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Markov chain Monte Carlo simulations, combining the sampling of the position of the particles and their
chemical nature, are very useful when calculating, for example, average site occupancies at crystalline defects in
alloys. Unfortunately, when the relaxations around the solutes are large, the exchange moves can be systemati-
cally rejected because of atoms overlapping. As a consequence, the simulations are often trapped in nonphysical
configurations. In this paper, the “Smart Darting” method from Andricioaei et al. is adapted and extended to
propose a solution to this limitation. The method is tested in a particularly demanding case: the sampling of the
arrangements of delocalized vacancies and divacancies in grain boundaries, both in the fcc and the bcc structure.
Beyond the methodological aspects, intergranular vacancy clusters are interesting in several contexts, such as
ductile fracture, irradiation, or thin-film dewetting, and therefore several properties have been measured that
can be useful for mesoscale modeling: segregation energies, effective diffusion barriers in and out of the grain
boundaries, vacancy-vacancy binding energies, and elastic dipole tensors.
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I. INTRODUCTION

Vacancy clusters and voids, particularly at interfaces, are
important in various contexts. They are at the origin of crack
embryos in plasticity-related fractures: they form at disloca-
tion boundaries during ductile fracture of pure metals [1,2]
and at the interface between the matrix and persistent slip
bands in the early stages of fatigue crack formation [3]. In
the presence of interstitial solutes, they can also lead to the
formation of bubbles. Miura et al. [4] have shown by mi-
crotensile testing of individual grain boundaries that a critical
He bubble size and intercavity spacing, in the 5 nm range, can
induce a transition from ductile fracture to intergranular brittle
fracture, with a drop in fracture toughness. The phenomenon
can be reproduced, to some extent, by atomistic simulations
with voids only [5]. In the case of hydrogen embrittlement, the
role of nanoscale bubbles is less obvious [6], but it was shown
that submicron dislocation cells are formed along the brittle
crack path [7,8], and nanoscale roughness was measured on
the fracture surface [9]. Therefore, understanding how vacan-
cies cluster along interfaces (cell walls and grain boundaries)
under the influence of stress and temperature is important for
modeling fracture in many different conditions.

Atomistic simulations are tools of choice, with their limi-
tations, for addressing this question. Much has been learned
about single vacancies in interfaces. In fcc metals, they dif-
fuse preferentially along dislocation cores but also along the
stacking fault ribbons. The activation energy is slightly re-
duced in comparison to the bulk [10–12], but the mechanism
remains a simple vacancy-first neighbor exchange, i.e., the
relaxations of the neighbors are marginal [11]. The situation
is quite different in grain boundaries [13]. The relaxations
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are often large, especially in the configurations of low energy
(the most statistically visited), and to such an extent that the
vacancies are said to be “delocalized” [14,15]. Furthermore,
some grain boundary sites cannot host stable vacancies. This
can lead to long diffusion jumps where several atoms are
displaced [13,16]. At increasing temperature, the crystalline
order within the core of the GBs is much lower than that
in the bulk and continuously decreases until melting [13].
Stringlike cooperative motions of atoms, which are different
from the long jumps at low temperature, are activated [17,18].
It was also shown that a grain boundary emerging at a free
surface, which acts as a source of point defects (interstitials in
this case), can transition with temperature between different
structures. The reverse transformation could be obtained by
absorbing vacancies [19]. More generally, it is well known
that the construction of a grain boundary, defined by a set of
macroscopic geometric parameters, requires the optimization
of the energy with respect to microscopic parameters which
are the relative translation of the two grains, plus the num-
ber of atoms within the interface [20]. Recently, not only
the lowest-energy structures but also all metastable structures
[21,22] were found. The structural unit model was gener-
alized, and its ability to predict the stable and metastable
structures of families of tilt boundaries, as a function of
the misorientation angle, was established. The large number
of these metastable structural units, and the quasicontinuous
spectra of their excess energies, indicate that mixtures of such
structures should exist at nonzero temperature. Since they can
also have different numbers of atoms, the mixing of structural
units could be an efficient way of accommodating vacancies.
This is of particular interest for designing materials resistant
to irradiation [23–26]. In this context, detailed studies of the
absorption of vacancies were conducted in a fcc-bcc interface
composed of a network of misfit dislocations. Delocalized
vacancies were not found to attract each other, although misfit
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dislocation intersections constituted preferential segregation
sites [25]. In addition, mixed tilt/twist GBs in Cu [26] were
submitted to the absorption of large quantities of vacancies.
The same GB core structures were visited periodically during
vacancy loading when the GB changed structure by translation
and shear. Both studies show that grain boundaries can be
tolerant to large quantities of vacancies. Note that no void
formation was found by molecular dynamics. In the bulk, ex-
perimentally, void formation appears when a critical vacancy
concentration, in the range of 10−2, and at a high enough
temperature, is reached [27]. Simple atomic kinetic Monte
Carlo and simulations of phase demixion by atomistically
informed Cahn-Hilliard equations can qualitatively reproduce
the phenomenon [28].

Most of the valuable results summarized above have been
obtained by molecular dynamics (MD). However, this method
has well-known limitations, particularly concerning the lim-
ited timescale, which is somewhat compensated by working
at high temperature. In this case, the grain boundaries are
populated by defects, in addition to the vacancies deliberately
introduced in the system. They complexify the analysis and
influence the mechanisms that constitute unwanted side ef-
fects if the interest is in the low-temperature behavior. Few
studies of interfacial vacancies use elaborate versions of MD
[12,16], such as hyper-MD or temperature-accelerated dy-
namics, but these might suffer from a slowing down due to
low barriers. These methods have evolved [29,30] and, com-
bined with Adaptive Kinetic Monte Carlo (AKMC) [31,32],
have successfully simulated the dynamics of vacancies in
a thin slab, in particular the reentry of vacancies from the
surface into the subsurface on the microsecond timescale
[33]. Nevertheless, they might still be limited by the “low
barrier” problem in the case of grain boundaries because of
the transitions between structural units or by the massive
number of transition searches necessary for AKMC. When
only clustering tendencies are searched and not a realistic
dynamics, Markov chain Monte Carlo, where the full phase
space is sampled (i.e., site occupancies and relaxations), is
very useful [34]. For example, in the semi-grand-canonical
ensemble, it was used to study intergranular segregation
[35,36]. Nevertheless, it suffers from the limitation of the
vanishing acceptance rate of exchanges when relaxations
around solutes are large, which is the case for delocalized
vacancies.

