger R, the longer the liquid
experiences the range up to x̃. When R increases, the total
nucleation probability up to any concentration thus increases
and consequently 〈x̃n〉 decreases. Finally, at given radius and
input, when temperature increases, desorption increases and
the time spent to reach a certain concentration x̃ becomes
longer. The probability that nucleation occurs below x̃ thus
increases, which implies that 〈x̃n〉 decreases when T increases.
This explains all trends in the variations of 〈x̃n〉 with growth
parameters observed in Fig. 11.

Let us now consider the variations with growth conditions
of the average 〈τc〉 and standard deviation of the ML cycle
time [Figs. 11(a) and 11(b), lower panels]. Apart from a
strong increase at low NW radius due to the Kelvin effect,
〈τc〉 depends very weakly on R for given VML and T . In

FIG. 11. Variation with NW radius of the averages (symbols)
and dispersions (bars) of the concentration x̃n at nucleation [(a),
(b), upper panels] and of the ML cycle time τc normalized by As
input rate VML [(a), (b), lower panels], for low and high input rates,
at (a) T = 878 K and (b) T = 838 K. The bars correspond to one
standard deviation on each side of the averages for both quantities
(the distributions of which are asymmetric; see Figs. 5 and 8).

absence of desorption, 〈τc〉VML would equal 1. Hence, the
increase of 〈τc〉VML when VML decreases (at fixed R) must
relate to the longer time over which desorption operates which
more than balances the exploration of larger concentrations
by the liquid at larger VML discussed above. Indeed, both this
increase and the Kelvin effect are more marked at higher
temperature.

Remarkably, the standard deviation of τcVML remains small
except at large NW radii and high input rate, and then the
effect is stronger at higher temperature. This relatively high
dispersion correlates with the domain of growth conditions
where the effective IML regime breaks down (upper corners
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of maps of Fig. 10) and can be explained as in Sec. II A: for
the sizable fraction of nucleations then occurring with enough
As to complete a ML, τc reduces to random waiting time w

[Fig. 1(b)].
What remains to be explained is the low dispersion of

τc in the other conditions (where the effective IML regime
prevails), even at temperatures where significant desorption
is expected [Fig. 11(a)], in apparent contradiction with the
conclusion of Sec. II A that self-regulation requires low des-
orption in addition to the IML regime. To understand this,
we consider the variation of concentration in absence of nu-
cleation during waiting time [Eq. (3)], starting from x̃ � 1
(effective IML regime). This is first illustrated schematically
in Fig. 3. If nucleation occurs in a range close to x̃s (label
r3), then w is broadly distributed but p is not (all fractional
MLs have nearly the same size, set by x̃s), and the τc distri-
bution will indeed be broad. If, however, nucleation occurs
in a range (label r1) where x̃ increases quasilinearly with
time, the arguments developed in Sec. II A for joint weak
desorption and IML regime still hold and the τc distribution
will be narrow. Then, although the increase of x̃ with time may
become strongly sublinear, especially at high temperature, the
concentrations where this would happen are never actually
reached. Note that, from Eq. (3), whatever the desorption
constant D � V , x̃ � 1 + (V − D)w for w � (DV )−1/2/2:
initially, x̃ always increases quasilinearly, albeit at a rate less
than V . Finally, if nucleation occurs in a range r2 where strong
desorption makes x̃ increase nonlinearly with time, the τc

distribution can still be narrow, provided the nucleation com-
position range is narrow, since x̃ increases deterministically
from x̃ � 1 at beginning of waiting time while p is, as usual,
set by the nucleation composition. In summary, nucleation
in ranges such as r1 or r2 should produce quasideterministic
growth.

Actual calculations are illustrated in Fig. 12, where colored
boxes show, for growth conditions spanning wide ranges of
NW radii and input and desorption rates, the domains of con-
centration and waiting time over which most nucleation events
occur (each box is centered at 〈x̃n〉 and extends over ±2σx̃n ).
At T = 838 K, x̃ appears to increase quasilinearly with w and
the effective IML regime is realized except for R = 120 nm,
VML = 1.5 ML s−1: about a quarter of nucleation events then
produce complete MLs (Fig. 10). Accordingly, the τc distribu-
tion is narrow, except in this case. At T = 878 K, the effective
IML regime is not realized for R = 120 nm and this makes
the τc distribution fairly broad, at both low and high input
(Fig. 11). For R = 10 nm, the effective IML regime is realized
for both inputs and the τc distribution is narrow, which can be
attributed to the quasilinear increase of x̃ with w or narrow
nucleation range seen in Fig. 12 (cases r1 or r2 of Fig. 3).

