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Phase field crystal modeling of grain boundary structures in diamond cubic systems
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Phase field crystal (PFC) modeling has proved to be a versatile numerical tool in the analysis of crystalline
microstructures. Most often, however, the focus is put on bulk crystal behavior, while crystal defects such as
grain boundaries (GBs) are less explored. This is, in particular, the case for crystal structures beyond fcc and
bcc. In this work, the possibilities and challenges in adopting PFC to diamond cubic (DC) crystal structures is
investigated. Three different PFC models are considered for this purpose. One of them was published previously,
and two are modifications proposed in the present work. The models are compared in terms of both DC phase
stabilization and their ability to provide relevant GB structures. The models employ combinations of two- and
three-point correlations, and the addition of a three-point correlation is found to be required for stabilization of
the expected DC GB structures. It is concluded that although each of the models has limitations in terms of the
GB structures which can be stabilized and performance in terms of phase stability, key PFC components for
successful modeling of DC structures can be identified.
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I. INTRODUCTION

Extending the phase field crystal (PFC) method to more in-
volved crystal structures, beyond fcc and bcc, continues to be
a main driver for PFC development. Being able to model the
diamond cubic (DC) crystal structure is particularly desirable
due to its prevalence in materials of technological signifi-
cance, such as silicon, which is critical in applications like
integrated circuits and solar cells. In these applications, the ef-
fect of defect structures and their evolution within the material
are of particular interest [1,2]. Aiming at such defect struc-
tures, the extended temporal timescales offered by the PFC
framework compared to alternative methods such as molec-
ular dynamics (MD) while still retaining atom-scale spatial
resolution is particularly attractive. However, the development
and use of PFC models for DC structure simulations are, to
date, limited and primarily focused on the stabilization of bulk
phases, with insufficient consideration of the produced defect
structures, such as grain boundaries (GBs), which are pivotal
for a wide range of technical applications.

The possibility of studying DC crystals within the PFC
framework is not apparent at first glance, as these crystals
form through covalent bonding, compared to the metallic
bonding of metallic systems usually investigated using PFCs.
In DC systems, such as silicon, each atom strives to form
bonds with four other atoms in a tetrahedron, forming bond
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angles of 109.5◦. Thus, atoms in a DC crystal tend to form
structures that minimize bond angle variation and the pres-
ence of dangling bonds, rather than just minimizing excess
volume, as is commonly the case for metallic systems [3].
These two aspects are not usually considered in PFC model-
ing. Models that do consider angular dependences in the atom
correlation have been developed, and some relevant models
are investigated in the present study. Currently, four main
PFC models for achieving a DC structure are known to the
authors. To begin with, in [4] the DC-relevant peaks for the
two-point correlation used in the structural phase field crystal
(XPFC) method were identified. This model was later used
in [5] to study dislocation half loops. However, the model
includes only a two-point correlation without an explicit angle
dependency.

The lack of angle dependence was later addressed by an-
other model, developed in [6], where a three-point correlation
was introduced to target certain angles between reciprocal
vectors. The discussion in [6] on the properties of the DC
model is brief, however, and the authors expressed that there
was some difficulty in stabilizing the DC lattice structure.

More recently, the effects of using up to a four-point
correlation on the stabilization and material properties of a
wide variety of crystal structures, including a DC structure,
were investigated in [7,8]. With up to a four-point correlation,
an explicit angle dependence can be formulated between a
family of reciprocal vectors while still satisfying the resonant
conditions. Of course, by adding higher-order correlations the
computational effort is increased compared to using only a
two-point correlation.

The last model for DC structure, proposed in [9], is
implemented using the amplitude expansion of the phase-
field crystal model, a method sometimes referred to as
APFC. In APFC, the reciprocal space is reduced to the main
crystal symmetries using a multimode approximation. This
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approximation makes even larger domains accessible, but
some structural information is lost.

A final notable contribution, although it does not directly
target DC structure, is the work presented in [10], where
a two-dimensional (2D) three-point correlation function de-
fined in spatial coordinates was introduced. Most important
to this work, they successfully replicated graphene poly-
crystals, achieving GB structures that closely matched those
observed in real graphene systems. This result is significant
as graphene, like DC, forms through covalent bonding.

