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Valley splitting depending on the size and location of a silicon quantum dot
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The valley splitting (VS) of a silicon quantum dot plays an important role for the performance and scalability
of silicon spin qubits. In this paper we investigate the VS of a SiGe/Si/SiGe heterostructure as a function of the
size and location of the silicon quantum dot. We use the effective mass approach to describe a realistic system,
which takes into account concentration fluctuations at the Si/SiGe interfaces and also the interface roughness.
We predict that the size of the quantum dot is an important parameter for the enhancement of the VS and it can
also induce a transition between the disorder-dominated to deterministic-enhanced regimes. Analyzing how the
VS changes when we move the quantum dot in a specific direction, we obtain that the size of the quantum dot
can be used to reduce the variability of the VS, which is relevant for charge/spin shuttling.
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I. INTRODUCTION

Quantum dots (QD) in Si/SiGe heterostructures are ideal
hosts for spin qubits, due to the zero-spin isotopes and the
weak spin-orbit interaction [1,2]. Experiments have demon-
strated long relaxation [3-5] and dephasing [6-8] times in
Si/SiGe quantum dots and also high fidelities for single
and two-qubit gates [9-13]. More recently, a fidelity above
99% was reached for two-qubit gates [14—16], revealing the
promise of this system for building high-performance and
scalable qubits. However, one of the main challenges comes
from the degeneracy of the conduction band minima of bulk
silicon, known as valleys, which limits the performance of
quantum information processing. Even though the sixfold
valley degeneracy is lifted due to biaxial strain and the con-
finement potential in a SiGe/Si/SiGe heterostructure, the
valley splittings of the two low-lying valley states Eygs are of-
ten uncontrolled and can be very small, ranging from 210 peV
to 100 ueV [17-23]. With such small valley splittings, the
excited state works as a leakage channel for quantum informa-
tion, which poses a significant challenge for qubit operations.
In this way, it is crucial to understand how the valley splitting
changes as a function of the parameters of the system.

Previous studies, both experimental and theoretical, have
already reported, e.g., the valley splitting (VS) in a Si/SiGe
quantum dots as a function of electromagnetic fields [24,25],
interface roughness [26], well width [27-29], steps at the
interface [30-32], interface width [33], and alloy disorder
[34,35]. It was demonstrated, among other things, that steps
can suppress the valley splitting, but only for sharp inter-
faces, that the electric field is an important parameter for VS
engineering, while a magnetic field has a very weak effect,
and that alloy disorder introduces an uncontrolled variabil-
ity of the VS. The greatest values for the VS are obtained
for sharp Si/SiGe interfaces [<2 monolayers (ML)], but the
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sharpest interface realized experimentally so far is 5 ML wide.
This limitation together with the variability of the VS that
arises due to alloy disorder led to proposals to modify the
heterostructure in order to enhance the VS, including, e.g.,
the introduction of a Ge layer inside of the Si well [36] and
the presence of an oscillating Ge concentration, known as
wiggle well [37,38]. Despite of all these studies, there is no
report of Si/SiGe devices engineered with reliably high valley
splittings.

The most efficient way to calculate the VS is using the
effective mass theory (EMT) [28,39], since the results are
straightforward and analytical. Even though there are more
accurate approaches, such as the NEMO-3D sp>d’s* model
[40] based on tight-biding theory, it was already demonstrated
that the VS is very well described by simplified models and
results obtained using the EMT are quite reliable [41]. In
order to make the EMT description of the system more real-
istic, it was recently extended to include the alloy disorder.
To this end, two models were proposed. The first one was
an one-dimensional simplified model [34] that, even though
accurate, has some limitations, such as for the calculation
of the influence of the lateral confinement. The second one
is a three-dimensional model that incorporates microscopic
features of the device in the continuum model [35].

