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Predicting failure locations in model end-linked polymer networks
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The fracture of polymer networks and gels has a significant impact on the performance of these versatile and
widely used materials, and a molecular-level understanding of the fracture process is crucial for the design of new
materials. Combining molecular dynamics simulations and network analysis techniques, we demonstrate that in
the initial undeformed state of model end-linked polymer networks, polymer strands with fewer topological
defects in their local surroundings, higher geodesic edge betweenness centrality values compared to the system
average, and greater alignment to the loading direction are more prone to breaking under uniaxial tensile
deformation.
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I. INTRODUCTION

Polymer networks and gels are significant and highly ver-
satile materials with their broad applications across diverse
fields such as membranes, drug delivery systems, and soft
electronic devices [1–7]. Given their wide-ranging use in peo-
ple’s daily lives, the fracture of these soft materials profoundly
impacts their applications and performance. Understanding
the fracture of polymer networks from a molecular perspective
is crucial for advancing their utilization and facilitating the
design of new materials [8–16].

Investigating the relationship between the macroscopic
properties of polymer networks and their network structures
and topology has been a challenging and long-standing prob-
lem in the fields of polymer physics and soft matter [17].
The properties of these soft amorphous materials depend on
how molecules connect with each other in the networks, and
the existence of topological defects, including loops and dan-
gling ends, further complicates the understanding of these
relationships. Over the last decade, the impact of topolog-
ical defects on the polymer network elasticity [18–23] and
fracture [10–13] has been incorporated into classic models
[24,25], resulting in improved agreement with experimental
results. Despite these advancements, the relationship between
the fracture behavior and the molecular-level structures of
polymer networks still remains elusive.

Network analysis has recently emerged as a novel approach
for studying complex disordered systems [26–36]. Represent-
ing disordered particulate systems as network structures offers
an approach to characterize those systems across multiple
length scales. Among various metrics used to quantify the
network structures, the geodesic edge betweenness centrality
(GEBC) has proven to be particularly useful in predicting
failure locations in various disordered systems [29,33,35,37].
GEBC, a specific type of betweenness centrality, measures the
degree to which an edge lies on the shortest (geodesic) paths
connecting nodes within the networks [26,38]. Berthier et al.

*rrig@seas.upenn.edu

demonstrated the effectiveness of GEBC in accessing possible
failure locations in two-dimensional disordered lattices with
structures constructed from contact networks in granular me-
dia [29]. Mangal et al. found that bonds with higher GEBC
are more likely to rupture in short-ranged weakly attractive
colloidal gels at different deformation rates [35]. These stud-
ies highlight the utility of the network analysis techniques,
especially GEBC as a predictive tool for understanding the
failure behavior of diverse disordered systems. While molec-
ular simulations have become increasingly common tools to
study polymer networks in recent years [12,13,20,39–48],
there still exists a gap in our understanding between network
topology and properties. Network analysis techniques offer a
promising route to incorporate chain-level information to the
existing polymer network models and therefore hold immense
potential for unraveling the intricate interplay between their
molecular structures and macroscopic behaviors.

In this paper, we combine molecular dynamics simulations
and network analysis techniques to predict the local failure
locations at the level of individual polymer strands in model
end-linked polymer networks with topological defects. By an-
alyzing the isoconfigurational ensemble with uniaxial tensile
deformations, we find that the failure locations of polymer
networks are influenced by the underlying network structure.
We find that for polymer strands with high probabilities of
breaking, their local environment contains fewer primary loop
defects. The presence of the topological defects also leads to
a nonuniform distribution of GEBC across polymer strands
within the networks, enabling the prediction of failure lo-
cations. GEBC of each strand and the angle between the
loading direction and each strand are calculated from the
initial undeformed states of the networks. We find a positive
correlation between GEBC and the probability of breaking
of polymer strands and the strands that are more aligned
with the loading direction have a higher probability of break-
ing. Moreover, strand breaking events initiate from polymer
strands with high GEBC values and small angles between the
strands and the loading direction. These findings provide an
effective approach to identify potential failure locations within
the polymer networks based solely on their initial undeformed
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configurations, offer a different perspective to understand the
impact of topological defects in the networks and shed light on
the inverse design strategies of network materials with desired
fracture properties.

