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Chemomechanics in alloy phase stability
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We describe a first-principles statistical mechanics method to calculate the free energies of crystalline alloys
that depend on temperature, composition, and strain. The approach relies on an extension of the alloy cluster
expansion to include an explicit dependence on homogeneous strain in addition to site occupation variables that
track the degree of chemical ordering. The method is applied to the Si-Ge binary alloy and is used to calculate
free energies that describe phase stability under arbitrary epitaxial constraints. We find that while the incoherent
phase diagram (in which coexisting phases are not affected by coherency constraints) hosts a miscibility gap,
coherent phase equilibrium predicts ordering and negative enthalpies of mixing. Instead of chemical instability,
the chemomechanical free energy exhibits instabilities along directions that couple the composition of the alloy
with a volumetric strain order parameter. This has fundamental implications for phase field models of spinodal
decomposition as it indicates the importance of gradient energy coefficients that couple gradients in composition
with gradients in strain.
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I. INTRODUCTION

Strain is increasingly used as an explicit thermodynamic
boundary condition to manipulate the properties of materials.
Most materials, however, exhibit some chemical complexity
as one or more of their sublattices can host multiple chemical
species that may order at low temperatures and form disor-
dered solid solutions at high temperatures. There is, therefore,
the possibility of important and interesting chemomechanical
couplings that can emerge, whereby changes in composition
can affect elastic properties and changes in strain can affect
chemical interactions.

Early studies by Larche and Cahn [1–3] and Voorhees
and Johnson [4] set up a phenomenological framework that
rigorously integrates chemical alloy thermodynamics with
elasticity and showed that coherency constraints can have a
pronounced effect on phase stability and the topology of phase
diagrams. The effect of epitaxial constraints on phase stability
has been found to be especially strong in semiconductor al-
loys. Many semiconductor alloys that exhibit miscibility gaps
in their equilibrium temperature versus composition phase
diagrams can form ordered compounds when epitaxially con-
strained [5–7]. More generally, the coupling between strain,
composition, and degree of ordering in epitaxially grown
semiconductor alloys affects phase stability, solubility, and
their resulting optoelectronic properties [8–16]. Coherency
constraints also affect the electrochemical properties of bat-
tery electrode materials as they undergo phase transitions [17]
as well as the shapes and compositions of coherent precipi-
tates in metal alloys [18–23] and the electrocatalysis activity
and ferroelectric properties of perovskite thin films [24].
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First-principles statistical mechanics treatments of chem-
ical order-disorder phenomena usually neglect strain as a
thermodynamically controlled boundary condition. The clus-
ter expansion formalism introduced by Sanchez et al. [25] is
a mathematically rigorous surrogate model that enables an
efficient and compact description of the energy of a crystal
as a function of the degree of ordering among its different
chemical constituents (or of the orientational arrangements
of magnetic moments [26–28] or molecules [29]). An al-
loy cluster expansion that has been trained to first-principles
electronic structure calculations can be used to predict alloy
thermodynamic properties at finite temperature with mean
field or Monte Carlo methods [30,31]. The cluster expansion
surrogate model is either used to parametrize the configura-
tional energy of an alloy at constant volume [32] or in the fully
relaxed state [33,34] (i.e., at zero pressure) but is not able to
generate information about the dependence of thermodynamic
properties on strain. Past treatments of the effect of strain
on chemical equilibrium in crystalline alloys using the mixed
basis cluster expansion of Laks et al. [35] account for the long-
range interactions that arise from coherency strains, but treat
strain implicitly and not as an explicit degree of freedom. The
cluster expansion approach has also been extended to describe
the dependence of tensor properties such as elastic moduli
on the chemical degree of ordering within a crystal [36,37].
While this makes it possible to calculate elastic moduli as
a function of temperature and composition, it only provides
derivative properties of a full chemomechanical free-energy
description of a solid.

In this contribution, we describe a strain plus configuration
cluster expansion that has an explicit dependence on both
the chemical order and the homogeneous strain of an alloy.
The approach enables the calculation of free energies that
are functions of temperature, composition, and strain, thereby
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rigorously encapsulating the chemomechanical couplings that
affect all thermodynamic properties, including chemical po-
tentials, elastic moduli, and phase stability. The free energies
are also well suited to feed into phase field models of mi-
crostructure evolution, coherent spinodal decomposition, and
precipitation due to coherent ordering reactions [31,38–42].
To illustrate the approach, we calculate the chemomechanical
thermodynamic properties of the Si-Ge binary alloy, which
can form a disordered solid solution over the sites of the
diamond parent crystal structure.

II. METHODS

A. Chemical and strain descriptors

Chemical degrees of freedom in a crystal can be tracked
with occupation variables assigned to each crystal site. For
a binary A-B alloy, the occupation variables σl attached to
site l can, for example, take a value of +1 if occupied by
A and −1 if occupied by B. The chemical arrangement of
the whole crystal is then uniquely specified with a vector of
occupation variables �σ = (σ1, . . . , σl , . . . , σN ), where N is
the total number of sites that can be decorated with A and
B atoms.

The degree with which a crystal is homogeneously de-
formed can be tracked with six independent metrics of strain,
Exx, Eyy, Ezz, Eyz, Ezx, and Exy. These measure the deformation
of a crystal relative to its dimensions in a reference state and
are defined to be independent of rigid rotations [43]. The nu-
merical values of each strain component depend on the chosen
orientation of the Cartesian coordinate system. The optimal
orientation is usually guided by symmetry considerations of
the reference state used to define strain. For a crystal that
has cubic symmetry in the unstrained state, for example, the
Cartesian axes are usually chosen to be parallel to the lattice
vectors of the cubic unit cell.