In this context, we present a simulation methodology that
overcomes the trapping issue of Markov chain Monte Carlo
(MCMC). In the first part of the paper, the method is detailed
and illustrated in the case of a vacancy occupying a peculiar
GB site where it can be in two states: one localized and an-
other delocalized. The power of the method is demonstrated as
it succeeds in sampling, with a high acceptance rate, the occu-
pancy of different crystallographically equivalent positions, in
the delocalized state. Then, the average vacancy occupancies
corresponding to the equilibrium between the GB site and a
bulk site are calculated by exchange moves using two different
paths: one going through the localized state and another going
through the delocalized state. The energy barrier between the
localized/delocalized vacancy states can be tuned by chang-
ing the strain perpendicular to the interface in such a way
that the two states can be equilibrated by atomic displacement

moves only. In this condition, the occupancies calculated by
the two different paths should be equal. This demonstrates
that the method and its implementation are correct. In the
second part of the paper, the method is used to study single
vacancies and divacancies in four grain boundaries in Al (fcc)
and in bcc Fe. The efficiency is measured, and the clustering
tendency, which is quite different from one GB to another, is
analyzed.

II. MONTE CARLO METHOD

The method combines three aspects: the classical Monte
Carlo simulation of the (N,V, T ) ensemble by sampling the
particles’ positions [34], a periodic search for local energy
minima, and finally transitions between these energy minima
by the Smart Darting method [37]. In the following, each
of these aspects is detailed. All throughout this section, the
method and concepts will be illustrated by the example of a
single vacancy in the core of the �33(554)[110] symmetrical
tilt boundary, in Al, under strain.

A. Localized/delocalized vacancies

The starting point is the classical Monte Carlo simula-
tion of the (N,V, T ) ensemble [34,38]. The definition of the
microstates was modified to introduce vacancies [39]: the
volume V is split into Voronoi cells according to the stable
crystalline structure [Fig. 1(a)]. The N vectorial positions of
the particles are replaced by N displacements with respect to
the lattice nodes. It is implicitly considered that a Voronoi cell
does not contain more than one particle. If this is not the case,
the lattice should be refined by considering interstitial sites for
example. The empty Voronoi cells are defined as vacancies.
The set of N displacements is completed by a vector of M
occupancies pi such that pi = 1 if the site is occupied, zero
otherwise, and M is the number of sites contained in volume
V . If the system contains a grain boundary (GB), the lattice
is the one of the minimum energy GB structure [40]. The
configuration space is composed of the permutations of the
vacancies (a swap of the occupancies) and of the volume of
occupied Voronoi cells. The partition function to be sampled
is

QM (N,V, T ) =
∑
{pn}M

1

�3N

∫
vor

d �uN

× exp ( − β(H({pn}, (�u)N ))), (1)

where “vor” is the volume of the Voronoi cell surrounding
each lattice site, � is the thermal de Broglie wavelength
[� =

√
h2/(2πmkBT )], m is the mass of the particle, and h

and kB are the Planck and Boltzmann constants. The sampling
is done by proposing random displacement increments to ran-
domly selected particles (one particle at a time), provided the
displacements remain within the Voronoi cells (�u moves).
In addition, swapping of occupancies between first neighbors
(X moves) is also performed. For every elementary move,
the energy variation is calculated and the move is accepted
or rejected according to the Metropolis criterion. Most of the
time, a particle remains confined to the vicinity of a lattice
node. If a particle attempts to cross a facet of a Voronoi
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FIG. 1. (a) A collection of 84 microstates projected on the plane
perpendicular to the tilt axis of the �33(554)[110] symmetrical tilt
boundary, in Al, under 3% strain. Only the positions (small crosses)
in the vicinity of the vacancy (large cross) and within two (220)
layers containing the vacancy are shown. The black dots are the
lattice sites (the edges of two Voronoi cells [41] are also shown).
(b) Schematic illustration of the Smart Darting method. Xj is a local
minimum of the potential energy, and ε is the radius of the spheres
around the minima.

cell towards a vacant site by �u moves, the microstate is
updated by swapping the site occupancies and modifying the
displacements accordingly (vacancy displacements are zero).
If the relaxations around the vacancies are small, this simple
scheme is efficient [39]. Otherwise, the X moves are always
rejected because of overlaps between particles.

For example, a collection of microstates obtained by the
Monte Carlo procedure with �u moves only is presented
in Fig. 1(a). The lattice nodes are the black dots, while the
crosses represent the position of the particles. The points
within a packet grouped around a lattice node are from dif-
ferent microstates. Two Voronoi cells are also represented.
One contains the vacancy (large cross) and is therefore empty
regardless of the microstate. In the case studied, applying a
strain creates additional minima in the energy landscape [see
Fig. 4(a)]. It is illustrated by the second Voronoi cell, where
the particles are split in two packets, each corresponding to
one minimum. One of the packets is close to the lattice site
[green crosses labeled “state 1” in Fig. 1(a)] and corresponds
to the localized state of the vacancy. The other packet is far

from the lattice site (purple crosses labeled “state 0”) and cor-
responds to the “delocalized” state of the vacancy in the sense
that if the packet was centered on the Voronoi cell border, the
vacancy would be frequently attributed to one lattice site or
the other as the neighbor switches cell by �u moves. In addi-
tion, the transitions between states 0 and 1 occur at T = 300 K
by �u moves only because the energy barriers between these
states are low [0.1 eV/0.05 eV, Fig. 4(a)]. Vacancy/particle
exchanges occur by X moves only, and only when the vacancy
is localized. More precisely, starting the simulation with a
microstate in the vicinity of state 0, the one of minimum
energy, the simulation will attempt �u moves with an ac-
ceptance rate of about 50% (the maximum amplitude of the
displacements can be tuned) and will attempt also X moves.
These will always be rejected because the exchange will in-
troduce overlaps between particles. After several millions of
accepted �u moves, the system might be in the vicinity of
“state 1.” Then an X move will be accepted and the vacancy
will most likely move to a crystallographically equivalent site
along the tilt axis, where the energy is the lowest. There,
similar states 0 and 1 exist by translational invariance of the
lattice along the tilt axis (these states will hereafter be called
“topologies”). Then, the system will quit state 1 for state 0
after some �u moves have been accepted because the barrier
is low (0.05 eV). X moves will then be rejected again, and the
vacancy will be trapped until the basin of attraction of state 0
is left again. Several concepts are introduced in this example
that are useful for understanding the Smart Darting procedure
adapted to vacancies: a “microstate” is a point (small volume)
in configuration space, a “state” is a local minimum of the po-
tential energy, the symmetries of the lattice (along the tilt axis)
mean that there are rows of equivalent lattice sites favorable
for the vacancy, and finally, the notion of “distance” between a
microstate and a state. The sequence described is represented
schematically in Fig. 1(b), where X0 and X1 are states 0 and
1, and Xj would be another state far away in configuration
space, for example a state where the vacancy would be on
a bulk site. The large curved arrows represent the transitions
between X0 and X1 which require many �u moves, and the
small curved arrows represent the single �u moves. They can
bring a microstate in or out of the neighborhood of a state.
These concepts will be reused to present the original Smart
Darting method.