II. SIMULATION METHODS

We implement coarse-grained molecular dynamics (MD)
simulations in the LAMMPS package [49,50] to generate
end-linked polymer networks following our previous works
[13,45]. All simulations are performed on Stampede2 from
the Texas Advanced Computing Center (TACC) through the
Advanced Cyberinfrastructure Coordination Ecosystem: Ser-
vices and Support (ACCESS) program [51]. Our approach
aims at mimicking experimental systems where linear poly-
mer chains with reactive endgroups react with tetrafunctional
crosslinkers [52], and previous comparisons of our simu-
lations to experimental results show very good qualitative
agreement in their properties [13]. We begin with a polymer
melt of 2n identical monodispersed polymer chains with N
monomers per chain and n crosslinkers that are chemically
identical to the polymer monomers. In this paper, we study
network systems with N = 5, 15, and 50. All crosslinkers and
monomers are modeled as chemically identical Lennard-Jones
beads. Bonding is maintained through a harmonic bond poten-
tial. The isothermal-isobaric ensemble is used to equilibrate
the melt. We then allow the reactions to take place between
the chain ends and the crosslinkers. The topological defects
are naturally emergent from the reactive MD method [45].
After the network is formed and equilibrated, we modify
the bonding interactions to the breakable quartic potential to
allow chain scission for fracture studies.

The network is reequilibrated prior to deformation under
the quartic bond potential. While performing the uniaxial
tensile deformation, the simulation box is expanded uniaxially
along an axis until all bonds lying along on a plane are broken.
The pressure in the other two directions is kept constant while
performing the deformation. Full simulation details, sample
stress-strain curves, and key fracture properties are available
in the Supplemental Material [53].

The effect of the network structure on the failure locations
in polymer networks is investigated using the isoconfigura-
tional ensemble [54,55]. Using the same network configura-
tion, the velocities of all particles are reinitialized in each
run prior to deformation. Uniaxial tensile deformations are
then performed for all runs with the same direction and strain
rate. The isoconfigurational ensemble approach enables us to
determine whether the fracture process in polymer networks
is purely stochastic or influenced by the underlying network
structure. If the failure locations are not structure related, a
random set of strands will break in each run. However, if the
failure locations are structure related, there will be a signifi-
cant overlap between the strands broken across multiple runs.
When the entire plane of a network along the loading direction
fractures, the molecular IDs of broken strands are recorded in
each run. The probability of breaking Pbreak of each polymer
strand i is defined as

Pi,break = ni,break

nruns
, (1)

where ni,break is the number of times strand i breaks in
the isoconfigurational ensemble and nruns = 10 for each
configuration. For each configuration, the isoconfigurational
ensemble is performed in all three directions to ensure that
the results are independent of the direction of stretching.

Network analysis is performed using the NETWORKX pack-
age implemented in PYTHON [56]. When constructing the
graph based on polymer network structures, crosslinkers
of polymer networks are represented as nodes, and poly-
mer chains are represented as edges. Primary loops in
polymer networks, which are formed when both ends of a
polymer strand are connected to the same crosslinker, are
represented as self-loops. Secondary loops, formed when mul-
tiple polymer strands connect to the same pair of crosslinkers,
are denoted as parallel edges between nodes. Higher-order
cyclic defects, where order represents the number of polymer
strands forming a cycle, are naturally incorporated into the
graph [4]. Dangling ends are not included in the graphs. The
sizes of graphs constructed in this way depend on the num-
ber of crosslinkers and polymer chains. Since the number of
monomers is kept constant across different systems, systems
with different strand lengths N will have graphs of different
sizes. The influence of the sizes of the systems and the graphs
on the results will be discussed.

The initial undeformed network structure is represented as
an unweighted graph to calculate GEBC for all edges. GEBC
of an edge e is defined as the sum of the fraction of all-pairs
shortest paths that pass through it [26,56–58],

GEBCe = 2

n(n − 1)

∑

s,t

σ (s, t |e)

σ (s, t )
, (2)

where σ (s, t ) is the number of shortest paths between node
s and t , and σ (s, t |e) is the number of those paths that pass
through e. Each GEBC value is normalized by 2/[n(n − 1)]
to restrict the value of GEBC to a range between 0 and 1.
Additionally, following the approach employed in Berthier
et al. [29], we further normalize GEBC by the average value
of GEBC of all edges in the network to compare the relative
importance of edges to others.