There are several definitions of finite strain. The general
approach of describing finite strains starts with the defor-
mation gradient, a 3 × 3 matrix F, that for homogeneous
deformations of a crystal relates the lattice vectors of the
reference crystal, �a, �b, and �c, to the lattice vectors of the
deformed crystal, �A, �B, and �C, according to

[ �A, �B, �C] = F[�a, �b, �c]. (1)

In this relationship, the Cartesian coordinates of the lattice
vectors are collected as columns in 3 × 3 matrices represented
by [ �A, �B, �C] and [�a, �b, �c]. While the deformation gradient F
contains information about the degree to which the crystal
has been deformed, it is also affected by any rigid rotation
of the deformed crystal. To eliminate the dependence on
rigid rotations, metrics of strain are defined in terms of the
rotation invariant quantity FTF. The Green-Lagrange strain,
for example, takes the form E = 1/2(FTF − I), where I is
the identity matrix, while the Hencky strain is defined as
E = 1/2 ln(FTF).

It is often convenient to work with symmetry-adapted
strain order parameters instead of the Cartesian strains di-
rectly since order parameters provide more insight into the
symmetries that are broken due to a particular strain. When
the reference state of the crystal has cubic symmetry, an

especially descriptive set of strain order parameters can be
defined according to [43]
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The first strain order parameter e1 is invariant to symmetry
and measures volumetric changes of the crystal as a result
of deformation. The next two order parameters, e2 and e3,
together form an irreducible subspace when the reference
crystal has cubic symmetry and describe the tetragonal and
orthorhombic distortions of the cubic reference. The last three
strain order parameters, e4, e5, and e6, are shear strains. One
of the advantages of working with the Hencky strain metric
is that the first strain order parameter e1 is exclusively deter-
mined by the relative change in volume of the crystal and any
variation of the other strain order parameters, e2, . . . , e6, at
constant e1 corresponds to symmetry breaking deformations
at constant volume [43].

When measuring the state of strain of an alloy, it is con-
venient to use a reference at a fixed concentration, such as
the dimensions of the unit cell of one of the pure end mem-
bers. The strain of the crystal can then arise as a result of
the imposition of mechanical boundary conditions, such as
externally imposed stresses and epitaxial constraints, or due to
a change in composition, which may change the equilibrium
lattice parameters at fixed pressure.

B. Coupling chemical and strain degrees of freedom

In formulating a strain plus configuration cluster expan-
sion, we consider a binary A-B alloy, but the approach can be
generalized to an arbitrary number of chemical constituents
[44]. Following the derivation of Sanchez et al. [25], the
cluster expansion expression for the energy of a crystal can
be generalized to explicitly depend on strain �e, in addition to
configuration �σ , according to

E (�e, �σ ) =
∑

α

∑
nα

V nα

α �nα

α (�e, �σ ), (3)

where

�nα

α (�e, �σ ) = λnα

α (�e)φα (�σ ) (4)

are cluster basis functions. The index α labels clusters of sites
in the crystal, such as point, pair, triplet, etc. clusters. The
sum extends over all possible 2N clusters of sites within a
crystal, where N is the total number of sites in the crystal
that can be occupied by A or B atoms. The cluster basis
functions �nα

α (�e, �σ ) are products of functions of strain λnα
α (�e)

with polynomials of the occupation variables defined as

φα (�σ ) =
∏
l∈α

σl . (5)
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The φα (�σ ) are the cluster basis functions of the original binary
alloy cluster expansion introduced by Sanchez et al. [25] and
are simply a product of occupation variables belonging to
the sites of the cluster α. The strain basis functions λnα

α (�e)
can similarly be represented as polynomials of the six strain
variables �e. The nα is an integer index that tracks distinct
polynomials of strain. Finally, V nα

α are expansion coefficients
that embed the specific chemical and elastic properties of the
alloyed crystal and are referred to as effective cluster interac-
tions (ECI).

The symmetry of the undecorated and unstrained reference
parent crystal imposes constraints on the expansion coeffi-
cients V nα

α , and the functional form of the basis functions
�nα

α (�e, �σ ). This is because any pair of chemical orderings
and/or strain states, (�e, �σ ) and (�e′, �σ ′), that can be mapped
onto each other upon the application of a space group symme-
try operation Ŝ of the parent crystal structure must have the
same energy. Note that the reference lattice used to measure
strain for an alloy is independent of composition and is usually
chosen to be the dimensions of the unit cell of one of the end
members of the binary alloy.

In generating a suitable basis that satisfies all symmetry
constraints, it is useful to rely on several group theoretical
concepts related to crystal symmetry and clusters. The first is
an orbit of clusters, defined as the collection of all clusters of
a particular type that are equivalent by symmetry. By starting
with a prototype cluster α, such as the nearest-neighbor pair,
all other clusters belonging to its orbit �α can be generated
upon the application of the space group operations of the
parent crystal to the prototype cluster α. Each distinct cluster
type (e.g., point cluster, nearest-neighbor-pair cluster, second-
nearest-neighbor-pair cluster, etc.) has a corresponding orbit
that collects all symmetrically equivalent clusters of that type.
Another useful concept is a cluster group. A prototype cluster
α of the cluster orbit �α has a cluster group Gα consisting of
a subset of space group operations of the parent crystal that
maps the cluster α onto itself.