B. The original Smart Darting method

Smart Darting [37] (SD) is an efficient way of avoiding
trapping along the Markov chain. In the original method, a
list of local minima of the potential energy {Xi} is known
a priori. It can be obtained by MD or MC simulations at
high temperature with periodic energy minimizations. The
idea is to translate the system from one energy minimum to
another while satisfying detailed balance. For this, the system
cannot be transported directly at the energy minimum. The
authors define “ε-spheres” Sε (Xi ) around each minimum by
Sε (Xi ) = {X |‖X − Xi‖ < ε}. In the one-dimensional (1D) ex-
ample in Fig. 1(b), the spheres reduce to segments. They will
be cubes intersected by Voronoi cells in the case of vacancies
discussed below. The Monte Carlo procedure is a sequence of
elementary moves. At each step, a random number is picked
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FIG. 2. Sampling of the configuration space of a system composed of the �33(554)[110] symmetrical tilt grain boundary, under 3% strain
with one vacancy. Temperature is 300 K and the model is Mishin’s EAM for Al [42]. (a) Evolution of the energy (eV) as a function of the
Monte Carlo steps, essentially because of �u moves. Periodic energy minimizations are represented by vertical lines. (b) Evolution of the
distance between the current microstate and states 0 (vacancy delocalized and on the most favorable GB site) and 1 (localized). The states
are shown in Fig. 3. The Smart Darting parameter ε is set to 0.2a0. As a consequence, the system is usually within the neighborhood of state
0 or 1, and therefore, the number of Smart Darting moves attempts is close to the maximum. (c) Evolution of the z position of the vacancy,
illustrating acceptance of Smart Darting moves between the vacancy and one of its first neighbors along the tilt axis. The comparison of the
zooms [right pictures (b) and (c)] shows that Smart Darting moves are accepted whether they are performed between states 0 or between state
0 and 1 at different z positions.

to decide, with fixed probabilities, which type of move will be
attempted, either particle displacement or an SD move. If an
SD move is picked, the procedure is (i) calculate the distance
to every minimum and determine if X is within one of the
ε-spheres; (ii) if not, the current microstate is added one more
time to the Markov chain; (iii) if X is within Sε (Xi ), pick at
random another state Xj , calculate the “dart” Dji = Xj − Xi,
and add it to the current microstate, i.e., Xnew = X + Dji. By
this translation, the microstate remains at the same distance
from the minimum, and since the volumes of the spheres are
the same, the move is symmetric. The energy difference is
calculated, and the acceptance/rejection by the Metropolis
rule establishes detailed balance. Figure 1(b) illustrates the
different ingredients: the small curved arrows are elementary
displacement moves which enable sampling configuration
space in the vicinity of X0 [in the sphere Sε (X0), in and out of
the sphere, and eventually bringing the system in the vicinity
of other minimum X1 if the energy barrier between them is
small], while dart Dj0 translates the system from a microstate

in Sε (X0) to another one in Sε (Xj ). This is particularly relevant
in the case in which the barriers are too high to be crossed by
a chain of elementary displacement moves.

C. Adapting Smart Darting to vacancy clusters

The original method has to be adapted to the case of
intergranular vacancies. In particular, the states cannot be de-
termined by energy minimization from high-temperature MD
or MC simulations because the vacancy clusters might not be
stable at that temperature, or the vacancies might not even stay
in the grain boundary. Furthermore, high temperature favors
the mixing of different structural units [23,24], which would
drastically increase the number the states. Instead, the list of
states is constructed on the fly. In addition to the elementary
MC moves, periodic energy minimizations are performed,
i.e., the simulation is a series of cycles composed of a se-
quence of N microsteps, typically 20 million, where moves
are randomly picked between �u, X, and SD, followed by
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FIG. 3. Relaxations around a single vacancy (large cross) on
the most favorable site of the �33(554)[110] symmetrical tilt grain
boundary, strained by 3% perpendicular to its plane. (a) State 0
(“delocalized vacancy”) and (b) state 1 (“localized vacancy”). Dis-
placement values larger than 0.05a0 are represented by arrows. They
constitute, together with the site index, the topology used for the
Smart Darting moves. (c) Vectors represent the “dart” for moving
the vacancy along the tilt axis by one period. (d) Distribution of the
energy variation �E (eV) when a simple exchange (X), a simple
Smart Darting exchange (SD), or a Smart Darting exchange plus
the sampling of the neighbors, including the bias in the acceptance
rule −kT log

∏
(n→o)∏
(o→n) (SD + R + b) [Eq. (7)], is made. Only neigh-

bors with a relaxation larger than 0.1a0 were considered, and the
acceptance rate was on the order of 5% at T = 300 K.

an energy minimization and a search for states. At the end of
the search, the list of states is enriched and a new sequence
of N microsteps is run, starting from the last microstate of
the previous sequence. In other words, the minimized config-
uration is used only to enrich the list of states and does not
appear in the chain of microstates. The cycles are illustrated
by Fig. 2(a), where the potential energy is represented as a
function of the number of MC microsteps. The vertical lines
correspond to minimizations.