In summary, the system may deviate from quasidetermin-
istic growth (defined by a narrow ML cycle time distribution)
for growth conditions such that the effective IML regime
is not realized. However, this is expected to occur only at
high growth temperature and large NW radius. Strong desorp-
tion, which could also in principle inhibit quasideterministic
growth, does not seem to be deleterious in itself since nu-
cleation tends to occur before the As concentration reaches
levels where its increase with time becomes noticeably
sublinear.

FIG. 12. Variation over waiting time of the reduced As concen-
tration in the liquid for small and large NW radii and input rates, at
two temperatures. The colored boxes show, for each set of growth
conditions (line styles apply to both temperatures), the domains of
concentration and waiting time over which most nucleation events
occur. Vertically, each box is centered at 〈x̃n〉 and extends over ±2σx̃n .
The dashed horizontal lines give the values of x̃ML + 1 for R =
120 nm (the values for R = 10 nm are out of the x̃ range displayed).

VIII. SUMMARY AND CONCLUSIONS

We have studied theoretically the various regimes of
formation of ML sequences during VLS growth of semi-
conductor NWs, when all material is provided by the liquid
nanodroplet. If at nucleation this one does not contain enough
of at least one element to build an entire ML, growth starts
with the quasi-instantaneous crystallization of an incomplete
ML (consuming all atoms in excess of equilibrium), which
then propagates by using the steady vapor input into the liquid.
Next ML nucleates after a random waiting time during which
the droplet refills.

We extended our previous study of the proper incomplete
monolayer (IML) regime, where this occurs for each ML and
should produce a fixed ML cycle time at low growth tem-
perature, to the mixed regime, where fractional or full MLs
may form, depending on the nucleation event. The statistics of
all characteristic times (propagation, waiting, and ML cycle
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times) can be obtained from the probability density of the
concentration at nucleation. These quantities were calculated
semi-analytically, without resorting to growth simulations, in
the most general case of the mixed regime at arbitrary tem-
perature, with due inclusion of desorption from the liquid and
small size effects. This made possible a broad discussion of
the statistics of NW growth at the ML level.

Whereas the conditions for the strict IML regime are fairly
restrictive, an effective IML regime, whereby a huge fraction of
nucleations produce incomplete MLs, may prevail over a wide
range of NW or droplet geometry and growth conditions, with
complete MLs becoming frequent only at large NW radius,
input rate, and temperature. This is key in explaining that the
in situ studies of VLS-grown III-V or II-VI NWs that detail the
development of single MLs when the solid-droplet interface is
nontruncated, all report a nonzero propagation time for each
ML (although, except in our own [5,8], no mention is made of
a fast stage 1 preceding a slower stage 2) [4,6,9,34,46]. This
strongly suggests a prevalence of the IML regime, be it strict
or effective, i.e., a shortage of one element at nucleation. The
quasi-instantaneous growth of a substantial ML fraction (stage
1) in our experiments and the very fast growth of a full ML
in the case of truncated interfaces seem to rule out another
possible explanation, a propagation limited by transport of
material to the step. Even though some experiments relate to
other NW or catalyst materials, our quantitative results for
self-catalyzed GaAs NWs strongly suggest that the a priori
surprising absence of the proper mixed regime stems in partic-
ular from the relatively small radii (apparently below 30 nm)
of the NWs selected in the experimental studies.

Even more important is our demonstration that, in this
easily achievable effective IML regime (predicted to prevail
up to very large NW radii and high growth temperature),
growth tends to become quasideterministic, with a very
narrow distribution of ML cycle times. We attribute this re-
markable property to the occurrence of most nucleations in
a range where the concentration of the scarce element in
the liquid increases quasilinearly with time (without strong
desorption-induced nonlinearity), so that the propagation time
compensates the fluctuations of the waiting time induced by
the intrinsically random occurrence of the nucleation events,
as in the proper IML regime.

Quasideterministic growth is very promising for a pre-
cise control of NW structures. It could for instance lead to
highly uniform arrays of NWs of a single material. Apart
from maintaining constant NW radius and droplet contact
angle, one would then have to take into account desorption
and the variation with time of the input into the droplet along
some pathways. Indeed, surface diffusion of NW species or
their re-emission by the environment depend on NW height,
albeit in deterministic ways for which calculations do exist
[32,42,47–49]. One may now also hope to control the individ-
ual segments of axial heterostructures at the ML level simply
via growth duration, but this is more complex. Standard
compositional structures require shifts between different ma-
terials, with possibly different statistics, and involve transient
regimes. Crystal phase heterostructures of a single material
eschew this problem but present an alternative difficulty. In the
best studied case of the III-V compounds, each crystal struc-
ture has its own solid-liquid interface morphology [4,5,7].