A set of cluster basis functions that ensure the invariance of
the energy of the crystal to the symmetry of the parent crystal
structure can be generated as follows. For a prototype cluster
α of each cluster orbit �α generate a starting basis of strain
polynomials in terms of monomials of each strain variable ei

of the form

η �p
α (�e) =

6∏
i=1

epi
i , (6)

where �p = (p1, p2, . . . , p6) and where each individual pi is
a positive integer ranging from 0 to a maximum polynomial
order. In this expression, each epi

i is a monomial of the strain
variable ei to the pth

i power. The strain polynomials η �p
α (�e) can

be made invariant to the cluster group Gα upon the application
of the Reynolds operator, defined as

λnα

α (�e) = 1

|Gα|
∑
Ŝ∈Gα

Ŝ
[
η �p

α (�e)
]
, (7)

where |Gα| corresponds to the number of symmetry oper-
ations in the cluster group Gα and Ŝ[η �p

α (�e)] represents the
application of the symmetry operation Ŝ to the function
η �p

α . The application of the Reynolds operator to the starting

basis polynomials generated by enumerating all possible non-
negative integers pi in Eq. (6) produces a set of symmetry
invariant polynomials [43]. Some of these polynomials may
be duplicates or linear combinations of other symmetry in-
variant polynomials. After discarding the linearly dependent
polynomials, a set of symmetry invariant polynomials λnα

α (�e)
can be collected, each labeled with a distinct integer index nα .
More details about the application of symmetry to strain vari-
ables and to polynomials of strain, the Reynolds operator, and
the determination of a linearly independent set of symmetry
invariant polynomials can be found in Thomas and Van der
Ven [43].

Once a set of symmetry invariant cluster basis functions
�nα

α (�e, �σ ) with nα = 1, . . . , nmax
α for a prototype cluster α

have been generated, all other symmetrically equivalent clus-
ter basis functions within the crystal �

nα

β (�e, �σ ) with β ∈ �α ,
can be generated upon the application of space group op-
erations to the prototype cluster basis functions �nα

α (�e, �σ ).
The resulting symmetrically equivalent basis functions can
be collected in an orbit of basis functions labeled �nα

α . The
basis functions belonging to the same basis function orbit �nα

α ,
all share the same expansion coefficient V nα

α in a symmetry
invariant cluster expansion, making it possible to rewrite the
strain plus configuration cluster expansion of Eq. (3) as

E (�e, �σ ) =
∑
�

nα
α

V nα

α

⎛
⎝ ∑

β∈�α

�
nα

β (�e, �σ )

⎞
⎠. (8)

In this form, the outer sum is over distinct orbits of cluster
basis functions �nα

α and the inner sum is over all clusters that
are symmetrically equivalent to the prototype cluster α.

Table I lists the first 23 prototype terms of a strain plus
configurational cluster expansion for a diamond parent crystal
structure. The first term in the expansion, Eq. (8), corresponds
to the empty cluster α = ∅, and has exclusively a strain
dependence. There are also other basis functions in the expan-
sion that only depend on occupation variables and are strain
independent. Most of the basis functions, though, depend on
both occupation variables and a subset of strain variables.

The strain plus configuration cluster expansion of Eq. (8) is
for the energy of the whole crystal and is an extensive quantity.
This expression can be normalized by the number of unit cells
of the crystal Nu upon the introduction of correlation functions
defined as

ξ nα

α (�e, �σ ) = 1

Numα,nα

∑
β∈�α

�
nα

β (�e, �σ ), (9)

where mα,nα
is the multiplicity of the cluster basis function

�nα
α (�e, �σ ) per unit cell (i.e., mα,nα

= |�nα
α |/Nu). The energy

per unit cell ε(�e, �σ ) = E (�e, �σ )/Nu, then becomes

ε(�e, �σ ) =
∑
�

nα
α

V nα

α mα,nα
ξ nα

α (�e, �σ ). (10)

Expressed in this manner, an approach to parametrize the
expansion coefficients to the results of first-principles elec-
tronic structure training data becomes evident. In practice,
the strain plus configuration cluster expansion must be trun-
cated. The energies of a large number of strain and chemical
configurations can be calculated with a first-principles elec-
tronic structure method and used to determine the expansion
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TABLE I. The first 23 prototype cluster basis functions of a configuration plus strain cluster expansion for the diamond parent crystal
structure. The e1, e2, e3, e4, e5, and e6 variables are the strain order parameters defined by Eq. (2). The σ represents the occupation variables
that are assigned to each crystal site. These take the values of −1 or +1 depending on the occupant of the site (i.e., Si or Ge) for the Ge1−xSix

alloy. The first eleven basis functions have only a strain dependence. The next five basis functions correspond to point cluster terms. Basis
functions �16 to �18 are prototype basis cluster functions coupling occupants on the nearest-neighbor-pair cluster with indices i and j, while
basis functions �19 to �22 couple occupants on the next-nearest-neighbor-pair cluster of the diamond parent crystal. The specific form of
the strain-dependent polynomials of each cluster basis function depends on the orientation of the cluster relative to the Cartesian coordinate
system.

Cluster function notation Prototype basis function

�0 1
�1 e1

�2 e2
1
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1/2(e2
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3)
�4

√
1/3(e2

4 + e2
5 + e2

6)
�5 e3

1

�6
√

3/2(e1e2
2 + e1e2

3)
�7 3/2(e2

2e3 − 1/3e3
3)

�8 (e1e2
4 + e1e2

5 + e1e2
6)

�9
√

3/4(e2e2
4 − e2e2

5 − √
1/3e3e2

4 − √
1/3e3e2

5 + √
4/3e3e2

6)
�10

√
6e4e5e6

�11 σi

�12 σie1

�13 σie2
1

�14 σi
√

1/2(e2
2 + e2

3)
�15 σi

√
1/3(e2

4 + e2
5 + e2

6)

�16 σiσ j

�17 σiσ je1

�18 σiσ j
√

1/3(e4 − e5 − e6)

�19 σiσ j

�20 σiσ je1

�21 σiσ j
√

3/4(e2 − √
1/3e3)

�22 σiσ je4

coefficients V nα
α of a truncated cluster expansion using one of

many possible machine-learning regression techniques, such
as simple least squares, LASSO, and ridge regression [45–50].