Furthermore, the goal is to use Smart Darting to perform
single-vacancy–particle exchanges, and therefore the idea is to
characterize the environment locally (particle relaxations and
relative position of the other vacancies) around each vacancy
of the system in the state under consideration. If the GB struc-
ture is periodic, there are many crystallographically equivalent
favorable sites for a vacancy. Therefore, the local environment
should be characterized in a way that is independent of which
periodic cell the vacancies are in. This is obtained in the fol-
lowing way. The lattice sites of an elementary crystallographic

cell (for example, one “coincidence lattice” cell) are given an
index. For each vacancy, the local configuration is defined by
the index of the vacant site and the displacements {�u} of the
neighbors, within a certain radius. These are referenced by the
indexes of the site the neighbor occupies and the z position of
the site, relative to the z of the vacant site, called �z. The
direction z is the direction of the tilt axis. The ensemble given
by the index of the vacancy and the list of {index, �z, �u}
of the neighbors is called a “topology,” in reference to the
kinetic-activation relaxation technique [32]. The process of
transforming a site-specific collection of displacements into a
local set of displacements relative to the position of the central
vacancy is called “extraction of the topology.” The spatial
domain over which {�u} is collected should be sufficiently large
to contain all the sites that are significantly influenced by
the presence of the vacancy. Otherwise, the vacancy-particle
exchange attempts will be systematically rejected because of
overlaps of particles. If the domain contains other vacancies,
the topology also contains their index and �z. Finally, a list of
topologies is used in the Smart Darting move instead of a list
of states, i.e., a list of local environments for vacancies (ex-
tracted from local energy minima). The “current topology” is
also defined. It is the one extracted from the current microstate
in the Markov chain.

The next modification to the original SD method is the
definition of the ε-sphere. In the MC algorithm, the SD move
starts by selecting a vacancy at random. The lattice site it
occupies is labeled i. The current topology centered on i is
“extracted” from the microstate. Then the distance between
the current topology and the kth compatible topology of the
list (distk) is

distk = max
(index,�z)

{∣∣uk
l − ul

∣∣}
l=x,y,z, (2)

where uk
l is the l component of the displacement of the

site “index” at �z from site i of the topology k, and ul is
the same but in the current topology. Topology k is com-
patible with the current topology if, locally around i, the
vacancies are distributed in the same way, i.e., same in-
dex and �z, including the central vacancy. An ε-sphere
is defined by dist < ε. It is a collection of cubes of side
2ε centered on the position of the neighbors of the va-
cancy, in the configuration of local minimum energy. distk
can be large as soon as a neighbor has a displacement
significantly different from the one it has in topology k.
Figure 2(b) shows the evolution of the distance to the topolo-
gies extracted from the states 0 and 1 of Fig. 1(a). The distance
can be larger than 0.3a0. This occurs when one neighbor is
close to the side of its Voronoi cell when the microstate is
in the basin of attraction of state 0 [Fig. 1(a)]. In this case,
the distance to topology 1 (localized vacancy) is large. Other
details concerning ε are mentioned in Appendix A.

Finally, a “dart” is defined. If there exists a topology ki

where distki < ε, then the vacancy at i can be moved to an-
other site by an SD move. For that, a site j, neighbor of i, is
selected and a new topology is selected in the list of topologies
(compatible with site j being occupied by a vacancy), refer-
enced by k j . The “dart” is then the combination of the swap of
the occupancies of the lattice sites j and i and the translation
{index, �z, �ukj − �uki }.
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An example is given in Fig. 3, where (a) and (b) are
the topologies extracted from states 0 and 1 [Fig. 1(a)]. The
displacements are represented by arrows. Most of them are
smaller than the size of the dots, which represent the lattices
sites. The remarkable displacement already discussed several
times is visible on topology 0. Imagine an SD move that
shifts the vacancy by one period along the tilt axis while it
is in the vicinity of topology 0 on the old lattice site and
remains in the vicinity of topology 0 on the new lattice site.
The corresponding dart [Fig. 3(c)] is −�u0 centered on the old
vacant site and +�u0 centered on the new vacant site, where
�u0 is given in Fig. 3(a). A one-dimensional random walk of
the vacancy along the tilt axis is obtained [Fig. 2(c)] instead
of a trapping on a single site. The simulation also contains
topologies that would let the vacancy escape from the grain
boundary, but this does not occur during this simulation at
300 K (the escape at 400 K is illustrated by a figure in the
Supplemental Material [43]).

D. Construction of the topology list

So far, the way the states are searched has not been com-
pletely described. Starting the simulation with an empty list of
topologies, the Markov chain is constructed with �u, and X
moves alone and is quickly trapped in a configuration where
the vacancy is delocalized. At the end of the first cycle, the
first topology is extracted. With only one topology, the SD
moves are limited to proposing only one type of exchange,
and only 1D random walks along the tilt axis are possible.
Therefore, in addition to the extraction of the current topology,
a series of robust nudged elastic band (NEB) calculations
[44] between the current configuration and the ones obtained
by swapping the vacancy with one of its neighbors (within
the same range as the one for the SD move, which is not
necessarily limited to first neighbors) is performed. If the
NEB finds an intermediate configuration, the corresponding
topology is extracted. Otherwise, the topology is extracted
from the end point of the NEB. Therefore, the topologies are
more than simple arrangements of vacancies over the lattice
nodes because the same set of occupancies can lead to dif-
ferent relaxations. These topologies are stored, if unknown
previously, in the list of known topologies and marked as
“unsearched,” meaning that if they are visited and occupied
during a future energy minimization, they should be searched
for new transitions. In addition to topologies, the NEB gives
energy barriers that are not exploited by the method, at the mo-
ment, but which constitute kinetic information that could be
useful either to evaluate at which temperature the transitions
could be realistic, or to open the possibility for kinetic Monte
Carlo with a fixed catalog of rates collected during the MCMC
simulation. It can be stressed that the MCMC simulation
gives more accurate site occupancies than the ones the KMC
simulations (with the catalog mentioned above) would give
because anharmonic effects are included and also because
the �u moves participate in the exploration of configuration
space, i.e., states that are not accessible to SD moves because
the corresponding topologies are not on the list can be visited
by �u moves if the energy barriers to reach them are low
enough.