In order to limit the scope of this work, only the models
presented in [4,6,10] are considered. However, they can be
regarded as special cases of the more general model presented
in [7,8], restricted up to the three-point correlation. Further-
more, [9] is a limitation of the reciprocal space compared to
the other models and is considered to be outside the scope of
the present study.

The problem of constructing interaction potentials is not
limited to PFCs and appears in many situations, generally
termed self-assembly problems, with MD being a notable
example. These self-assembly methods have been used to
construct potentials that stabilize DC crystals, using both
isotropic [11] and nonisotropic [12,13] pair interactions. DC
GB structures obtained with MD are considered in the present
work for comparison against the PFC results. The Tersoff
potential, frequently used in MD studies on DC, is also
employed in postprocessing bond networks from the PFC
simulations.

As previously noted, DC structures have been studied
within the PFC framework, although the focus has primarily
been on the stabilization of a homogeneous DC phase and its
bulk behavior, without considering the local defect structure
([9] being the exception) such as GBs. To address this gap, the
present study investigates the possibilities offered by some of
these existing models, with some additions, for achieving GB
structures consistent with the literature on DC systems.

This paper is structured such that first, the general PFC
energy and dynamical equation are presented in Sec. II.
Following that, the simulation geometry and the different sim-
ulation scenarios considered are presented in Sec. III. Then,
three different PFC models that have been investigated are
presented in Secs. IV–VI. The models’ abilities for providing
the appropriate GB structures and the results regarding their
respective suitabilities for modeling polycrystalline DC sys-
tems are also discussed. Finally, some concluding remarks are
presented in Sec. VII.

II. PFC MODEL

In this section, the general PFC free energy functional and
dynamical equation used in this work are presented. Only the
general form of the free energy is shown initially, with three
sets of specializations, corresponding to the three DC models
being investigated, detailed in Secs. IV–VI.

The total normalized PFC energy F , is generally written as
a sum of the ideal gas energy Fid and the excess energy Fexc

following

F [n(r)] = Fid[n(r)] + Fexc[n(r)], (1)

which is a functional of the density field n, itself a function of
the spatial coordinates r(x, y, z). Following [14], the ideal gas
energy is expressed as

Fid[n(r)] =
∫

dr
(

1

2
n(r)2 − 1

6
n(r)3 + 1

12
n(r)4

)
. (2)

The excess energy is adopted as an expansion up to third-
order correlations, with the excess energy being a sum of
the energy contributions from second-order and third-order
correlations, denoted as F2 and F3, respectively, to provide
Fexc = F2 + F3. In this work F2 is defined as

F2[n(r)] = −1

2

∫∫
drdr′n(r)n(r′)C2(|r′ − r|)

= −1

2

∫
drn(r)(C2 ∗ n)(r), (3)

where C2 is the two-point correlation, taken to be an
orientation-invariant function of the distance between the two
spatial points r and r′. Note that the convolution operator ∗
is introduced in Eq. (3). Finally, the third-order correlation is
taken as

F3[n(r)] = −1

6

∫∫∫
drdr′dr′′n(r)n(r′)n(r′′)

× C3(r′ − r, r′′ − r), (4)

where C3 is the three-point correlation function that depends
on the angle between the two vectors r′ − r and r′′ − r, deter-
mined from spatial points r, r′, and r′′. The specific forms of
C2 and C3 are discussed in subsequent sections.

Once the free energy has been determined, the system is
set to evolve using the standard form of locally conserved
dissipative dynamics through

∂n

∂t
= M∇2 δF [n]

δn
, (5)

where the mobility constant M is set to unity in this work.
A semi-implicit spectral scheme, consistent with [15], is used
to solve Eq. (5). The additional contribution from third-order
correlations considered in this work, not included in [15], is
nonlinear and therefore is evaluated at the current time step,
i.e., explicitly. A time step of 0.001 is used for all simulations.
Furthermore, the grid spacing is set as close to 1/16 as possi-
ble while permitting variations to ensure correct domain sizes,
as discussed in [16].