The CASM software package [44,51,52] is capable of al-
gorithmically generating a strain plus configurational cluster
expansion for any parent crystal structure. It also has capa-
bilities to enumerate structural models with symmetrically
distinct strains and configurations (�e, �σ ), and to calculate the
correlation functions for each cluster basis function in the
configuration (�e, �σ ).

C. First-principles electronic structure calculations to
parametrize the cluster expansion

The CASM software package was used to enumerate crys-
tallographic models having different arrangements of Si and
Ge over the sites of the diamond parent crystal structure
and to enumerate different states of strain of each ordered
configuration [51]. The formation energy of each enumer-
ated structure was calculated using the Vienna Ab-initio
Simulation Package (VASP) [53–55]. The density func-
tional theory (DFT) calculations were performed within the
generalized gradient approximation (GGA) using the PBE
exchange-correlation functional [56]. The projector aug-
mented wave (PAW) method [57] as implemented within
VASP with Ged and Si pseudopotentials was used. A plane-

wave energy cutoff of 400 eV was used for all the calculations.
An automatic �-centered k-point mesh was generated for all
the structures using a length parameter Rk of 35. A value of
10−5 eV was used as an electronic convergence criterion. To
achieve geometric convergence, a cutoff value of 0.02 eV/Å
was used for forces on all atoms.

III. RESULTS

The strain plus configuration cluster expansion approach
was applied to study finite-temperature phase stability and
chemical disorder in the Si-Ge alloy. Si and Ge adopt the
diamond crystal structure and form high-temperature solid
solutions. The lattice parameters of pure Si differ substantially
from those of Ge, indicating that coherency strains play an
important role in determining phase stability.

A. Formation energies, relaxation strains, and cluster expansion

Figure 1(a) shows the formation energies of 119 fully re-
laxed Si-Ge configurations on the sites of the diamond parent
crystal as a function of the Ge composition. The reference
states are pure Si and pure Ge in the diamond crystal struc-
ture. The positive formation energies signify a thermodynamic
tendency for phase separation and the existence of a misci-
bility gap in the equilibrium temperature versus composition
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FIG. 1. (a) Formation energies of fully relaxed Si-Ge config-
urations. Si and Ge in the fully relaxed diamond parent crystal
structure were used as reference states. (b) e1 strain order parameter
for fully relaxed Si-Ge configurations with pure Si as the reference
state.

phase diagram at constant pressure. Figure 1(b) shows the
values of the e1 strain order parameter for each fully relaxed
Si-Ge configuration, calculated using the lattice parameter of
pure Si in the diamond crystal as the reference state. The plot
shows a very strong and almost linear volume change with
increasing Ge concentration, but a very weak dependence of
the volume on the nature of the Si-Ge ordering as there is very
little variation in e1 values at each composition.

The strong dependence of the equilibrium volume of the
Si-Ge alloy with Ge concentration indicates that coherency
constraints should have a significant effect on phase stability.
This is manifested in Fig. 2(a), which shows the formation
energies of the 119 Si-Ge configurations calculated at a vol-
ume that is fixed to the approximate equilibrium volume of
the alloy at x = 0.5. While the unit-cell dimensions of each
configuration were held fixed, all internal atomic coordinates
were allowed to relax in these calculations. Figure 2(a) shows
that the constraint of a constant volume set at its x = 0.5 value
severely penalizes the energies of the Si rich and the Ge rich
configurations. Instead of exhibiting a driving force for phase
separation, the constant volume formation energies now show

FIG. 2. Formation energies of various Si-Ge configurations at
fixed equilibrium volumes of (a) a Si-Ge alloy at x = 0.5, (b) pure Si,
and (c) pure Ge. The dotted black line represents the thermodynamic
convex hull whereas the orange squares represent the ground-state
configurations that fall on the convex hull. The formation energies
in all three plots are calculated relative to the energies of pure Si
and Ge at their equilibrium volumes. Formation energies calculated
at fixed volume are always higher than the fully relaxed formation
energy. The two formation energies for a given structure are only
equal when the imposed strain constraints (including volume) are
equal to the fully relaxed strains.

033801-5



BEHARA, THOMAS, PUCHALA, AND VAN DER VEN PHYSICAL REVIEW MATERIALS 8, 033801 (2024)

ordering/mixing preferences between Si and Ge. The purely
chemical interactions between Si and Ge at constant volume
are therefore slightly attractive. Similar mixing formation en-
ergies are predicted when fixing the volume to that of pure Si
[Fig. 2(b)] or to that of pure Ge [Fig. 2(c)].

The results of Fig. 2 show that there is a strong coupling
between chemistry and mechanics in the Si-Ge alloy. To treat
this coupling explicitly, we parameterized a strain plus con-
figuration cluster expansion by training to the energies of
a large number of systematically strained Si-Ge orderings.
For each of the 119 orderings, a grid of symmetrically dis-
tinct strain states was enumerated within the e1 irreducible
subspace, within the e2-e3 irreducible subspace at each e1

strain and within the e4, e5, and e6 irreducible subspace at
each e1 and e2-e3 strains. The energies of a total of 14 395
chemical plus strain configurations were calculated, allowing
only relaxations of internal atomic coordinates. A compact
configuration plus strain cluster expansion was then fit to these
configurations. The configuration plus strain cluster expansion
was able to reproduce the training data with high fidelity,
having a root mean squared error (rmse) of 0.0021 eV per unit
cell (or 0.001 eV per atom). Only 53 ECI are needed in a strain
plus configuration cluster expansion to achieve this accuracy.
Figures 3(a) and 3(b) show the rmse of the cluster expansion
changes when the next basis function in the expansion is
added as part of the truncated cluster expansion. An rmse of
0.0035 eV per unit cell can be achieved with only 23 terms
in the cluster expansion (these are terms that extend up to the
second-nearest neighbor).