E. Boosting the acceptance rate

In the example presented in Fig. 2, the acceptance rate is
0.7% for first-neighbor exchanges, by SD moves only, be-
tween equivalent sites along the tilt axis, in topology 0 (the
one with the most extended relaxations). The distribution of
the energy variation for SD moves is shifted by almost 3 eV
toward low energies in comparison to the distribution for X
moves [empty/full circles in Fig. 3(d)], which confirms that
the problem of the overlap of the particles is solved. Neverthe-
less, there are few attempts that have a negative energy (see the
inset). One way of improving the acceptance rate is to sample
the positions of the particles that are significantly displaced
from the lattice nodes during the SD move. For this, the
“configurational-bias” Monte Carlo method [34,45] for grow-
ing chain molecules in dense systems has been adapted to the
vacancy problem. Originally, a molecule is grown segment by
segment by picking the segment’s orientation out of k trial ori-
entations. The energy variation related to each trial orientation
is calculated, and the new orientation is selected according to
its Boltzmann weight in the list of trial orientations. It is clear
that the probability of selecting this orientation is not random
and depends not only on the environment (the configuration
of the other molecules in the system), but also on the orienta-
tion of the segments previously grown. This probability must
be introduced in the acceptance rule, and therefore it must
be calculated both for the forward and reverse moves. This
means, in the chain molecule example, that the old config-
uration has to be regrown segment by segment. In the case
of vacancy exchange, the same procedure is followed, but
instead of choosing orientations for segments, displacements
are chosen for neighbors. This is done after the SD move is
applied. A list of neighbors with significantly large “darts” is
established, typically displacements larger than 0.05a0. Nn is
the number of such neighbors. The displacements in the “old”
configuration are stored as uold

i to calculate the probability
of the reverse move. i refers to the position of the neighbor
on the list. Then, sequentially, the “new” displacement for
every neighbor unew

i is chosen among Nr random possibilities
un

ik = rkε + ui
0. rk is the kth random vector of the list of length

Nr, and ε is the size of the domain around the component of
the dart �u0 on site i named ui

0. The energy variation for every
one of these trial positions is calculated and named �E (unew

ik ).
The probability of picking a displacement, for example unew

ik′ ,
on the list is

p
(
unew

ik′
) = e−�E(unew

ik′ )/kT

∑Nr
k=1 e−�E(unew

ik )/kT
. (3)

Once this is done, the index k′ is dropped, and after all the
neighbors have been treated, the energy of the new configura-
tion is

Enew = Eold + �ESD +
Nn∑
i=1

�E
(
unew

i

)
(4)

and the probability of choosing this set of displacements is

∏
(o → n) =

Nn∏
i=1

p
(
unew

i

) = e− ∑Nn
i=1 �E(unew

i )/kT

∏Nn
i=1

∑Nr
k=1 e−�E(unew

ki )/kT
. (5)

033604-6



SAMPLING VACANCY CONFIGURATIONS WITH LARGE … PHYSICAL REVIEW MATERIALS 8, 033604 (2024)

The following is done for the reverse move: starting from the
“new” configuration, the SD move is reverted and then, for
each neighbor, Nr − 1 displacements are selected at random
within the ε volume around the displacement corresponding
to the reversed dart. The corresponding energy variations are
calculated and named �E (uold

ik ) and the one for the stored
“old” displacement uold

i is named �E (uold
i ). The probability

that the old configuration is recovered during the reversed
move is

∏
(n → o) = e− ∑Nn

i=1 �E(uold
i )/kT

∏Nn
i=1

(
e−�E(uold

i )/kT + ∑Nr−1
k=1 e−�E(uold

ki )/kT
) .

(6)
Detailed balance gives the acceptance rule:

acc(o → n)

acc(n → o)
= ρn

ρo

∏
(n → o)∏
(o → n)

= e−[�ESD+∑Nn
i=1 �E(unew

i )]/kT

∏
(n → o)∏
(o → n)

. (7)

By construction, �E (unew
i ) tends to be negative, on aver-

age. Therefore, in Eqs. (4) and (7), the energy variation
related to the SD move, �ESD, tends to be decreased by∑Nn

i=1 �E (unew
i ), and therefore the acceptance rate increased.

The term
∏

(n→o)∏
(o→n) is complex. Statistics about its distribution

have been acquired numerically. It strongly depends on the
number Nn of neighbors involved, with a strong tendency
to degrade the positive influence of

∑Nn
i=1 �E (unew

i ), to an
extent where the acceptance rate could be lower than SD
moves alone. The strategy followed consists in selecting the
neighbors that are the most displaced during the SD move,
keeping the number of neighbors low. For example, in the
case of Fig. 3, a threshold of 0.1a0 on the displacements leads
to only four neighbors involved in the “configurational-bias”
procedure. For Nr = 1000, the acceptance rate is 5%, i.e., a
boost by a factor of 7 with respect to SD moves alone [empty
circles/filled cubes in Fig. 3(d)]. With a threshold of 0.05a0

and 10 neighbors involved, the acceptance rate is only 1.7%.
With four neighbors, the total computational time of the SD
move is only multiplied by a factor of 2 (using six threads).

F. Validation

Finally, the question of the validation is addressed. The
energy variation between states 0 and 1 (Fig. 3) is shown in
Fig. 4(a). The barrier tends to zero when the strain goes to
zero, i.e., state 1 [replica 0 in Fig. 4(a)] is unstable. The barrier
is low enough to be crossed by �u moves only, provided the
temperature is high enough. The validation test consists in
putting states 0 and 1 in equilibrium with a bulk site by two
different paths, using two different MC moves. Path 0 is bulk
� state 0 � state 1, with the first equilibrium established by
SD moves and the second by �u moves. Path 1 is bulk � state
1 � state 0, with the first equilibrium established by X moves
and the second by �u moves. The X moves have a nonzero
acceptance rate because the neighbors are only weakly relaxed
toward the vacancy. Figure 4(b) shows that the two paths lead
to the same average occupancies, which establishes that the
SD moves, including the configurational bias, are properly
implemented.

FIG. 4. (a) Energy profile between state 1 (replica 0) and state
0 (replica 11) obtained by the NEB, as a function of the homothety
factor applied perpendicular to the GB. (b) Occupancy of a bulk site
when it is put in equilibrium with the GB either in state 0 or in state
1, as a function of temperature and for two strain levels hx = 1.03
and 1.04.