III. SIMULATION GEOMETRY AND BOUNDARY CASES

A three-dimensional (3D) periodic bicrystal geometry,
with predefined symmetric tilt GBs, is used for the GB
simulations, as illustrated in Fig. 1. The necessity for a pe-
riodic domain is enforced by the spectral scheme used in
this work. Furthermore, the domain is initiated with two thin
liquid regions, and the crystals are allowed to solidify into
these regions, forming the GBs. The mean density of the
liquid regions is set to the same value as for the bulk crys-
tal. Since the GB density represents a microscopic degree of
freedom (DOF) that influences the GB structure variants, or
multiplicities, which are obtained [17], it is not expected that
all possible boundaries can be found while keeping this value
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FIG. 1. Periodic 3D bicrystal geometry for two crystals G1 and
G2 initially separated by thin liquid regions (solid gray areas) and
having a common tilt axis oriented along the z axis.

constant. However, as identification of all GB multiplicities is
beyond the scope of this work, this discrepancy is not consid-
ered further. However, a full exploration of GB multiplicity by
PFCs is possible, as discussed in [18].

To preserve the crystal periodicity, the domain size is cho-
sen to be a multiple of the periodic lengths along the y and
z directions for the selected crystal orientation. The periodic
length is determined from the crystal direction (in Miller
indices) along the coordinate axis. For example, consider the
case of a (210) tilt boundary, oriented with the plane normal
parallel to the x axis and with the tilt axis [001] oriented
parallel to the z axis. Then [−1, 2, 0] must be the crystal di-
rection parallel to the y axis. The periodic domain dimensions
are then provided by the norm of the direction described in
Miller indices, i.e.,

√
5a, a, and

√
5a, respectively, where a

is the lattice constant, set to unity in this work for all lattices
considered.

The domain length in the x direction, denoted Lx, is chosen
to be large enough to accommodate any significant elastic
effects caused by the presence of the two GBs. To find multi-
plicities of boundaries with the same macroscopic DOFs, Lx

is varied in small steps and constitutes a variation of one of
the microscopic DOFs. It is noted again, however, that finding
all multiplicities is outside the scope of this work and only a
limited part of the displacement complete lattice is searched.

A set of symmetric tilt boundaries, found in the literature
[19–26], was chosen to evaluate the final GB structures ob-
tained from the PFC simulations. This set comprises [001]
tilt boundaries, including (310), (520), (210), and (320), and
[011] tilt boundaries, including (122), (111), (311), and (211).

To more clearly present and compare the modeled GB
structures to those found in the literature, the maximum peak
positions of the density field are interpolated, as discussed in
[15], and are taken to represent the mean atomic positions.
A threshold for peak identification is used, whereby only
peak positions with an amplitude 30% or higher compared to
the maximum peak density are included such that any small
fluctuations in the density field are excluded.

A neighborhood analysis is performed around each mean
atomic position to find neighboring atoms. This information

FIG. 2. Illustration of the initial geometry for the nucleation of a
polycrystal. Cylindrical crystals are placed with random orientations
around the [011] axis, oriented parallel to the z axis, with the particles
initially separated by a liquid region (solid gray area).

is then used to construct possible bond configurations with the
requirement that each atom can form a maximum of four co-
valent bonds. The final bond configuration is therefore a best
guess, as no explicit bonding information exists within the
current PFC model. It was, however, found to be insufficient to
pair atoms based on minimum distance alone, as the resulting
bond networks did not match those presented in the literature.
To include some weight term that encourages bond angles of
109.5◦, atom bond pairs were instead identified by finding a
set of bonds that minimize the Tersoff potential energy [27], a
standard potential commonly used in MD simulations of DC
silicon. The Tersoff potential naturally includes terms for both
bond length and angle and was found to work well in forming
bonds consistent with the literature. With the use of the Tersoff
potential, the minimization procedure is set up such that, atom
by atom, a set of a maximum of four bond pairs was tested.
If the bonding resulted in a minimization of the total Tersoff
potential function, these bonds were accepted. Note that only
the accepted bond pairs were included in the calculation of
the atomwise Tersoff potential energy, and it was therefore not
based on a cutoff distance, as is the case in MD simulations.
This bond identification step was, however, solely used as
a postprocessing step to visualize a possible final GB bond
network, and the benefits of PFCs compared to MD persist.

Finally, to assess the phase stability of the DC crystal
structure for each model, nucleation of cylindrical particles
was performed in a 3D simulation domain. The model setup
for such simulations is illustrated if Fig. 2.