The resultant strain plus configuration cluster expansion
was tested on the fully relaxed structures. Each fully relaxed
structure has a particular chemical ordering �σ , and a relax-
ation strain �e relative to an initial reference state. Inserting
these values into the strain plus configuration cluster expan-
sion makes it possible to predict the energy of the fully relaxed
state. We find that the strain plus configuration cluster expan-
sion is capable of reproducing the fully relaxed energies (to
which it was not explicitly trained) with an rmse of 0.0025 eV
per unit cell (0.001 eV per atom).

To compare the strain plus configuration cluster expansion
to a traditional alloy cluster expansion, we also parameterized
a configuration only cluster expansion by training to the fully
relaxed energies. A simple least squares method was used
to fit a configuration only cluster expansion to the fully re-
laxed formation energies of 119 Si-Ge orderings [Fig. 1(a)].
A constant, point, and nine pair interactions were sufficient
to achieve an rmse of 0.0025 eV per unit cell. Figure 3(c)
shows how the rmse of a configuration only cluster expansion
changes when basis functions of successively larger clusters
are added to the truncated cluster expansion. While a coupled
strain and occupational cluster expansion reached an accuracy
of 0.0035 eV per unit cell by only including terms that extend
up to the second nearest neighbor, the configuration only
cluster expansion requires interactions that extend to at least
the fifth-nearest neighbor to achieve a similar accuracy. This is
because the configuration only cluster expansion has to learn
not only the chemical interactions among Si and Ge, but also
the implicit dependence of the relaxation strain energy on the
arrangement of Si and Ge.

FIG. 3. (a) The root mean square error (rmse) upon the incre-
mental addition of cluster basis functions to a truncated configuration
plus strain cluster expansion. (b) Same as (a), but within an rmse
range of 0 to 10 meV/unit cell. (c) rmse upon the incremental
addition of cluster basis functions for a configuration only cluster
expansion.

B. Chemomechanical free energies

The strain plus configuration cluster expansion was used
within grand canonical Monte Carlo simulations to calcu-
late the thermodynamic properties of the Si1−xGex alloy as a
function of composition, strain, and temperature. By holding
the strain �e in the strain plus configuration cluster expansion
constant within the Monte Carlo simulations, it is possible to
calculate the Helmholtz free energy as a function of temper-
ature and alloy composition using conventional free-energy
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FIG. 4. Helmholtz free energy as a function of concentration x and volumetric strain e1 calculated at 298 K. (a) A three-dimensional
depiction of the free-energy surface and (b) a contour plot. The solid orange line in (b) traces the minimum free-energy path in x-e1 space,
while the minimum free energy at each composition is plotted as a function of concentration in orange in (c). (c) Free-energy slices at different
values of e1 as a function of composition (d) Free-energy slices at different values of composition as a function of e1.

integration techniques [52,58]. By repeating this over a grid
of strains, a Helmholtz free energy per unit cell f (T, x, �e), as
a function of temperature T , alloy composition x, and strain �e,
can be assembled.

Figure 4(a) shows the calculated Helmholtz free energy at
298 K as a function of alloy composition x and the e1 strain
order parameter, which is a measure of a symmetry preserving
volume change. The free-energy surface has two minima, one
at Si rich compositions and low values of e1 and another at Ge
rich compositions and high values of e1. Figure 4(b) shows
a contour plot of the free-energy surface as a function of x
and e1. The solid-orange curve in Fig. 4(b) traces out the
minimum in the free energy with respect to e1 for every fixed
concentration x, i.e., e1(x) that satisfies (∂ f /∂e1)x,T = 0. This
is the value of e1 at which the solid has a zero pressure,
as can be seen from the thermodynamic equation of state
relationship

P = −
(

∂F

∂V

)
NSi,NGe,T

= −
(

∂ f

∂e1

)
x,T

(
∂e1

∂v

)
, (11)

where F is the free energy of the solid, V is the volume, and
NSi and NGe are the number of Si and Ge atoms, respectively.
For a solid consisting of Nu unit cells, F = Nu f and V = Nuv,
where v is the volume per unit cell. The other strain order

parameters e2, . . . , e6 are implicitly held constant in all the
partial derivatives.

The strain states (e1) corresponding to the solid orange
curve in Fig. 4(b) can be related to the equilibrium lattice
parameters of a Si-Ge alloy offering a basis for comparison
with experimental observations. The calculated equilibrium
lattice parameters at 298 K of pure Si, pure Ge, and an
alloy at x = 0.506 are 5.4651, 5.7665, and 5.6017 Å re-
spectively. These are in good agreement with experimentally
measured values at room temperature by Dismukes et al.
[59], which report values of 5.431, 5.6575, and 5.5475 Å
respectively.

Since atmospheric pressure is very close to zero relative to
typical elastic stresses in the solid state, it is common in the
ab initio literature to approximate equilibrium at atmospheric
pressure as equivalent to equilibrium at zero pressure. The
Helmholtz free energy along e1(x) satisfying (∂ f /∂e1)x,T = 0
then also coincides with the Gibbs free energy of the solid at
zero pressure since G = F + PV , which simplifies to G = F
when P = 0. The orange curve in Fig. 4(c) plots this free en-
ergy as a function of composition x. It shows the characteristic
double-well free-energy curve that produces a miscibility gap
in a temperature versus composition phase diagram. However,
this free energy is the unconstrained free energy, coinciding
with the zero-pressure equilibrium volume. The miscibility
gap can only emerge for an incoherent two-phase mixture,
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FIG. 5. The calculated compressibility of the GexSi1−x alloy as a
function of concentration at P = 0.