Whereas the WZ MLs exhibit the planar interface considered
in the present work, the formation of ZB MLs entails an
oscillating truncation. The slow completion of a fractional ML
from the liquid (stage 2) is then replaced by a quick com-
pletion using material transferred from the solid NW stem,
causing a sudden deepening of the truncation followed by a
slow refill from the liquid [19]. This will alter the statistics.
We intend to extend our theoretical investigations to this case,
in which one nevertheless also expects some self-regulation
(small fractional MLs require a longer truncation refill).

Our calculations are particularly relevant to III-V com-
pounds, where the concentration of the volatile group V
species in the liquid is very low, and for which the three
growth stages are observed by in situ TEM. This lead us to
investigate self-catalyzed GaAs NWs in detail. However, what
decides between the quick growth of either a fractional or a
full ML is not the absolute number of NW atoms in the liquid
at nucleation but the amount available in excess of liquid-solid
equilibrium. During VLS growth of elementary semiconduc-
tors, even though the catalyst typically contains several tens of
percent of NW element, the equilibrium concentration being
also high, the amount available may easily be less than a ML.
This is confirmed both experimentally by the observation by
in situ TEM of a truncated interface [3] and by calculation.
For instance, using available thermodynamic data [50], we
find that, for Au-catalyzed Si NWs in the growth temperature
range 673–873 K, a supersaturation of, e.g., 30 meV/atom re-
quires a Si concentration of 0.017 to 0.024 above equilibrium.
Then, for β = 90◦, any nucleation occurring below this value
will produce an incomplete ML for NW radii below 15-20 nm.

Even in a system with well-known thermodynamic proper-
ties, such as self-catalyzed GaAs NWs, our fully quantitative
calculations require values of the nucleation rate parame-
ters, which are practically impossible to calculate. We used
numbers from our previous joint experimental and theoretical
study of such NWs, according to which a whole range of
parameter couples is however admissible [8]. Although we
do not expect the broad conclusions of our study to be al-
tered, the specific figures depend on the parameters chosen.
Conversely, an experimental determination of the fraction
of incomplete MLs at nucleation as a function of NW ra-
dius, input or temperature and a comparison with calculated
maps such as those of Fig. 10 would allow us to lift this
indeterminacy.

Finally, even though the present work focused on the VLS
growth of NWs, we speculate that similar self-regulation
mechanisms might operate also in the cases of other growth
modes (such as vapor-solid-solid or catalyst-free growth) and
of other nanosize systems, where the mother phase might
constitute a reservoir of species (e.g., adatoms on a small
crystal facet) readily available for growth after nucleation but
possibly insufficient for building a whole ML (or appropriate
growth unit).

ACKNOWLEDGMENTS

The author acknowledges fruitful discussions with his col-
leagues J.-C. Harmand, F. Panciera, F. Oehler, G. Patriarche
(C2N) and V. G. Dubrovskii (Saint Petersburg State Univer-
sity).

043401-14



INCOMPLETE MONOLAYER REGIME AND MIXED REGIME … PHYSICAL REVIEW MATERIALS 8, 043401 (2024)

[1] F. M. Ross, J. Tersoff, and M. C. Reuter, Sawtooth faceting in
silicon nanowires, Phys. Rev. Lett. 95, 146104 (2005).

[2] A. D. Gamalski, C. Ducati, and S. Hofmann, Cyclic super-
saturation and triple phase boundary dynamics in germanium
nanowire growth, J. Phys. Chem. C 115, 4413 (2011).

[3] C.-Y. Wen, J. Tersoff, K. Hillerich, M. C. Reuter, J. H. Park, S.
Kodambaka, E. A. Stach, and F. M. Ross, Periodically chang-
ing morphology of the growth interface in Si, Ge, and GaP
nanowires, Phys. Rev. Lett. 107, 025503 (2011).

[4] D. Jacobsson, F. Panciera, J. Tersoff, M. C. Reuter, S. Lehmann,
S. Hofmann, K. A. Dick, and F. M. Ross, Interface dynam-
ics and crystal phase switching in GaAs nanowires, Nature
(London) 531, 317 (2016).

[5] J.-C. Harmand, G. Patriarche, F. Glas, F. Panciera, I. Florea,
J.-L. Maurice, L. Travers, and Y. Ollivier, Atomic step flow on
a nanofacet, Phys. Rev. Lett. 121, 166101 (2018).

[6] C. B. Maliakkal, E. K. Mårtensson, M. U. Tornberg, D.
Jacobsson, A. R. Persson, J. Johansson, L. R. Wallenberg, and
K. A. Dick, Independent control of nucleation and layer growth
in nanowires, ACS Nano 14, 3868 (2020).