IV. MODEL 1: SINGLE TWO-POINT CORRELATION

The first model investigated is that presented in [4], re-
ferred to as model 1 in the following. It is based on the XPFC
formalism, introduced in [14], where the reciprocal of the
two-point correlation function Ĉ2 is defined in Fourier space
as the envelope of a sum of Gaussian peaks following

Ĉ2(k) = max
i

[
Ai exp

(
− (|k| − ki )2

2γ 2
i

)]
, (6)
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(a) (b)

FIG. 3. Structure of the [001](320) boundary retrieved using the
model presented in [4], shown both (a) as a stick-and-ball repre-
sentation and (b) as contour surfaces superimposed on the bonds.
The black dots in (a) represent local maxima, interpolated from the
density field, and the red dots are manually added based on the
contour surfaces in (b). The colored polygons in (a) are added to
more clearly show the different SUs that form the boundary.

where k is the reciprocal vector, Ai is the amplitude of the ith
symmetry plane, ki is its wave number, and γi is the width of
the Gaussian peak. Following [4], Gaussian peaks centered at
k1 = 2π

√
3 and k2 = 2π

√
8 are used and facilitate the stabi-

lization of the DC phase without a three-point correlation. The
amplitudes are set to A1 = A2 = 1, representing a temperature
of zero in [4]; γ1 = γ2 = 1, and the mean density is set to
−0.05. These parameter choices position the system just right
of the liquid-DC coexistence region in the phase diagram
presented in [4].

While the solidification of bulk crystals worked well, out
of the eight GBs considered, it was found that only the
[001](320) GB, shown in Fig. 3, appeared similar to the
expected GB structure. Figure 3(a) shows a stick-and-ball
representation of the crystal structure, where the black dots
correspond to maxima (“atoms”), interpolated in the density
field, and Fig. 3(b) shows contours of the density field, with
the reconstructed bond network shown in the background for
clarity. The red dots represent lattice points that were added
manually and are not local density peaks, but rather are part
of an extended density region, as noted in the contour plot in
Fig. 3(b). The colored polygons are added to show the differ-
ent structural units (SUs) that make up the GB. For the other
boundaries examined, broader defect structures or excessive
grain growth resulting in a single grain was observed. An
example of such an extended “defect” is shown in Fig. 4 and
does not represent a physically feasible structure.

FIG. 4. Density field contour surfaces for a [001](310) boundary
using model 1 based on the model presented in [4]. This type of
structure is considered nonphysical.

FIG. 5. Fourier transform of the repulsive correlation function
[see Eq. (8)], with a maximum peak value of 1 at |k| = 2π

√
3.

Different peak widths and numbers of peaks used in the
correlation function were examined, along with different val-
ues of the mean density, but no significant improvements were
found using only a two-point correlation. A main conclusion
from the investigation of model 1 is therefore that using only a
two-point correlation is insufficient to correctly represent the
DC structure. However, using more peaks or broader peaks
appeared to mitigate the wide defects shown in Fig. 4, an
insight used in the third model presented in this paper (see
model 3 in Sec. VI).

V. MODEL 2: USING A THREE-POINT CORRELATION

As stated in the Introduction, the model proposed in [10]
shows promise due to its explicit connection to bond lengths
and angles. Additionally, it has the ability to reproduce poly-
crystalline structures for graphene which have also been
observed in experiments. Using the same ideas as presented in
[10] and formulations for the three-point correlation utilized
in [6], a model with an improved defect structure is obtained.
This new model is referred to as model 2 in the following.

Following [10], the two-point correlation function consti-
tutes a simple repulsive term expressed as

C2(r) =
{−R, if |r| � r0,

0, otherwise, (7)

with R being the well depth and 2r0 being the width. The 3D
Fourier transform of Eq. (7) is written as

Ĉ2(k) = −4πRr3
0

j1(r0|k|)
r0|k| , (8)

where j1 is the first-order spherical Bessel function. Following
[10], the first peak of Ĉ2 is fitted to the primary recipro-
cal vector of the crystal lattice, effectively controlling the
length scale. Thus, setting r0 = 5.764/k1, with k1 being the
length of the main reciprocal vector, achieves this. In this case
k1 = 2π

√
3, which yields r0 = 0.5296. Furthermore, R is set

such that the amplitude at k1 equals unity, which is achieved
with R = 18.66. The final form of Ĉ2 used in this work is
shown in Fig. 5.