To investigate the geometric factor behind potential fail-
ure locations in polymer networks, the angle between each
polymer strand and an axis α, θα is calculated based on the
time-averaged positions of the crosslinkers attached to the
polymer strand in the equilibrated network. The second Leg-
endre polynomial is used to quantify the orientation of each
polymer strand [59],

P2,α (cos θα ) = 1
2 (3 cos2 θα − 1), (3)

where the P2,α value is closer to 1 if the strand is more aligned
with the axis α and is closer to −1/2 if the strand is more
orthogonal to the axis α. We denote P2,loading as the value of
P2 calculated in the loading direction.

III. RESULTS AND DISCUSSION

We begin by demonstrating that the strands that fail dur-
ing deformation are not a random subset of polymer strands.
The distribution of Pbreak for polymer strands obtained from
the isoconfigurational ensemble is compared with a random
sampling test to determine whether the fracture of end-linked
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FIG. 1. For the N = 5 system, (a) distribution of probability
of breaking (Pbreak) of polymer strands obtained from the isocon-
figurational ensemble (blue) and the random sampling (orange);
(b) schematic illustration showing the first three generations of the
local structure of a polymer strand, with strands and crosslinkers at
the same generation from the root (G0) strand labeled with the same
color; (c) average primary loop fraction as a function of generation
index for strands with different Pbreak in the isoconfigurational ensem-
ble, zoomed in the low generation index region. The plot with the full
range of values is available in the Supplemental Material [53].

polymer networks is a purely stochastic process. In each ran-
dom sampling run, an equal number of broken strands as
in each isoconfigurational ensemble run is randomly drawn.
Blue histograms in Fig. 1(a) show the results from the iso-
configurational ensemble and orange histograms represent the
results from the random sampling. The distribution of Pbreak

between these two tests exhibits significant differences, with
a distinct subset of polymer strands with very high Pbreak in
the isoconfigurational ensemble. This finding suggests that the
fracture process in polymer networks is not purely stochastic
and is influenced by the network structure.

To explore the relationship between the network structure
and the fracture behavior, we start with measuring the de-
fect concentration in the local environment of each polymer
strand. As depicted in Fig. 1(b), a polymer strand is chosen as
the root (generation 0 strand), and other strands in the network
can be located based on their topological distance (generation)
from the root strand. For each polymer strand in the network,
we can find its local environment and construct a subgraph in-
cluding all strands within a certain range of generations of that
strand. Then we group strands by their Pbreak obtained from
the isoconfigurational ensemble and calculate the average
primary loop fraction as a function of the generation index.
The primary loop fraction represents the ratio of the number
of primary loops to the total number of polymer strands in
each subgraph. Figure 1(c) illustrates that for polymer strands
with a finite Pbreak, the primary loop concentration in their
local environment exhibits a significant difference compared
to those strands that do not break in any run of the isoconfigu-
rational ensemble. Moreover, for strands with high Pbreak, their
local environment (the low generation index region) contains
fewer primary loops compared to those with low Pbreak. The
local environment analysis reveals that polymer strands with
a relatively defect-free local structure are more susceptible
to failure compared to those with a higher concentration of
defects in their local surroundings. This observation aligns
with the findings of Arora et al., which reported that linear
strands break prior to primary-loop-containing strands [12].

Mapping polymer networks to graphs and utilizing net-
work analysis tools provide an alternative perspective for

FIG. 2. Probability distribution function of (a) GEBC and (b) P2

for the N = 5, 15, and 50 systems. GEBC and P2 are calculated
from the initial undeformed state of the network. GEBC of each
polymer strand is normalized by the average value of all strands in
the network.

probing the structure of these complex disordered systems.
The probability distribution functions of GEBC and P2 of
polymer strands, calculated from the initial undeformed state
of networks, are shown in Fig. 2. While the shape of the
distribution of P2 is approximately constant across systems
with different N , the shape of the distribution of GEBC
varies. Through a finite-size effect analysis, we verify that this
variation can be attributed to two reasons (see Supplemental
Material [53] for details). First, networks with higher N at
the same polymer mole fraction contain fewer loop defects
[20,46], resulting in a more uniform distribution of GEBC
compared to systems with lower N that have a higher defect
concentration. Second, since the number of polymer beads is
kept constant across systems with different N , the networks
constructed will contain different numbers of polymer strands
and crosslinkers, leading to graphs of varying sizes. Overall,
the distribution of GEBC in all systems indicates that a small
subset of polymer strands within the networks has GEBC
values several times higher than the system average.