where the coexisting phases are free to relax to their equi-
librium volumes at zero pressure. Also shown in Fig. 4(c)
are three free-energy curves as a function of composition, but
taken at constant slices of e1. These free energies have positive
curvatures and therefore exhibit a tendency for chemical mix-
ing (as opposed to phase separating). Any attempt to realize
a coherent phase separation when the solid is constrained to a
fixed value of e1 results in an increase in the free energy. In the
presence of coherency constraints, the Si-Ge alloy will there-
fore form a disordered solid solution. Each of these curves is
tangent to the zero-pressure free-energy curve at the compo-
sition x coinciding with the imposed e1. Figure 4(d) shows
free-energy slices at three fixed concentrations plotted as a
function of e1. The curvature of the free energy with respect
to e1 at fixed concentration is related to the compressibility of
the solid

κ = −1

v

(
∂v

∂P

)
= 1

v

1(
∂2 f
∂v2

) (12)

where T , x, Nu (number of unit cells) and the strains,
e2, . . . , e6 are held constant in the above derivatives. The
second derivative of the free energy f with respect to volume
can be expressed in terms of derivatives with respect to e1

according to(
∂2 f

∂v2

)
=

[(
∂2 f

∂e2
1

)(
∂e1

∂v

)2

+
(

∂ f

∂e1

)(
∂2e1

∂v2

)]
, (13)

where T , x, and the strains, e2, . . . , e6 are again held con-
stant. Figure 5 shows the dependence of the compressibility
of GexSi1−x as a function of alloy concentration at 298 K.
The compressibility of the alloy increases almost linearly
between the compressibilities of Si and Ge. The calculated
compressibility of pure Si of 1.16 × 10−11 Pa−1 is in good
agreement with the experimentally measured compressibil-
ity of 1.018 × 10−11 Pa−1 [60]. The agreement between the
calculated compressibility for pure Ge of 1.81 × 10−11 Pa−1

and the experimentally reported value of 1.33 × 10−11 Pa−1

[61] is not as good as for pure Si. Previous ab initio studies

using GGA PBE report similar values for the Ge compress-
ibility (1.78 × 10−11 Pa−1) [62]. Note that properties such as
the compressibility are very sensitive to the exchange cor-
relation functional approximation used as part of the DFT
calculations. For example, calculations within the local den-
sity approximation (LDA) predict compressibilities for pure
Si and Ge that are more accurate than those predicted with
PBE [62].

The full tensor of elastic moduli of the GexSi1−x alloy
are related in a similar way to second derivatives of the
chemomechanical free energy f (T, x, �e) with respect to the
six independent Cartesian strains Exx, Eyy, Ezz, Exy, Exz, and
Eyz. The mathematical relationship between the elastic mod-
uli and the second derivatives of the chemomechanical free
energies depends on the type of strain that is used (i.e.,
Green-Lagrange or a Hencky strain). A simple example where
chemomechanical free energies are important is in the context
of coherent epitaxial growth of alloys on a “semi-infinite”
substrate [Fig. 6(a)]. As a concrete example, we consider a
GexSi1−x alloy [green in Fig. 6(a)] grown on the (001) surface
of a Ge0.5Si0.5 substrate [yellow in Fig. 6(a)]. If the epitaxially
grown alloy has a composition that differs from that of the
substrate, it will be subjected to epitaxial strains that alter its
free energy. The semi-infinite substrate constrains the dimen-
sions of the epitaxial alloy in the x̂ − ŷ plane, which is parallel
to the substrate surface. The substrate therefore fixes the Exx,
Eyy, and Exy strains of the epitaxial alloy to the equilibrium
values of the Ge0.5Si0.5 substrate alloy. Perpendicular to the
substrate, however, the epitaxial alloy is free to relax along
the ẑ direction until mechanical equilibrium is reached with
the externally imposed stress, which is usually determined
by the pressure P of the gaseous environment. For the sim-
ple geometry of this example, the stress within the epitaxial
alloy along the ẑ direction is related to the first derivative
of the free energy with respect to the Hencky strain Ezz

according to

σzz = 1

v

∂ f

∂Ezz
= 1

v

[
∂ f

∂e1

∂e1

∂Ezz
+ ∂ f

∂e3

∂e3

∂Ezz

]
. (14)

In this expression, v = V/Nu is the volume per unit cell in the
current state. All derivatives are taken while holding T , NSi,
NGe, and the strains Exx, Eyy, Eyz, Exz, and Exy constant.

Figure 6(b) shows the calculated chemomechanical free
energy as a function of alloy concentration and Ezz at the
constant strains Exx and Eyy imposed by the substrate (Eyz =
Exz = Exy = 0 due to the symmetry of the problem). Fig-
ure 6(c) shows slices of the free energy at three different
alloy compositions as a function of Ezz. When the film is in
equilibrium with a low-pressure environment, such as vacuum
or atmospheric pressure, P ≈ 0, and the equilibrium value of
Ezz can be determined by setting Eq. (14) to zero. This is
equivalent to minimizing the chemomechanical free energy of
Fig. 6(b) with respect to Ezz at each alloy composition. The
resulting minimum free energy is shown as the orange curve
in Fig. 6(d). This free energy is compared to the free energy of
the alloy at P = 0, without epitaxial constraints (blue curve).
The two curves touch each other at x = 0.5 since the epitaxial
alloy then has the same composition as the substrate and
there are no epitaxial strains. When the composition of the
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FIG. 6. (a) Schematic illustration of epitaxial growth. (b) Helmholtz free energy at room temperature calculated as a function of
composition and Ezz under epitaxial strain conditions (fixed Exx and Eyy). (c) Free-energy slices at x = 0.35, 0.5, 0.65 as a function of Ezz.
(d) The solid-orange line shows the epitaxially constrained free energy coinciding with σzz = 0. The solid-blue line corresponds to the
equilibrium free energy when P = 0. The dotted-orange line shows the tangent to the epitaxially constrained free energy at x = 0.35. The
black arrows indicate how the chemical potentials of Si and Ge change upon going from an unconstrained state to an epitaxially strained state
at fixed Exx and Eyy and σzz = 0.

epitaxial alloy differs from that of the substrate, the epitaxial
misfit strains in the x̂ and ŷ directions result in a strain en-
ergy cost, which raises the free energy of the epitaxial alloy
relative to an unconstrained alloy at the same composition.
Hence the free energy of the epitaxial alloy (orange curve) is
always above that of the unconstrained alloy at P = 0 (blue
curve).