In this paper we use the model proposed in Ref. [35] to in-
vestigate the influence of the size and the location of a silicon
quantum dot on the VS. The experimental and theoretical cal-
culation of the VS of a device with two different quantum dot
sizes was already reported in Ref. [37], but the effects of the
size of the quantum dot in the statistics of the VS in devices
with different parameters, such as the interface width, re-
main an open question. We consider a realistic SiGe/Si/SiGe
heterostructure grown in the z direction, where we take into
account the concentration fluctuations (alloy disorder) as well
as the interface roughness. We find that the size of the quan-
tum dot can be used to both control the distribution of the
VS and enhance its average value. We find that the optimal
strategy for the enhancement of the VS depends on whether
the deterministic VS is above or below a defined threshold.

©2024 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.8.036202&domain=pdf&date_stamp=2024-03-19
https://doi.org/10.1103/PhysRevMaterials.8.036202

JONAS R. F. LIMA AND GUIDO BURKARD

PHYSICAL REVIEW MATERIALS 8, 036202 (2024)

This deterministic valley splitting is obtained when we do not
take into account the alloy disorder of the device. We also
determine how the VS changes when we move the quantum
dot in the xy plane perpendicular to the growth direction. The
variation of the valley splitting depends strongly on the size of
the quantum dot. This is very important, e.g., for the shuttling
process [42,43], since the probability of an excitation from
the ground state as a function of the velocity of the shuttling
process depends directly on how the valley splitting changes
in different locations of the device.

The remainder of this paper is organized as follows. In
Sec. I we describe in detail the system and the model con-
sidered here, explaining how we model the concentration
fluctuations and the interface roughness of the system. We
also obtain the envelope function, which will be used for the
calculation of the VS. In Sec. III we obtain and discuss all
the results of the paper. First, we describe the influence of the
size of the quantum dot in the VS, Sec. IIl A, and then we
show the variation of the VS as we move the quantum dot on
the device, Sec. III B. The paper is summarized and concluded
in Sec. IV.

II. MODEL

The system considered here is a realistic SiGe/Si/SiGe
heterostructure, which is shown in the schematic diagram of
Fig. 1. The heterostructure is assumed to be grown along
the Z direction and a quantum well is created in the silicon
region. Here, this region has a width of d,, = 10 nm, which is
a value usually considered in the fabrication of such devices
[44,45], and is located at —d,, < z < 0. We consider that the
SiGe barrier regions have 30% germanium and that the germa-
nium concentration does not increase abruptly at the Si/SiGe
interfaces, which means that the interfaces have a nonzero
width. The sharpest interface width realized experimentally
so far in such heterostructures was 5 monolayers (ML) wide
[34], where 1 ML = 0.14 nm. We also take into account
the interface roughness, which means that the interface width
changes randomly as a function of the coordinates x and y, as
we describe in more detail below. Additionally, electrostatic
gates (not shown in Fig. 1) are used to induce an electric
field in the Z direction and also to confine electrons in the
silicon layer, creating a silicon quantum dot. Such quantum
dots are the hosts of the spin qubits. On top of the device,
we included an insulator region located at z = d; = 46 nm,
which is a value much greater than the small penetration of
the envelope function into the upper SiGe barrier.

Within the EMT, in order to calculate the envelope function
of the system, one usually considers a confinement potential
in the Z direction U (z), which is zero in the silicon well and,
for SiGe with 30% germanium content, amounts to 150 meV
within the SiGe barriers, which corresponds to the energy
offset between the conduction band minima of Si and SiGe.
At the interfaces, this potential fluctuates due to random con-
centration fluctuations. It is important to mention that the VS
is very sensitive to the random distribution of Si and Ge atoms
within the Si/SiGe interface region and the sample-to-sample
alloy disorder gives rise to a statistical distribution of VS.