To more accurately describe the angular dependence on
neighboring lattice points, a three-point correlation is formu-
lated in spatial coordinates. In [10], this is done to permit
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2D crystals with n-fold geometry. However, this model is not
directly transferable to three dimensions. Therefore, following
[6], a 3D real three-point correlation function, akin to that
presented in [10], can be formulated as a sum of products
between directionally variant two-point correlation functions
C(lm)

2 . In the general case this correlation is written as

C3(r1, r2) =
lmax∑

l

αl

m=−l∑
l

C(lm)
2 (r1)C(lm)

2 (r2), (9)

where r1 = r′ − r and r2 = r′′ − r and can also be identified
in Eq. (4). Furthermore, αl are weight factors given by a
polynomial fit of Legendre polynomials to an angular goal
function for the free energy, as described in [6], up to a
total of lmax polynomials and with the possibility for αl to be
zero for l < lmax. Furthermore, (lm) refer to the specific real
spherical harmonic function, with the integers l and m, that
is included in the two-point correlation. For more details and
a full derivation, the reader is referred to the Appendix. The
Fourier transform of the two-point correlation functions C(lm)

2
is written as

Ĉ(lm)
2 (k) = 4πβa2

0il

√
4π

2l + 1
Ylm(k̂) jl (ka0) (10)

where β is a weight factor and a0 can be interpreted as the
bond length; in this work a0 = √

3/4. Notice that the form
of Eq. (10) is similar to that given in [6], but with different
radial functions. Incorporating Eq. (9) into the excess energy
in Eq. (4) yields

F3 = −1

6

lmax∑
l=0

αl

l∑
m=−l

∫
drn(r)

(
C(lm)

2 ∗ n
)2

, (11)

and its functional derivative is evaluated as

δF3

δn
= −1

6

lmax∑
l=0

αl

l∑
m=−l

{(
C(lm)

2 ∗ n
)2

+ 2(−1)lC(lm)
2 ∗ [

n
(
C(lm)

2 ∗ n
)]}

, (12)

where the parity property of spherical harmonics has been
used.

As previously mentioned, the weight factors αl determine
the angular dependence of the free energy in Eq. (11). In [6],
they were set by fitting a Dirac δ distribution, which makes the
calculation trivial. However, there are no formal restrictions
on the form of this fitting function, and in this work a broad
Gaussian is used instead to find appropriate values. This fitting
yields weight factors of α2 = −0.8 and α3 = 1.0, with the re-
maining αl set to zero. With these values the angular function
is closer to the goal value of 109.5◦, compared to using the αl

values obtained by following the methods in [6], as shown in
Fig. 6. Fewer modes are also used, which reduces the compu-
tational cost as each C(lm)

2 that is included requires the same
amount of memory as the two-point correlation C2. Also, each
included Legendre polynomial introduces 2l + 1 correlations.
Therefore, the inclusion of higher-order Legendre polynomi-
als is more costly, both in terms of memory and because each
additional mode adds some extra computations. However, as
there are many ways to optimize these calculations, for ex-
ample, utilizing the symmetry of the correlation functions,

FIG. 6. The angular part of C3 [see Eq. (9)] used in this work
(blue) compared to that obtained by fitting to Dirac δ distributions
(orange) with lmax = 3. Red dots indicate the maximum values of the
functions.

no explicit performance comparison is demonstrated in this
work.

Studying the same GBs as in the previous section by us-
ing model 2 and by setting β = 0.55, an improvement of
the GB structures is observed compared to the result from
using model 1, with all boundaries having sharp interfaces.
However, just as with model 1, not all GB structures can be
matched with those found in the literature. Only five of the
nine tested boundaries matched the expected structures and
are shown in Fig. 7. An example of a boundary that did not
match the literature, specifically the [001](320) boundary, is
shown in Fig. 8.

With the addition of sharp interfaces and good phase sta-
bility when nucleating from a domain with small dispersed
particles, polycrystal simulations using model 2 are improved
compared to those using model 1. An example of a polycrystal
simulation is illustrated in Fig. 9, where the excess energy
field is smoothed using a Gaussian kernel. This smoothing
operation is applied to remove the atomic variation in the
energy field, so that the local mean value can be evaluated
instead. This representation is used to identify boundaries of
low excess energy. Three of these boundaries correspond to
symmetric tilt boundaries with typical low-energy SUs, which
are extracted and also shown in Fig. 9. The other boundaries
do not have symmetric tilt character, and their correspondence
to real crystals has not been investigated.