The chemical potentials of Si and Ge can be determined
graphically from the intercept of the tangent to the free-energy
curves with the energy axis at x = 0 and x = 1, respectively,
as shown in Fig. 6(d). The red-dashed line in Fig. 6(d) cor-
responds to the common tangent to the free-energy curve at
zero pressure, which predicts an incoherent miscibility gap
at zero pressure. The orange-dashed line is tangent to the
free energy of the epitaxially strained alloy at x = 0.35. Its
intercepts with the free-energy axis at x = 0 and x = 1 corre-
spond to the Si and Ge chemical potentials in the epitaxially
strained alloy. The blue-dashed line is tangent to the free
energy of the unconstrained alloy at x = 0.35. The Si and
Ge chemical potentials of the epitaxially constrained alloy
at x = 0.35 differ from their values in the unconstrained al-
loy at the same composition x = 0.35. Since the epitaxial
alloy at x = 0.35 must undergo a positive strain in the x̂

and ŷ directions (Exx > 0 and Eyy > 0) as it is coherently
attached to a substrate having a composition x = 0.5 (which
has a larger volume), the chemical potential of the smaller Si
atoms increases, while the chemical potential of the larger Ge
atoms decreases relative to their values in the unconstrained
alloy at the same composition. The epitaxial strain energy,
therefore, sets up diffusional driving forces that favor the
diffusion of Ge (Si) to (away from) the epitaxially strained
alloy.

The difference in the free energy between the epitaxial
alloy and the unconstrained alloy at x = 0.35, denoted � f1

in Fig. 6(d), can be interpreted as the strain free energy per
unit cell that is needed to elastically deform the unconstrained
alloy to achieve epitaxy with the substrate. The total strain free
energy of the epitaxial alloy scales with the size of the film and
therefore will be linearly proportional to the film thickness.
Above a critical thickness, the strain energy will exceed the
cost of introducing misfit dislocations along the substrate/film
interface that can relieve the epitaxial constraints and allow
the alloy to lower its free energy. If the constituents of the
epitaxially strained alloy phase separate to form an incoherent
two-phase mixture, the free energy will lower by � f2 as
illustrated in Fig. 6(d).
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IV. DISCUSSION

We have introduced a strain plus configuration cluster
expansion formalism that enables a rigorous treatment of
chemical and strain degrees of freedom in multi-component
crystals. The approach makes it possible to calculate free
energies that explicitly depend on temperature, composition,
and strain. The first derivatives of such free-energy surfaces
determine chemical potentials and stresses, while their cur-
vatures with respect to strain variables are related to elastic
moduli [63]. A free-energy description that explicitly couples
composition with strain, therefore, enables a straightforward
calculation of the dependence of the elastic moduli on con-
centration and short-range order.

The strain variables that appear in the chemomechanical
free energy are measured relative to a fixed reference state,
independent of concentration. For the GexSi1−x alloy treated
in this paper, for example, the reference state for strain was
chosen to be the fully relaxed diamond unit cell of pure Si.
Since the equilibrium volume and shape of the unit cell can
change substantially upon varying the alloy composition, it is
important to use measures of finite strain that are invariant to
rigid rotations. The Green-Lagrange strain can serve this pur-
pose, but for first-principles free-energy surfaces expressed in
terms of symmetry adapted strain order parameters, it is often
more convenient to work with the Hencky strain [43,64,65].
This is because the symmetry invariant strain order parameter
e1 is then directly proportional to the volume change, and any
variations in the symmetry breaking strain order parameters,
e2, . . . , e6, at constant e1, occur at constant volume [43]. Due
to the reliance on the same reference state for strain at all com-
positions, the strain variables can be separated into a chemical
strain echem

i (x), which depends on the alloy composition, and
an elastic strain eelast

i , according to

ei = echem
i (x) + eelast

i . (15)

The chemical strain corresponds to the strain that minimizes
the free energy at each composition. The elastic strain then
measures deformations of the crystal relative to its equilib-
rium dimensions at that composition given by echem

i (x). It is
important to note that the strains are all measured relative
to a high-symmetry reference state that is independent of
composition and usually chosen to be one of the pure end
members of the alloy.

The strain plus configuration cluster expansion can be
used to treat an alloy whose parent crystal structure is sus-
ceptible to a group/subgroup symmetry breaking of its unit
cell due to a variation in composition. A common example
occurs when a cubic phase undergoes a tetragonal distor-
tion due to an electronic instability induced by a change in
the composition of the alloy. The reference state for strain
should then be chosen to have the highest symmetry such
that all symmetrically equivalent lower symmetry variants
can be described with a common strain plus configuration
cluster expansion. Many alloys host multiple parent crystal
structures [66] that are not related through a group/subgroup
symmetry relationship with respect to strain and small atomic
displacement degrees of freedom [67]. Treating these sys-
tems requires the parametrization of a separate strain plus

configuration cluster expansion for each distinct parent crystal
structure.