Here, we consider a model proposed recently in Ref. [35]
where the confinement potential U(z) is replaced by a sum of

insulator

FIG. 1. Schematic diagram of the SiGe/Si/SiGe heterostructure
containing the quantum dot. The device has six regions: the Si well,
the top and bottom interfaces, the lower and upper SiGe barriers and
a insulator layer. We take into account the interface roughness, which
means that the interface width changes randomly as function of x and
y, as can be seen in the red and blue surfaces, which are the surfaces
that delimit the interface regions. We consider that the potential is
infinite in the insulator region.

delta functions at the location #; = (x;, y;, z;) of each Ge atom,

U, y,2)=1) 8 —x)8(—y)dz—z), (1)

where A = 10 meV nm? is a fixed parameter of the model and
i labels the Ge atoms. In Ref. [35], this potential was used only
at the Si/SiGe interfaces. Here, we extend it to all regions,
since the concentration fluctuations at the SiGe barriers are
also relevant for the VS. One of the advantages of this model is
that, e.g., the alloy disorder and the interface roughness can be
easily included in the calculations. This is done by adjusting
the location of the randomly distributed delta functions. Also,
itis possible to calculate the VS as a function of the transversal
size and location of the quantum dot directly, since this is a
three-dimensional model of the system.

The Hamiltonian that describes the envelope function of
the system is given by

2 2
oo 1 20, Py 1 2.2
H= oy T2t g, T e
p2
+ = —eFz+Ux,y,2), (2)
2m1
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where m; = 0.19 m, and m; = 0.98 m, are the transverse and
longitudinal effective masses, m, denotes the free electron
mass, and w, = 2Fz/m,xg and w, = 2h/m,y§ are the confine-
ment frequencies along X and y directions, with xy and yo
being the size (radius or semi-axis) of the quantum dot along
X and y. We consider in all results here a strong electric field
of F, = 20 MV /m, since it was demonstrated recently that the
VS can be considerably enhanced by the electric field [25,35].

Even though we have a very powerful model that can incor-
porate many properties of the device and allows for a direct
calculation of the VS as a function of various parameters of
the system, the price to pay is that the Hamiltonian (2) is not
separable. We deal with this by replacing the potential (1) in
each realization by an average potential U plus a fluctuation
8U. The average is taken over 10* realizations of the alloy
disorder in all results presented here. Without interface rough-
ness, we consider that the Ge atoms are distributed uniformly
in the x and y directions. In this way, the average potential will
be constant in these directions and we can write

Ux,y,2) =U(2) +8U(x,,2). 3)

Thus, if we treat §U as a small perturbation, the unperturbed
Hamiltonian becomes separable. We make use of the sep-
arability of the unperturbed Hamiltonian when calculating
the envelope function. As we discuss later, we consider here
only the zeroth-order envelope function, since the corrections
due to the perturbation U would be negligibly small, thus
justifying the use of the perturbation theory.

When we include the interface roughness, we can no longer
consider a uniform distribution in the x and y directions,
since now the interface width and the location of the interface
change as a function of these coordinates. However, for all
points in the xy plane, the interface width and the location
of the interface fluctuate in each realization around the same
value, which means that the average value is the same in all
points. So, U still depends only on the z direction.

We model the average potential by considering that the Ge
atoms are distributed in the z direction following a probability
distribution function (PDF) given by a hyperbolic tangent
function. In this way, we have that

0 = Lttanh ((~dy — 2)/Ly) + 11
+ %[tanh(z/Lz) I, @)

where Uy = 150 meV and L, and L, control the widths of the
bottom and top interfaces, respectively. The case with L,y =
0 means an ideally sharp step interface. In order to avoid the
presence of germanium atoms in the silicon well region, we
are cutting Eq. (4) off when the argument of the hyperbolic
tangent function is lower than —2.7, and hence U /U, < 0.01.
In this way, the probability of a germanium atom appearing
at (—d, + 2.7, < z < —2.7 - L; is equal to zero and we can
define the geometric width of the interface as 5.4 - Ly, which
is the distance between the red and blue surfaces that delimit
the interface regions showed in Fig. 1. Other functions could
also be used to model the average potential, such as the error
function [33,46] and the sigmoid function [34,41].
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FIG. 2. Height-height correlation function H(7) as a function of
the length t of the in-plane vector 7. Black solid line: the func-
tion 2A2[1 — exp ( — (z/A)?)], which fits the experimental data in
Ref. [46]. Blue-dashed line: H (t) obtained from Eq. (6).