III. APPLICATION TO DIFFERENT GRAIN BOUNDARIES

The method is applied to four symmetrical tilt grain bound-
aries, two in Al: �33(554)[110] [46] (without strain) and
�13(320)[001] [47,48], and two in bcc Fe: �29(730)[001]
and �9(114)[110] [49]. The technical details are given in the
Appendix B. The grain boundary structures, vacancy segrega-
tion energies (the profiles are in the Supplemental Material
[43]), and relaxations when the vacancy occupies the most
favorable position are shown in Fig. 5. The amplitude of
the relaxations (umax in Table I) is large: between 0.1a0 and
0.4a0 depending on the grain boundary. The efficiency of the
Monte Carlo method is evaluated by measuring the acceptance
rate for vacancy-particle exchanges in the different structures.
To mimic diffusion, exchanges with nearest neighbors were
proposed first. When the tilt axis is not aligned with a nearest-
neighbor pair, the move involves leaving the site that is most
favorable energetically and therefore the acceptance is biased
by the change in segregation energy. Taking into account this
effect, the list of neighbor sites is extended beyond the first
neighbors to include the sites that are crystallographically
equivalent, along the tilt axis. This means second neighbors
for the [100] axis and third neighbors for the [110] axis of
the bcc structure. The acceptance rate is measured specifi-
cally for moves that do not involve changes in segregation
energy. Different degrees of complexity were tested. They are
designated in Table I as X for the simple exchange, SD for
“Smart Darting” alone, and SD + R + b for a Smart Dart-
ing exchange combined with a Rosenbluth sampling “R” of
neighbor’s displacements and inclusion of the corresponding
energy bias “b” in the metropolis criterion according to Eq. (7)
[�ESD is the energy variation related to SD,

∑Nn
i=1 �E (unew

i )

to “R,” and −kT log
∏

(n→o)∏
(o→n) to “b”]. The reported acceptance

rate for the X moves only reflects the absence of acceptance
after a large number of trials because of the relaxation of the
neighbors shown in Fig. 5. The acceptance rate for SD moves
is already very significant: between 1% and 6% depending
on the structure. It can be improved up to between 3% and
10% by the SD + R + b move (Table I). As already mentioned
above, the number of neighbors (Nn) involved in R sampling
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FIG. 5. Symmetrical tilt grain boundary structures without vacancies: (a) �13(320)[001], (b) �33(554)[110] in Al, and (c) �29(730)[001],
(d) �9(114)[110] in bcc Fe. Colors represent the vacancy segregation energy (�Eseg). The minimum values are given in Table II. The
relaxations around a single vacancy in this optimal configuration are represented by arrows in (e)–(h) projected in the (x, y) plane and in
the (x, z) plane in (i)–(l) (only the displacements are shown). The vacant site is marked by a large cross.

is crucial and should be minimized. In these tests, they were
selected according to the amplitude of their relaxation in the
topology with a threshold that is specified by uTopo. Both Nn
and uTopo are given in Table I. Finally, the “global” acceptance
rate is also reported. In this case, the moves also involve sites
that are not those of optimal segregation energy and therefore
less prone to be visited. They are nonetheless important for
sampling arrangements of several vacancies.

The process of finding the topologies necessary for the
SD moves also produces activation barriers. Although not
used in the Monte Carlo simulation, they provide interesting
information concerning the kinetics of the vacancies. The
effective barrier for diffusion along the tilt axis E tilt

a and the

effective barrier to exit the GB Eout
a are given in Table II.

The former is the minimum barrier for a change in the z
position of the vacancy, and the latter is calculated following
the minimum energy path. It is composed of several jumps and
stops when the vacancy bulk activation barrier is recovered.
The local minima along the path form a basin where, as a
first approximation, the occupancies are considered equili-
brated before the exit event [50]. The escape rate (through
the path) is the product of the probability of being in the
last local minimum along the path times the frequency for
crossing the last barrier. If the bottom of the basin has a
significantly lower energy than the others, the prefactor ahead
of the final rate can be approximated. Then, the effective

TABLE I. Acceptance rates for exchange moves between equivalent sites along the tilt axis, with different types of moves: X, simple
exchange; SD, Smart Darting move; SD+R+b, Smart Darting move combined with a Rosenbluth sampling of the Nn neighbors of the vacancy
that have a displacement larger than uTopo. umax is the maximum amplitude of the relaxations. The “global” acceptance rate is also given.
Numbers in parentheses are the mean-square difference obtained from four independent runs.

�13 �33 �29 �9

SD 0.011 (0.003) 0.018 (0.001) 0.016 (0.001) 0.066 (0.004)
SD+R+b 0.046 (0.001) 0.058 (0.003) 0.030 (0.001) 0.102 (0.003)
global 0.010 (0.0002) 0.011 (0.0002) 0.005 (0.0002) 0.014 (0.0003)
X <6 × 10−5 <4 × 10−5 <4 × 10−5 <10−4

Nn 2 1 1 2
umax (a0) 0.23 0.30 0.40 0.11
uTopo (a0) 0.2 0.1 0.2 0.1
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TABLE II. Bulk vacancy formation energy E bulk
f , vacancy segre-

gation energy �Eseg on the most favorable site, energy barrier for an
exchange between a vacancy and a first neighbor in a perfect crystal
environment E bulk

a , effective energy barrier for diffusion along the tilt
axis of the GB E tilt

a , and effective energy barrier to leave the GB E out
a .

�13 �33 �29 �9

E bulk
f (eV) 0.68 0.68 2.10 2.10

�Eseg (eV) −0.43 −0.29 −0.64 −1.49
E bulk

a (eV) 0.65 0.65 0.68 0.68
E tilt

a (eV) 0.82 0.61 0.76 0.97
E out

a (eV) 0.99 0.94 1.13 2.15

energy barrier for exiting the basin is simply the difference
in segregation energy between the bottom of the basin and the
last state before the exit added to the last jump barrier. It is
this value that is reported as the effective barrier for exiting
the GB. The vacancy diffusion along the grain boundaries
is found to be significantly dependent on the structure (as
already known from MD simulations of self-diffusion [51]).
The exit barrier is always much larger than the bulk barrier.
It is close to, but not exactly equal to, the difference between
the bulk activation energy and the segregation energy. In con-
trast, the activation energy for diffusion along the tilt axis
can be larger or smaller than the bulk value, meaning that
intergranular vacancies do not necessarily diffuse faster than
bulk vacancies. Nevertheless, self-diffusion is faster than in
the bulk because the vacancy formation energy is decreased.
Finally, for these grain boundaries, the diffusion occurs along
the tilt axis with no easy path to move from one structural
unit to the other (i.e., in the y direction). The activation energy
in the y direction can be taken, as an approximation, as the
exit activation energy.The aggregation of two vacancies is also
studied by the MCMC method. The goal is to demonstrate that
the method can handle the simplest vacancy clusters before
moving to larger clusters, under the influence of elastic strains,
in connection to the fracture mechanisms mentioned in the
Introduction. Each grain boundary studied exhibits a different
behavior. The results of two representative simulations are
reported in Fig. 6. Others, in Al and Fe, are discussed in the
Supplemental Material [43]. The insets [Figs. 6(a) and 6(b)]
represent the position of the vacancies along the tilt axis of the
GBs along the Markov chain. Periodic boundary conditions
are applied. The length of the simulation box is 12 periods in
both cases, but one period is 1a0 long for the �13 of axis
[001] and