We proceed to group strands with the same Pbreak from
the isoconfigurational ensemble together to investigate the
underlying topological and geometric features of the net-
work structure influencing the potential failure locations.
Figure 3(a) demonstrates a consistent positive correlation be-
tween the average GEBC of each group and Pbreak across
all systems, regardless of the shape of GEBC distribution
in these systems. This indicates that in the end-linked net-
work systems, on average, strands with higher GEBC have
a higher probability of breaking. Moreover, Fig. 3(b) il-
lustrates a positive correlation between average P2 in the
loading direction (P2,loading) and Pbreak, as well as a negative
correlation between average P2 in the orthogonal directions
and Pbreak. This finding suggests that strands that are more
aligned with the loading direction have a higher probability
of breaking. To further evaluate the effectiveness of GEBC
and P2,loading on predicting the failure locations of end-linked
polymer networks, we calculate the average Pbreak for polymer
strands with GEBC and P2,loading above certain thresholds. As
shown in Figs. 3(c) and 3(d), the average Pbreak increases as
the GEBC and P2,loading threshold increase. In other words,
polymer strands with higher GEBC and P2,loading generally
have higher Pbreak, suggesting a bidirectional relationship be-
tween Pbreak and GEBC and P2,loading. Furthermore, by plotting
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FIG. 3. For the N = 5, 15, and 50 network systems, average
(a) GEBC and (b) P2 for polymer strands with the same Pbreak. Av-
erage Pbreak for polymer strands that have (c) GEBC and (d) P2,loading

above certain thresholds. Average Pbreak is also plotted as a function
of both GEBC and P2,loading for the (e) N = 5 and (f) N = 50 systems.

average Pbreak as a function of both GEBC and P2,loading,
Figs. 3(e) and 3(f) reveal that polymer strands with both high
GEBC and high P2,loading are more prone to break compared to
those with lower GEBC and/or P2,loading values.

Average GEBC and P2,loading are also calculated as a
function of the order in which the strands break during the de-
formation. Since the order in which the strands break can vary
between each realization in the isoconfigurational ensemble,
the average GEBC and P2,loading are calculated independently
in each trajectory and plotted in Fig. 4. Both GEBC and
P2,loading are highest for the first several chains that break
then appear to decrease linearly as the deformation proceeds
towards failure. In Fig. 4, the black lines in the plots represent
linear fittings of these data points. The linear trend suggests
that strand breaking events initiate from strands with higher
GEBC and smaller angles between the polymer strands and
the loading direction. We note that when the network ap-
proaches failure, GEBC approaches a value close to 1 and
P2,loading decreases to approximately 0.0, which implies that
the predicting power of these two factors diminishes as the

FIG. 4. Average (a) GEBC and (b) P2,loading as a function of the
strand breaking order for the N = 5, 15, and 50 systems. Black lines
are linear fittings of each data set.

network approaches the fracture point, but these measures are
important in the initial stages of failure. These results also
show the importance of topological and geometric features of
the networks beyond the more common network defects such
as loops and dangling ends.

IV. CONCLUSION

This work provides valuable insights into the interplay
between network topology, strand orientation relative to the
direction of strain, and the local failure behavior of model
end-linked polymer networks. Through a combination of
molecular simulations and network analysis techniques, we
reveal that in the initial undeformed state of model end-linked
polymer networks, polymer strands with relatively defect-free
local structures, higher GEBC values, and greater alignment
with the loading direction are more susceptible to failure dur-
ing uniaxial tensile deformation. Additionally, strand breaking
events initiate from polymer strands with higher GEBC val-
ues and smaller angles between the strand and the loading
direction. The effectiveness of GEBC in identifying the fail-
ure locations at the strand level is consistent with recent
observations in other types of network materials, including
granular networks [29] and colloidal gels [35], highlighting
the potential of network analysis tools in finding universal
properties across different disordered network systems. Fu-
ture work will explore the predictive capabilities of GEBC
and strand orientation in other types of reaction schemes
and deformation, as well as further investigate other network
analysis techniques such as community detection [36]. These
findings also offer a different perspective to understand the
influence of topological defects in polymer networks and sug-
gest a route to inversely design polymer network structures to
control the location of fracture and achieve desired fracture
properties.
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