If model 2 could be refined further to better capture the
expected GB structures while preserving this crucial phase
stability, the resulting model would hold great promise for DC

(122) (111) (311) (133) (130)

(a) (b) (c) (d) (e)

FIG. 7. Boundary structures of (a)–(d) some [011] and (e) one
[001] symmetric tilt GBs. The colored polygons are added to more
clearly show the SUs that make up the boundaries.
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(a) (b)

FIG. 8. GB structure of the [001](320) symmetric tilt boundary,
shown both (a) as a stick-and-ball model and (b) as contour surfaces
of the density field.

simulations. Model 2 also has the potential to be extended to
model other covalent systems in three dimensions.

VI. MODEL 3: A SUCCESSFUL PAIRING

The last model evaluated in this work is achieved using the
two-point correlation function introduced in Sec. IV together
with the three-point correlation introduced in Sec. V. This
new model, hereafter referred to as model 3, performs the
best in terms of GB structure formation among the models
considered in this work. However, some problems regarding
phase stability, compared to models 1 and 2, are identified, as
will be discussed in the last part of this section.

To establish model 3, some initial modifications are made
to the correlation functions of the two previous models. For
the two-point correlation introduced in Sec. IV, it was found
that excessively wide GBs could be remedied by using broader
peaks, which results in a shorter spatial range of C2. Setting
γi = 5 is found to work well. Furthermore, the amplitude for
the three-point correlation, introduced in Sec. V, is reduced to
β = 0.25 to keep the system stable in the DC phase.

With this combination, sharp interface defects are ob-
served, as shown in the density field contour plot in Fig. 10.
It is also found that all of the simulated GBs provide the
expected GB structures, including some multiplicities. These
are shown for the [001] and [011] tilt boundaries in Figs. 11
and 12, respectively. Multiplicities with the same macroscopic
DOFs are distinguished by subscripts (·)i. Of course, other
boundaries were also identified for different choices of mi-

(a)
(b)

(c)

FIG. 9. A smoothed excess energy field for a polycrystal with
a domain size of 50 × 50 × 1. Some low-energy boundaries are
identified as being made up of known low-energy SUs.

FIG. 10. Density contour surfaces of the [001](320) GB showing
well-defined density maxima (i.e., atom positions).

croscopic DOFs, but for the sake of clarity in the comparison
between the PFC models, they are omitted in this work.

Most of the presented GBs fit those found in the literature,
with two exceptions. To start with, we consider the [001]
tilt boundaries in Fig. 11, where larger SUs are identified
as a combination of smaller SUs, hereafter called assem-
blies. These assemblies are marked by capital letters and
include the part of the GB between the red lines. From these
constructions it is clear that the [001](520) boundaries are
made up of different sets of the assemblies also identified
in the [001](210), [001](310)1, and [001](310)2 GBs. The
[001](520)1 boundary represents a GB structure variant also
observed in [22]. However, the formation of this second mul-
tiplicity, [001](520)2, might be reasonable as [001](310)2 is
expected to have lower energy than that of the [001](310)1

boundary according to other studies, e.g., in [21], and thus,
the C assembly should yield lower GB energy than A. A
thorough examination of whether this combination of GB SUs
yields lower energy for the [001](520) boundary in these PFC
simulations is, however, outside the scope of this work. But
the GB energy can be computed, following the methodology
presented in [16].

The second variation in GB structure relative to what
is expected from the literature is that of the [011](122)1

(a) (b) (c)

(d) (e) (f)

FIG. 11. GB structures of some [001] symmetric tilt GBs. Sub-
scripts (·)i refer to multiplicity ordering. The red circle was added
manually in (b), as the peak had a lower amplitude than the threshold
used for peak identification but still represented a local maximum.
Capital letters refer to the assembly of SUs between the red lines,
and the colored polygons are added to more clearly show the SUs
that make up the boundaries.
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(a) (b) (c)

(e) (f) (g)

(d)

(h)

FIG. 12. GB structure of some [011] symmetric tilt GBs. Sub-
scripts (·)i refer to multiplicity ordering. The red encircled atom
in (e) indicates a difference from those found in the literature and
should yield larger energy due to the unpaired atom. Furthermore,
the colored polygons are added to more clearly show the SUs that
make up the boundaries.

boundary, where an extra atom is present, indicated by the red
circle and arrow in Fig. 12(e). From the bond optimization
step using the Tersoff potential, this atom was omitted, and it
instead formed a bond structure similar to that in the literature,
e.g., in [25]. Thus, the bond structure was edited manually to
the one presented in Fig. 12(e). Despite this, a multiplicity
of [011](122) matching that in the literature was identified.
However, only the boundary with this extra atom is included
to show the wide range of structures that can form. It has yet to
be determined how this difference affects the PFC GB energy,
as this multiplicity should result in higher energy due to the
unpaired atoms.