A. Interface roughness

The interface roughness is characterized by two main
length scales: (i) the root mean square (rms) fluctuations A,
which measure the vertical extent of the roughness, and (ii) the
correlation length A, which measures its horizontal spread.
Different values for A and A were already obtained exper-
imentally for the interface between distinct semiconductors
[46-49]. In particular, in Ref. [46] the height-height correla-
tion function H(t) for a Ge/SiGe interface was determined
experimentally. This function is defined as

H(z) = (Ih(B) = h(B + D)I*)5, &)

where h(p) is the height fluctuation as a function of the in-
plane coordinates p = (x, y). So, H(t) is the average in the
in-plane direction of the squared difference of 4(p) calculated
at two points separated by the in-plane vector 7. The measured
H (1) can be fitted by the function 2A%[1 — exp ( — (7 /A)*)],
with A = 0.18 nm and A = 6.98 nm. We plotted this function
in Fig. 2 (black-solid line).
We model the roughness by the height function

jlnﬁx
N X .y
h(p): E a.cos( — + x,') COS( — + "i)’ (6)
j=1 ! ]do ¢ JdO g

where aj, ¢,;, and ¢, are random parameters. If we con-
sider jiax = 100, 1/dy = 0.003 nm~!, ¢y, and ¢y, as random
phases distributed uniformly in the range [0, 277] and a; being
uniformly distributed in the range [-0.07 nm, 0.07 nm], we
can use the height fluctuation (6) to reproduce the height-
height correlation function obtained in Ref. [46], as shown in
Fig. 2 (blue-dashed line).

The interface roughness is used here to define the begin-
ning and the end of the interface region at different points of
the xy plane. For instance, without interface roughness, the top
interface, which is centered at z = 0, is located in the region
—2.7L; < z < 2.7L,. With the interface roughness, this range
is modified to —2.7L; + h1(p) < z < 2.7L; + hy(p). Since
we are considering that /;(p) is different from h,(p5), the
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interface width and the location of the interface will depend
on x and y due to the roughness. One can see the interface
roughness defined here in the red and blue surfaces of Fig. 1.

We note that the roughness measured experimentally in
Ref. [46] was for an interface width of 24 MLs. Here, we will
consider different interface widths. We expect the interface
roughness to be smaller than the interface width. So, we
modify the roughness proportionally. In our example, when
decreasing the interface width from 24 MLs to 12 MLs, we
replace h(p) by h(p)/2.

B. Envelope function

As discussed previously, considering U as a perturbation,
the Hamiltonian (2) becomes separable. This implies that we
can write the envelope function as a product, Wy, = ¥, ¥,
where ¥, (x) and ¥, (y) are harmonic oscillator wavefunctions,
which have well-known eigenenergies E,, and E,, . The
solution along the z direction can be obtained as it was done
in Ref. [35]. Using the electrical confinement length

2o\
= 5 7
20 mieF. )

and the energy scale

h2
€= ">,
2mIZ%

®

the Schrodinger equation for the envelope function in the z
direction can be written as
d? -

I:E -U-zZ- Ez,nz)i| wz,nZ =0, ©)]
where U = U /ey, Z=2z/7 and &, = €,, /€. The equa-
tion above has an analytical solution only when U is constant,
which is given by a linear combination of the Airy functions
of the first and second kind. We solve it numerically using
the transfer matrix method. We neglect in this paper the cor-
rections in the envelope function due to the perturbation U,
since these corrections would not have a relevant influence
in the valley splitting. We explain it in more detail in the
next section.