[7] F. Panciera, Z. Baraissov, G. Patriarche, V. G. Dubrovskii, F.
Glas, L. Travers, U. Mirsaidov, and J.-C. Harmand, Phase se-
lection in self-catalysed GaAs nanowires, Nano Lett. 20, 1669
(2020).

[8] F. Glas, F. Panciera, and J.-C. Harmand, Statistics of nucleation
and growth of single monolayers in nanowires: Towards a deter-
ministic regime, Phys. Status Solidi RRL 16, 2100647 (2022).

[9] E. Bellet-Amalric, F. Panciera, G. Patriarche, L. Travers, M.
den Hertog, J.-C. Harmand, F. Glas, and J. Cibert, Regulated
dynamics with two-monolayer steps in vapor-solid-solid growth
of nanowires, ACS Nano 16, 4397 (2022).

[10] V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, J. C. Harmand, and
V. M. Ustinov, Theoretical analysis of the vapor-liquid-solid
mechanism of nanowire growth during molecular beam epitaxy,
Phys. Rev. E 73, 021603 (2006).

[11] D. Kashchiev, Dependence of the growth rate of nanowires on
the nanowire diameter, Cryst. Growth Des. 6, 1154 (2006).

[12] J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Mårtensson,
B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert,
Structural properties of 〈111〉 B-oriented III-V nanowires, Nat.
Mater. 5, 574 (2006).

[13] F. Glas, J. C. Harmand, and G. Patriarche, Why does wurtzite
form in nanowires of III-V zinc blende semiconductors? Phys.
Rev. Lett. 99, 146101 (2007).

[14] V. G. Dubrovskii and F. Glas, Vapor-liquid-solid growth of
semiconductor nanowires, in Fundamental Properties of Semi-
conductor Nanowires, edited by N. Fukata and R. Rurali
(Springer, Singapore, 2021), pp. 3–107.

[15] F. Glas, Chemical potentials for Au-assisted vapor-liquid-solid
growth of III-V nanowires, J. Appl. Phys. 108, 073506 (2010).

[16] F. Glas, J.-C. Harmand, and G. Patriarche, Nucleation anti-
bunching in catalyst-assisted nanowire growth, Phys. Rev. Lett.
104, 135501 (2010).

[17] F. Glas, M. R. Ramdani, G. Patriarche, and J.-C. Harmand,
Predictive modeling of self-catalyzed III-V nanowire growth,
Phys. Rev. B 88, 195304 (2013).

[18] S. H. Oh, M. F. Chisholm, Y. Kauffmann, W. D. Kaplan, W.
Luo, M. Rühle, and C. Scheu, Oscillatory mass transport in
vapor-liquid-solid growth of sapphire nanowires, Science 330,
489 (2010).

[19] V. G. Dubrovskii and F. Glas, Oscillations of truncation in
vapor-liquid-solid nanowires (unpublished).

[20] F. Glas, Statistics of sub-Poissonian nucleation in a nanophase,
Phys. Rev. B 90, 125406 (2014).

[21] F. Glas and V. G. Dubrovskii, Energetics and kinetics of mono-
layer formation in vapor-liquid-solid nanowire growth, Phys.
Rev. Mater. 4, 083401 (2020).

[22] S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, Germa-
nium nanowire growth below the eutectic temperature, Science
316, 729 (2007).

[23] F. Dhalluin, P. J. Desré, M. I. den Hertog, J.-L. Rouvière, P.
Ferret, P. Gentile, and T. Baron, Critical condition for growth of
silicon nanowires, J. Appl. Phys. 102, 094906 (2007).

[24] G. Priante, G. Patriarche, F. Oehler, F. Glas, and J.-C. Harmand,
Abrupt GaP/GaAs interfaces in self-catalyzed nanowires, Nano
Lett. 15, 6036 (2015).

[25] D. Spirkoska, J. Arbiol, A. Gustafsson, S. Conesa-Boj, F. Glas,
I. Zardo, M. Heigoldt, M. H. Gass, A. L. Bleloch, S. Estrade,
M. Kaniber, J. Rossler, F. Peiro, J. R. Morante, G. Abstreiter, L.
Samuelson, and A. Fontcuberta i Morral, Structural and optical
properties of high quality zinc-blende/wurtzite GaAs nanowire
heterostructures, Phys. Rev. B 80, 245325 (2009).

[26] K. A. Dick, P. Caroff, J. Bolinsson, M. E. Messing, J.
Johansson, K. Deppert, L. R. Wallenberg, and L. Samuelson,
Control of III-V nanowire crystal structure by growth parameter
tuning, Semicond. Sci. Technol. 25, 024009 (2010).

[27] M. Bouwes Bavinck, K. D. Jöns, M. Zieliński, G. Patriarche, J.-
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