To further compare models 2 and 3 in a more quantitative
sense, the root-mean-square errors, evaluated relative to the
perfect crystal state, of the bond lengths and angles are cal-
culated for each GB included in Fig. 7. The result is shown
in Fig. 13, for which the minimum and maximum atomic
errors are indicated by the span of the vertical lines and the
median values for all atoms considered are shown by dots.
As the largest error is calculated for the GB atoms, a lower

maximum value corresponds to a better GB match to the goal
bond length and angle. However, no apparent superiority can
be identified for any one model in these comparisons because
for some boundaries model 2 performs better and in other
cases model 3 performs better.

The closing consideration is that of nucleation. In this
regard model 3 does not perform fully satisfactorily because
it tends to form honeycomb rod structures coexisting with the
DC phase. This might not be surprising because the intersec-
tion of a honeycomb rod (forming a 2D honeycomb lattice)
has 120◦ bond angles similar to those of DC. In simulations
of a 3D domain initiated as a liquid with small dispersed
particles, the domain tends to form three distinct phases: DC
regions with the prescribed mean density, honeycomb rods
in regions with larger mean density, and liquid in (depleted)
regions of lower mean density. However, if a polycrystal is
initiated as fully occupied by grains with DC structure, it tends
to be stable in most cases, without any decomposition of the
mean density.

To find more appropriate model parameters for which only
the DC phase exists, a phase diagram would be beneficial. It
would then become apparent whether there are parameter val-
ues for which only DC exists. However, due to the complexity
of the model, it would not be adequate to just use the low mode
approximation, as done in [28]. Instead, a numerical model
akin to that used in [29] would have to be used. This approach
would, however, introduce additional complexities such as
small variations of the lattice spacing for different mean den-
sities and between the DC and honeycomb rod phases. Such
model development is outside the scope of the current study
but should be considered in further development of model 3.

Last, the formation of the honeycomb rod phase and the
instability of the DC phase can likely be attributed to the use of
broad Gaussian peaks, as similar structures emerged when the
single two-point correlation function with equally broad peaks
was used. This is consistent with what was found in, e.g.,
[30], where it was concluded that broad correlation kernels
led to higher defect stability at the expense of crystal stability,
similar to what is found here. The emergence of the honey-
comb rod phase might be mitigated by employing the vacancy
PFC method introduced in [31], where a local nonlinear cutoff

(a) (b)

FIG. 13. Root-mean-square errors, evaluated relative to the perfect crystal state, for (a) the bond lengths and (b) angles for atoms in a GB
region of matching multiplicities retrieved using both models 2 and 3. The range of values calculated for all atoms in a region containing a GB
is indicated by a vertical line, and a dot indicates the median of all values.
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was included, which strongly discourage one-mode solutions.
This addition has yet to be tested and is left for future
work.

VII. CONCLUSIONS AND FINAL REMARKS

In this work, three different PFC models for DC systems
were investigated. These tests concluded that simulation of
DC systems using the PFC framework is more challenging
than more commonly studied metallic systems, such as fcc
and bcc systems, which fit established results regarding, e.g.,
GB structure and energy [16]. Despite this, two promising
avenues were identified in models 2 and 3 using a three-point
correlation function defined in spatial coordinates, with ex-
pected GB structures successfully stabilized. However, model
2 is able to stabilize only some of the expected GB structures
considered in this work. For these GBs the structures are
comparable to those found with model 3. These results might
be improved by introducing an attractive part similar to that
used in the quasiparticle approach [12]. This added degree
of freedom might allow for better control of the low-energy
defects.