In Fig. 3 we plot the probability density |v,,|* for the
ground state of the quantum dot. We consider four different
interface widths. One can note that when the interface width
changes by a small amount (1 ML), there is no relevant change
in the probability density. We can see only a small change
when the interface width increases from 5 to 22 ML. This is
one of the reasons that leads us to neglect in this paper the
corrections in the envelope function due to the perturbation
8U, since the small changes in the interface width introduced
by the interface roughness have almost no effect in the proba-
bility density.

Because of the strong electric field considered here, the
envelope function is pushed towards the top interface. So, for
a Si well of 10 nm, the bottom interface will not contribute
to the valley splitting. Also, the envelope function has only a
small penetration in the upper SiGe barrier. This is relevant
for the calculation of the valley splitting, since it means that
we can neglect the Ge atom below the silicon well and also
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FIG. 3. Probability density along the z direction |y, o|* for the
ground state of the quantum dot for four different values of L (in-
terface width). In all curves we consider an electric field of F, = 20
MV/m.

the Ge atoms in the upper SiGe barrier that are far from the
top interface.

C. Valley splitting

With the envelope function, we can now obtain the valley
splitting. The Bloch wavefunction of the two low-lying valley
states of the silicon quantum dot can be written as

| 4 2) = W, e 0%, (1), (10)

where W,,. is the envelope function, u..(r) are the periodic
parts of the Bloch wavefunctions, ky = 0.82(27 /ay) is the
Bloch wavenumber at the conduction band minima of silicon,
and ap = 0.543 nm is the length of the Si cubic unit cell.

The intervalley coupling is given by

A= {+z| —eFz+U(x,y,2)| —2). (11

The contribution to the intervalley coupling from the electric
field is negligibly small compared to the other term [25,50].
Therefore, we can write

A =G / ey (x, y, )W, P, (12)

where Cy = —0.2607 comes from the periodic parts of the
Bloch wavefunctions [25,50]. The total valley splitting is then
given by

Evs = 2|Al. (13)

The integral in the coordinate z of Eq. (12) can be under-
stood as the 2k, Fourier component of the potential U (x, y, z),
weighted by the probability density |W, ,.|*. In this way, we
can say that the valley splitting is a consequence of the Fourier
components of the confinement potential at this wavevector.
This is called the 2k theory [41]. Since the potential U is
determined by the Ge concentration of the device, the valley
splitting is very sensitive to the distribution of the Ge atoms.
It explains, e.g., the variability of the VS due to the alloy
disorder and also the small VS obtained for a smooth potential
and the enhancement of the VS for a sharp interface. This
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is also the main reason for us to neglect the corrections in
the envelope function due to the perturbation 6U, since the
main contribution to the valley splitting comes from abrupt
changes in the potential U and not from small corrections in
the smooth envelope function.

Another important point from Eq. (12) is that Ge atoms
located in regions where the probability density is very small
do not contribute to the valley splitting. Therefore, in the z
direction, we consider for the calculation of the valley splitting
only Ge atoms in the range —2.7L < z < 27L. These are the
Ge atoms located at the top interface and in the bottom of
the upper SiGe barrier. In the x and y directions, we take into
account only Ge atoms inside of a circle with twice of the
semi-axis of the quantum dot. No other Ge atoms will have a
relevant contribution to the valley splitting.

III. RESULTS AND DISCUSSION

In this section we show and discuss the results obtained
for the VS of the system considered here using the model
described in the previous section. We divide this section in
two parts. First, we consider the influence of the size of
the quantum dot on the VS, and second, we analyze how
the VS changes when we move the quantum dot in a
shuttling process.