√
(2)/2a0 for the �33 of axis [110]. Therefore,

the nearest crystallographically equivalent sites along the tilt
axis are a second neighbor and a first neighbor, respectively.
Both insets demonstrate that the z positions are well sampled.
The clustering tendency is very different. In the �13 case,
the distance between the vacancies (d) fluctuates between 1
and Lz/2, which is the maximum separation allowed by the
periodic boundary conditions. The energy of the topologies
“visited”is superimposed to d . This energy is the one found
after minimization when the topology is extracted. It is not
the current energy of the system. “Visited” is to be taken
in the “Smart Darting” sense, i.e., the distance between the
microstate and the local energy minimum is lower than the

FIG. 6. Evolution of the distance between the vacancies, the en-
ergy of the topology visited, and the number of topologies detected
along the Markov chain for a system containing two vacancies:
(a) �13(320)[001] at T = 300 K, (b) �33(554)[110] at T = 600 K
both in Al. The position in z (the tilt axis direction) is shown in the
inset. (c) The three main topologies visited in (b) with energies 0,
0.52, and 0.28 eV from left to right.

threshold defining the neighborhood of the local minimum in
SD. The energy variations are small, lower than 0.05 eV. The
minimum energy found is a configuration where the vacancies
are separated by a distance of 2a0. The saddle searches have
explored configurations with d < 1, and their energies are
higher than the minimum by 0.4–0.6 eV, which might explain
why transitions from microstates with d = 1 to those with
d < 1 are not observed. Therefore, for this grain boundary,
the vacancies remain split. In contrast, in the �33 case, the
vacancies bind. The evolution of d [Fig. 6(b)] illustrates how

033604-9



D. TANGUY PHYSICAL REVIEW MATERIALS 8, 033604 (2024)

the algorithm explores new configurations that enrich the list
of topologies, which opens new transitions for Smart Darting,
such as transitions with smaller and smaller d . The simulation
is started with d maximum and the list of topologies obtained
for the single vacancy. First, d fluctuates with values larger
than three times the period in z until the method learns the
configurations where d is equal to two periods. Then, these
configurations are visited without significant energy changes,
and from there, the method finds the configuration where
the vacancies bind in the first-neighbor position. The energy
drops by approximately 0.3 eV. Beyond this point, the energy
fluctuates with an amplitude as high as 0.5 eV (T = 600 K),
and the cluster moves along the tilt axis, without complete
splitting [see the inset in Fig. 6(b)]. The total number of
topologies extracted is 45, but essentially three are visited.
They are represented in Fig. 6(c). The stable divacancy con-
figuration is intuitive: a pair of first neighbors, occupying the
GB site where the segregation energy of an isolated vacancy
is the lowest. Note that the relaxations are very different. It
is representative of several grain boundaries. For example,
in the case of Fe, the vacancies bind by more than 1 eV
in �29 and form pairs along the tilt axis with a separation
of one period (1a0). In the �9 case, they repel each other
by 60 meV and therefore remain split (see the Supplemental
Material [43]). It is not always the case: in the �9{221}[110]
in Al, there are more configurations of low energy, connected
by low-energy barriers, and some of them are only different by
the relaxations. The MCMC simulation handles this situation:
the transitions over the low barriers by �u moves and the
splitting/reforming of the divacancy by Smart Darting moves.
The distribution of the energy of the topologies, the structure
of the low-energy divacancies, and the relevant energy barriers
are given in the Supplemental Material [43].

IV. DISCUSSION AND CONCLUSION

One interesting question about intergranular vacancies is
whether their specific structure, qualified as “delocalized,”
leads to specific properties or if they behave in a similar way
as in the bulk. Regarding diffusion, our findings are similar
to what is summarized in the Introduction: several sites lead
to the delocalized structure (the dark sites in Fig. 5), which
means that long jumps can be expected when entering the
GBs. In contrast, once the vacancy is in the optimum location,
saddle searches have not revealed any low-energy path for
diffusing out of this configuration, and the barriers are similar
to bulk diffusion (Table II). The elastic field produced is an-
alyzed by calculating the elastic dipole tensor Pi j (Table IV)
via the Kanzaki forces [52]. Convergence of the calculation
with the number of neighbor shells gives an estimate of the
range of the elastic deformation produced by the defect. The
influence of the number of shells restored [52,53] gives an
estimate of the range of the anharmonic region around the
defect. The range of the elastic field is approximately 3a0,
similar to the bulk (re in Table IV). In contrast, the range of
the anharmonic relaxations can be much larger in the GBs, up
to 1.75a0. These values are coherent with the radius used for
defining the topologies (2.5a0), which was found empirically
by increasing the radius until no configuration built from
the topologies relaxed toward a different minimum from the

one targeted. Furthermore, the amplitude of Pi j in the GBs
can be approximately twice that in the bulk (Table IV). This
suggests that an external elastic field could have a significant
impact on the segregation energies. Indeed, the magnitude of
this difference, typically 4 eV, leads to interaction energies
of the same order of magnitude as the segregation energies
for reasonably large elastic strains. For example, 2% nor-
mal strain ε11 leads to �Ee = −(Pgb

i j − Pbulk
i j )εext

i j ∼ 0.08 eV,
which is already of the order of 20% of the segregation energy
(Table II). In contrast, the calculation of the vacancy-vacancy
elastic interaction energy, from the Pi j and within isotropic
elasticity (the Al case), gives a negligible interaction (on the
order of 1 meV in first neighbor along the tilt axis of �33).
The binding energies found, which are therefore pure core
effects, depend on the structure and are different from the
bulk values: −0.02, 0.3, 1, and −0.06 eV for �13, �33,
�29, and �9, respectively, while in the bulk the interaction
is zero in Al [54] and 0.14 and 0.3 eV in the first- and
second-nearest-neighbor positions in Fe [55]. Additionally,
because the segregation energies are large, the interactions
are along the tilt axis in every case. In brief, the differences
between a bulk and a delocalized intergranular vacancy are a
strong anisotropy for diffusion, which is essentially along the
tilt axis, an enhanced elastic interaction with external elastic
fields and a structure-dependent tendency of forming one-
dimensional chains, in the four structures studied, which are
pure tilt. Note that the binding is quite different in twist grain
boundaries where vacancies accumulate at the intersections of
screw dislocations [56].