Finally, in the considered models there seems to be a com-
promise needed between defect and phase stability, similar to
that shown in [30]. This was especially noted for model 3.
However, if the energy of the honeycomb rod phase can be
reduced such that this phase does not form, model 3 is likely
to work well for DC simulations. It is noted that the inclusion
of a stabilization term like that in [9] or a local nonlinear cutoff
term similar to that in [31] can be used to stifle the growth of
a honeycomb rod phase.
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APPENDIX: A 3D REAL THREE-POINT CORRELATION

The derivation of the three-point correlation function
used in this work is presented here. It can be seen as
a 3D extension of the correlation presented in [10] or a
variation of that derived in [6]. The three-point correla-
tion function C3(ri, r j, rk ) = C3(r j − ri, rk − ri ) = C3(r1, r2)
is devised such that it minimizes the energy for points located
a certain distance from a center point, |r1| = |r2| = a0, form-
ing a specific angle θ0 = arccos[r1 · r2/(|r1||r2|)]. For this
purpose it is defined in spatial coordinates similar to what is
done in [10], while a definition in reciprocal space is used
in [6].

Following [6], the computations will be easier if a form of
C3 can be found such that

C3(r1, r2) =
∑
i=1

C(i)
3 (r1)C(i)

3 (r2). (A1)

To achieve this the following ansatz is made:

C3(r1, r2) = β2R(|r1|)R(|r2|)
lmax∑
l=0

αlPl (r̂1 · r̂2), (A2)

where β is a constant, R is some radial function, αl are weights
for the Legendre polynomials Pl , and r̂i = ri/|ri|. As the Leg-
endre polynomials form an orthogonal basis, any continuous
angular function can be represented. Using additional terms
will, however, increase the computational effort. It can be
noted that the difference from [6] is that Eq. (A2) is expressed
in spatial coordinates, instead of in reciprocal space. This
was done to get a more direct representation of the bonding
characteristics for atoms in the DC structure, like in [10].

The Legendre polynomials can be written as a sum of real
spherical harmonics, such that Eq. (A2) takes the form

C3(r1, r2) = β2R(|r1|)R(|r2|)
lmax∑
l=0

αl

×
l∑

m=−l

4π

2l + 1
Ylm(r̂1)Ylm(r̂2), (A3)

from which the two-point correlation C(lm)
2 can be identified

as

C(lm)
2 (r) ≡

√
4π

2l + 1
βR(|r|)Ylm(r̂) (A4)

such that

C3(r1, r2) =
lmax∑

l

αl

m=−l∑
l

C(lm)
2 (r1)C(lm)

2 (r2). (A5)

Equation (A5) is the form expressed in Eq. (A1) and is
identical to that given in [6], except that the (−i)l term was
omitted because it is not needed to keep C(lm)

2 real. When
using a spectral method to solve the PFC equation, the Fourier
transform of Eq. (A4) is desirable. This can be found as

Ĉ(lm)
2 (k) =

√
4π

2l + 1
β

∫
R(r)Ylm(r̂)eir·kdr, (A6)

where r = |r|. Using a plane wave expansion, this can be
written in the form

Ĉ(lm)
2 (k) =

√
4π

2l + 1
β

∫
R(r)Ylm(r̂)4π

×
∞∑

l ′=0

l ′∑
m′=−l ′

il ′ jl ′ (kr)Yl ′m′ (r̂)Yl ′m′ (k̂)dr (A7)

Reformulating Eq. (A7) in spherical coordinates and mov-
ing the sum outside the integral result in

Ĉ(lm)
2 (k) =

√
4π

2l + 1
β4π

∞∑
l ′=0

l ′∑
m′=−l ′

il ′Yl ′m′ (k̂)
∫

jl ′ (kr)R(r)r2dr

×
∫

Ylm(θ, φ)Yl ′m′ (θ, φ) sin θdθdφ. (A8)

It is apparent that due to the orthogonality of the nor-
malized spherical harmonics, the last integral in Eq. (A8) is
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evaluated to δl ′lδm′m, with δ being the Kronecker delta. Thus,
Eq. (A8) is reduced to

Ĉ(lm)
2 (k) =

√
4π

2l + 1
β4π ilYlm(k̂)

∫
jl (kr)R(r)r2dr. (A9)

The only thing left is to determine a suitable form for
the radial function R. Following the choice made in [10], the
radial function is chosen to be R(r) = δ(r − a0), where a0 can

be interpreted as the bond length. The Fourier transform of
C(lm)

2 (r) then becomes

Ĉ(lm)
2 (k) = 4πβa2

0il

√
4π

2l + 1
Ylm(k̂) jl (ka0). (A10)

All components of the three-point correlation function used in
the present work are thereby available.
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