A. Size of the quantum dot

In order to study the influence of the size of the silicon
quantum dot on the VS, we consider circular quantum dots
where xo = yo and consequently w, = w, = w, with the ra-
dius in the range 5-25 nm. The smallest quantum dot that
we consider here (5 nm radius) has a size compatible with
the quantum dots obtained experimentally, e.g., in Ref. [34].
When increasing the size of the quantum dot, we need to
avoid an exceedingly small value for the orbital splitting (hw),
which would create a new degree of freedom to compete with
spin as the qubit two-level system, reducing the spin-qubit
performance. For the biggest quantum dot considered here
(25 nm radius), the orbital splitting is given by 1284 ueV,
which is far from the value of the valley splitting usually ob-
tained in such devices and also far from the Zeeman splitting
that would be used for spin qubit processing. So, it reveals that
we are considering here realistic radius for the quantum dots.

Initially, we consider the results without taking into ac-
count the interface roughness. In Fig. 4 we plot the intervalley
coupling A in the complex plane for six radii of the quantum
dot and four interface widths. Each point represents one of
the 10* realizations considered here. We can see that the deter-
ministic intervalley coupling A, which lies at the center of the
distribution, is the same for different values of the dot radius.
The deterministic intervalley coupling A is obtained without
considering alloy disorder, which means that it is given by
Eq. (12) replacing the potential U by the average potential.
As discussed in the previous section, the average potential
depends only on the z direction. For this reason, Ay is the
same as we change the radius of the quantum dot. The main
difference in the distribution of intervalley coupling when we
change xy comes from the alloy disorder, which is related
to the standard deviation of the valley splitting. For small

o L e e o I = I = — T T T T
300 L=0.078 nm (3 ML) |- L=0.104 nm (4 ML)

L ® xo=5nm 1L x=17nm ]

—~ L ® x=9nm . _
EISO, x2=13nm 1L i
< T r ]
E 150~ —4+ 7
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FIG. 4. The intervalley coupling A in the complex plane for six
values of the quantum dot radius xy (color coded) and four interface
widths. Each point represents one of the 10* realizations considered
here. The deterministic intervalley coupling A [ueV] in each case is
given by 32.47 — 105.67i (3 ML), 32.47 — 59.52i (4 ML), 20.57 —
29.36i (5 ML), and —3.5 + 1.3i (22 ML).

quantum dots, we have greater disorder, which induces, as a
consequence, a greater standard deviation. Another important
point is that |Ag]| is large for sharp interfaces (3 ML) and it
reduces when we increases the interface width, which is in
agreement with previous studies addressed to the investigation
of the valley splitting as a function of the interface width.
The probability density of the valley splitting p(Eys) is
plotted in Fig. 5 for the same cases considered in Fig. 4. The
circular distribution of the intervalley coupling in the complex
plane leads to a Rice distribution of the VS. This distribution
is characterized by the standard deviation o and the displace-
ment from the origin of the circular distribution, which in our
case is related to |Ag|. As discussed in Ref. [41], we can define
two regimes for the distribution of the valley splittings: (i) the
deterministic enhanced regime, which occurs when [Ag| >
o, and (ii) the disorder-dominated regime, which takes place
when |Ay| < o. In our results we can see the appearance of
the two regimes. For instance, for L = 0.078 nm (3 ML), we

T — T T T
L=0.104 nm (4 ML)

0.12

o —— e — —
L=0.14nm (5 ML)

’2008_ Xo=5nm
) L ® X =9nm i
X Xo=13nm

0.04

0 100 200 300 400 0 100 200 300 400
Eys (peV) Eys (peV)

FIG. 5. Histogram of the probability density of the valley split-
ting. We consider here the same cases as in Fig. 4.
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FIG. 6. The distribution of valley splittings for different values of
the quantum dot radius xy with (blue markers and bars) and without
(red markers and bars) interface roughness. We consider here two
interface widths. The darker bars represent the 20-80 percentile
rage, while the lighter bars represent the 5-95 percentile range. The
circular and square markers indicate the average valley splitting.

are in the deterministic enhanced regime, irrespective of the
value of the quantum dot size considered here. This is the best
situation for spin qubits applications, because in this regime,
we reduce the probability of small values of the VS to appear.
On the other hand, for a large interface, L = 0.56 nm (22 ML),
we are in the disorder-dominated regime for all values of xy.
In this case, we always have the probability of finding devices
with very small VS. In contrast to these cases, the quantum dot
size can induce a transition from the deterministic enhanced to
the disorder-dominated regime for the case with L = 0.14 nm
(5 ML). This transition occurs when we increase the quantum
dot radius from 9 nm to 13 nm.