While contributions to the free energy due to vibrational
excitations have been neglected in our study of the Si-Ge
alloy, these can be included in a natural way using standard
coarse-graining techniques [68]. For each enumerated chem-
ical configuration and strain state, it is possible to calculate
the harmonic vibrational free energy [69–72]. The resulting
harmonic free-energy surfaces can then be used to train a
strain plus configuration cluster expansion with temperature-
dependent ECI. Monte Carlo simulations applied to the strain
plus configuration cluster expansion will then generate ther-
modynamic properties that account for configurational and
harmonic vibrational excitations. The resultant free-energy
surfaces are at the level of a generalized quasiharmonic ap-
proximation but depend on the full strain tensor and account
for configurational degrees of freedom.

Free-energy surfaces that explicitly depend on composition
and strain are the natural ingredients to phase-field simula-
tions [38] of microstructure evolution that couples chemical
redistribution through diffusion with elastic driving forces due
to coherency strains [39]. A phase field model that describes
coherent microstructure evolution departs from a free energy
of the form ∫

V
[ f (T, x, �e) + γ (T, x, �e)]

d�r
v

, (16)

where the first term of the integrand is the homogeneous free
energy and the second term collects gradient energy contribu-
tions that correct the homogeneous free energy in the presence
of gradients in composition and strain. The gradient energy
contributions take the form

γ (T, x, �e) =
∑
α,β

Kα,β (x, �e)
∂x

∂rα

∂x

∂rβ

+
∑
i, j

∑
α,β

�
i, j
α,β (x, �e)

∂ei

∂rα

∂e j

∂rβ

+
∑

i

∑
α,β

�i
α,β (x, �e)

∂x

∂rα

∂ei

∂rβ

, (17)

where rα and rβ represent components of a Cartesian vector,
and Kα,β , �

i, j
α,β , and �i

α,β are gradient energy coefficients. The
symmetry of the parent crystal imposes constraints between
the different gradient energy coefficients [73].

Gradient energy contributions are only strictly necessary
if the homogeneous free energy exhibits negative curvatures
along particular directions in the variable space spanned by
x and e1, . . . , e6. The gradient energy term then regular-
izes the homogeneous free energy in phase-field simulations
of spinodal decomposition or ordering reactions [74–76].
The calculated chemomechanical free-energy surfaces of the
GexSi1−x alloy have positive curvatures with respect to both
composition [Fig. 4(d)] and strain [Fig. 4(c)]. It is only along
directions that mix composition and the e1 strain that nega-
tive curvatures emerge in the chemomechanical free energy
of GexSi1−x, as is evident in Fig. 4(b). A description of
spinodal decomposition in the GexSi1−x alloy would then
require symmetry allowed gradient energy coefficients �i

α,β

that couple gradients in composition with gradients in strain,
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i.e., (∂x/∂rα )(∂ei/∂rβ ). This is an overlooked subtlety in
treatments of spinodal decomposition in the presence of co-
herency strain, where a negative curvature with respect to the
composition axis only is generally assumed and gradient en-
ergy terms that couple gradients in composition with gradients
in strain are neglected [74,75,77]. Some multi-component
solids can also exhibit negative curvatures with respect to
symmetry breaking strains, allowing for the occurrence of
chemomechanical spinodal decomposition [39,63,78]. In this
case, strain gradient energy contributions must be included
in the free-energy description [79]. The chemomechanical
free energy can also be extended to include a dependence on
order parameters that track chemical orderings over the parent
crystal structure [31,40].

Cluster expansions that only depend on chemical configu-
rational degrees of freedom are unable to accurately treat the
long-range effects of coherency strains when the expansion
is truncated, instead being most suited for the calculation
of the thermodynamic properties of homogeneous phases.
The mixed basis cluster expansion approach of Laks et al.
[35] was designed to rectify this deficiency. While a pow-
erful method to model alloy thermodynamics [80–85] and
coherent multi-phase equilibrium at the meso scale [86], the
method does not enable the calculation of free energies that
explicitly depend on strain. Furthermore, it is considerably
more complex than a real-space cluster expansion that can
be truncated beyond a maximal cluster size, as it requires
the calculation of the constituent strain energy and frequent
evaluations of Fourier transforms within Monte Carlo sim-
ulations. Finally, while such a treatment can be expected to
be rigorous for systems that exhibit simple miscibility gaps,
it becomes more questionable when complex ordered phases
that cannot be described as simple layered orderings are sta-
ble. The strain plus configuration cluster expansion introduced
in this paper addresses many of the shortcomings of both the
real-space and mixed-basis cluster expansions for solids that
can undergo large variations in volume and group/subgroup
symmetry breaking strains with composition. As a surrogate
model for first-principles statistical mechanics simulations,
the strain plus configuration cluster expansion should be a
convenient compromise between the more restrictive con-
figuration only cluster expansions [25,30,35] and the more
versatile machine-learned interatomic potentials [87–89],
which treat all degrees of freedom, but require a substantially
larger effort to train with first-principles electronic structure
calculations.

V. CONCLUSIONS

We have described a statistical mechanics approach to
calculate chemomechanical free energies that depend on tem-
perature, composition, and strain. This is enabled with an
extension of the alloy cluster expansion to also include a
dependence on homogeneous strain variables. The symme-
try of the parent crystal structure imposes constraints on the
form of the expansion basis functions. To illustrate the ap-
proach, we calculated the chemomechanical free energy of
the Si-Ge alloy. In the absence of coherency constraints at
zero pressure, the alloy has phase separating tendencies. Co-
herency constraints, however, modify phase stability and lead
to mixing tendencies among Si and Ge on the diamond parent
crystal structure. Chemomechanical free-energy surfaces that
depend not only on temperature and composition but also
explicitly on finite measures of strain are essential ingredients
to rigorous phase field models of coherent microstructure
evolution.
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