A very important point revealed in these results is the
possibility of enhancement of the VS by changing the size
of the quantum dot. If we define, for instance, a threshold
of 100 ueV, in such a way that we would like to have as
many VSs above this value as possible, the best strategy for
the enhancement of VS depends only on the deterministic
VS Evso = 2|Ay], and not in which regime the distribution
of the VS is. For example, for an interface of 3 and 4 ML,
the deterministic VS is above the threshold. So, in order to
enhance the VS, the best strategy is to increase the size of the
quantum dot. On the other hand, for an interface of 5 and 22
ML, we have that Evygg is smaller than the threshold. In this
situation, we have to decrease the size of the quantum dot in
order to enhance the VS.

The influence of the radius of the quantum dot on the valley
splitting can be seen more clearly in Fig. 6 (red markers and
bars), where we consider the distribution of valley splittings
for two interface widths and six quantum dot radii. The lighter
bars represent the 5-95 percentile, while darker bars represent
the 20-80 percentile. The red circular markers indicate the
average VS. We can see that, for a sharp interface width (3
ML), the average VS does not change with the radius of the
quantum dot, which is a characteristic of the deterministic
enhanced regime. Looking to the distribution of VSs, the
results predict more than 95% of the devices with a VS above
100 peV for all quantum dot radius considered here. However,
for a large quantum dot (25 nm of radius), we have 95% of the
realizations with a VS above 195 peV. On the other hand, for
a wide interface (22 ML), which is in the disorder-dominated
regime, the average VS decreases as we increases the radius of
the quantum dot, which is a consequence of the reduction of

L=0.078 3ML) L=0.56 (22 ML)
L e i — T T
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FIG. 7. Comparison of the probability density of the valley split-
ting between the cases with (blue curves) and without (red curves)
interface roughness. We consider here two distinct interface widths
and two quantum dot radii.

the standard deviation. In this case, the radius of the quantum
dot is an important parameter for the enhancement of the VS.
For instance, we have more than 95% of the devices with a
VS smaller than 100 ueV for xy = 25 nm, while we predict
more than 80% of the realizations with a VS above 100 peV
for xp = 5 nm.

In Fig. 6, we also consider the distribution of the VS in the
presence of interface roughness (blue markers and bars). For a
sharp interface, the interface roughness increases the variabil-
ity of the VS, which may be a consequence of the presence
of more disorder in the system. However, for an interface of
22 ML, the interface roughness has no relevant influence in
the distribution of the VS. In order to see this more clearly,
we consider in Fig. 7 the probability density of the VS with
(blue curves) and without (red curves) interface roughness.
The interface roughness plays an important role only when
we have a sharp interface and a large quantum dot, which
is the case with a weak contribution from alloy disorder. For
the other cases, where we have a strong contribution from the
alloy disorder, the interface roughness is irrelevant. So, we can
conclude that alloy disorder overwhelms interface roughness.

B. Location of the quantum dot

Let us now analyze the influence of the location of the
quantum dot on the VS. Here, we calculate the VS as we
move the quantum dot by a distance of 500 nm in the x
direction, which is essentially the mechanism used in charge
and spin shuttling [42]. The valley splitting as a function
of the location of the quantum dot was reported recently
in Ref. [41], but no strategy for the enhancement of the
efficiency of the charge and spin shuttling was discussed. In
Fig. 8 we plot the position-dependent VS for four distinct
interface widths where each color of the lines represents a
different radius of the quantum dot. We used here the same
colors as in Figs. 4 and 5.

We can see that the VS oscillates when we move the
quantum dot. Looking to the amplitude of the oscillations,
it is possible to note that in all cases, the VS oscillates
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FIG. 8. The change of the valley splitting as we move the quan-
tum dot in the x direction by a distance of 500 nm. We consider four
interface widths and also six values for the radius of the quantum dot
(color coded). The colors used here are the same as in Figs. 4 and 5.

precisely in the interval defined by the probability distribution
shown in Fig. 5. The amplitude and the frequency of the
oscillations decrease as we increase the radius of the quantum
dot. Therefore, in addition to a reduction in the amplitude of
the oscillations, an increase of the quantum dot radius also
reduces the number of visible maxima and minima of the
oscillation. These results are very relevant for charge and
spin shuttling, since in the shuttling, the probability of an
excitation from the ground state to the first valley excited
state as a function of the shuttling velocity depends directly
on how the VS changes when we move the quantum dot.
Even though the calculation of this excitation probability is
beyond the scope of this paper, we would expect a reduction
in the excitation probability in the charge and spin shuttling
when we increase the radius of the quantum dot.

Another relevant result is the phase arg(A) of the interval-
ley coupling, which is also called the phase of the VS, even
though only the intervalley coupling is a complex number. In
Fig. 9 we show how the real and imaginary parts of the in-
tervalley coupling change when the quantum dot is moved as
shown in Fig. 8. We consider two interface widths and the two
colors represent two different radii for the quantum dot. We
can see that, in the shuttling, the invervalley coupling moves
in the complex plane in the region defined by the distribution
shown in Fig. 4. Additionally, we note a smoother change for
a bigger quantum dot radius, which is in agreement with the
reduction of the number of oscillations for larger quantum
dots observed in Fig. 8. Comparing the two distinct interface
widths, we can see that for a wider interface (22 ML in this
case), we have a greater change in the VS phase, since in this
case the intervalley coupling moves in the four quadrants of
the complex plane, which is not the case for a sharp interface.

IV. CONCLUSIONS

The valley splitting plays an important role for the perfor-
mance and scalability of silicon spin qubits. Therefore, it is
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FIG. 9. The change of the real and imaginary parts of the inter-
valley coupling A when the quantum dot is moved as in Fig. 8. We
consider here two values for the interface width and also two radii of
the quantum dot. Each color represents a specific value for xy as in
Figs. 4 and 5.

crucial to understand the behavior of the VS as a function of
the parameters of the system. In this paper, we calculated the
VS as a function of the radius and location of a quantum dot
in a Si/SiGe heterostructure. Within the effective mass theory,
we modeled a realistic system taking into account the alloy
disorder and the interface roughness. We found that the alloy
disorder overwhelms the interface roughness. So, the interface
roughness will have a relevant contribution to the VS only
when there is a weak influence of the alloy disorder, which is
the case when we have a sharp interface and a large radius of
the quantum dot. Analyzing how the VS changes as a function
of the size of the quantum dot, we found that the distribution
of VS is very sensitive to the radius of the quantum dot
Xo, specially when we have a wide interface width. With an
interface width of, e.g., 22 ML, we predict more than 95%
of the devices with a VS smaller than 100 peV for xo = 25
nm, while we obtained more than 80% of the realizations with
a VS above 100 peV for xop = 5 nm. Thus, changing the dot
size can be used as a strategy for the enhancement of the VS.
We also investigated how the VS changes when we move the
quantum dot, which is used, for instance, for the charge and
spin shuttling. We found that the VS oscillates during the shut-
tling. The amplitude of these oscillations can be suppressed by
increasing the size of the quantum dot, which also reduces the
number of oscillations. These results could be used, e.g., to
predict the probability of an excitation from the ground state
to the first excited valley state as a function of the shuttling
velocity, which is very relevant for the performance of the
shuttling process.
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