In conclusion, the paper presents an extension of Markov
chain Monte Carlo that overcomes the limitations of the van-
ishing acceptance rate for particle exchanges in the case of
large relaxations. The method is illustrated in the particularly
demanding case of delocalized intergranular vacancies. The
Monte Carlo moves are composed of the classical random par-
ticle displacements and vacancy-particle exchanges, to which
“Smart Darting” moves are added. They are based on a list
of topologies built on the fly, which contain the relaxations
around the vacancies in the configurations of local minimum
potential energy. When the system enters a neighborhood of
one such minimum, it can be transported in the vicinity of
another minimum of the list. In the vacancy case, the move
consists in erasing the relaxations of the neighbors of the
vacancy before inserting a particle at its location and creating
the appropriate relaxations at its new location. Taking four
different tilt boundaries, it is shown that the occupancy of
the crystallographically equivalent sites along the tilt axis
can be sampled with acceptance rates of several % at room
temperature. These high rates are obtained when, in addition
to “Smart Darting,” the positions of key neighbors are also
sampled. Note that if the relaxations are dilatations, a similar
but simpler algorithm exists [57]. Divacancies were also stud-
ied by the method. They exhibit GB-specific behaviors such
as permanent binding, dissociation followed by immediate
binding, or no interaction at all. Additional data are reported
that could be useful to build mesoscale models: elastic dipole
tensors, activation barriers for 1D diffusion along the tilt axis,
and effective barriers to exit the GB or diffuse perpendic-
ular to the tilt axis. Future work will consist in sampling
intergranular vacancy configurations beyond two vacancies
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and under the influence of an external strain, since the use
of particle displacements enables equilibrating stresses when
applying a displacement on the side of the system. The effect
of elastic strains on intergranular vacancies seems particularly
strong and is important in the context of ductile fracture [1],
including under irradiation [58], and in thin films [59] when
discussing the existence of cavities.
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APPENDIX A: ADDITIONAL DETAILS CONCERNING
THE DEFINITION AND CHOICE OF ε

The cubes that define the ε-sphere have to be compatible
with the Voronoi tessellation. When the cube is not entirely
contained in the Voronoi cell, the volume considered avail-
able for the neighbor in the definition of the ε-sphere is the
intersection of the cube of side 2ε and the Voronoi cell. To
respect the symmetry of the MC move, this constraint on the
displacement of the neighbor should be imposed also for the
reverse move. In addition, the original Smart Darting move
considers that the spheres do not overlap. If the vacancy
arrangement is not the same between topologies, there is no
constraint on the value of ε, apart from the compatibility
with the Voronoi tessellation, and ε can be large. On the
contrary, if the vacancies occupy the same sites and only the
displacements are different [such as in Fig. 1(a)], ε should
be half of the maximum difference in displacement over the
sites included in the topology. It could be a small number.
The measurement of the displacement fluctuations on bulk
sites shows that their maximum amplitude is of the order
of 0.1a0 at T = 300 K. For this reason, when deciding in
the “search” phase of the algorithm which state is eligible
for a topology extraction, the constraint imposed is that it
should be at minimum at a distance 0.2a0 from an already
known topology. Unfortunately, in the GB there are often dis-
placements beyond 0.15a0, even not connected to vacancies.
A small value of 0.1a0 for ε is therefore unpractical. The
value ε = 0.2a0 was chosen from the distance fluctuations
in Fig. 2(b), and therefore the cubes overlap in the Voronoi
cell of Fig. 1(a). It has no consequence for the simulations
presented (it was checked), because this neighbor is tightly
bound to the local minima, and ε = 0.1a0 would work for this
site, but not for the other sites of the GB. One solution, not
implemented yet, would be to use site-dependent values of ε

in the topologies where this is needed. This is left for future
work.

TABLE III. Simulation box sizes Lx , Ly, Lz (a0), number of atoms
nat , and coincidence site lattice cell size CSLx , CSLy, CSLz (a0).

�13 �33 �29 �9

Lx (a0) 31.3 32.2 15.6 33.8
Ly (a0) 14.4 11.5 15.2 12.0
Lz (a0) 12.0 8.48 16 17.0
nat 19776 12528 7232 13632
CSLx (a0) 7.2 8.12 7.6 8.48
CSLy (a0) 7.2 5.74 7.6 6.0
CSLz (a0) 1.0 0.71 1.0 1.41

APPENDIX B: TECHNICAL DETAILS

The particles interact by EAM potentials: Ref. [42] for Al
and Ref. [55] for Fe. The box sizes are given in Table III and
the crystallographic directions in Fig. 5. Periodic boundary
conditions are applied in the y and z directions, and two
regions are fixed on the sides perpendicular to the x direction
(the normal to the GBs). The width of the rigid regions is
the range of the potential plus 0.5a0. The main parameters
for SD are ε = 0.2a0, the size of the neighborhood around
the local energy minima, the radius around the vacancy for
defining the topology is 2.5a0 in the plane perpendicular to
the tilt axis and 2.2a0 along the tilt axis, and the number of
random displacements per atom in the Rosenbluth sampling
Nr = 1000. Note that the displacements are taken within a
cube of side ε, therefore it is a dense sampling.

APPENDIX C: ELASTIC DIPOLE TENSOR

The components for the elastic dipole tensor Pi j are shown
in Table IV.

TABLE IV. Components of the elastic dipole tensor Pi j (eV) for
a vacancy in bulk Al and Fe and in the four grain boundaries, in the
favorable configuration (Fig. 5), computed from the Kanzaki forces
[52]. The range of the elastic distortions re and of the anharmonicity
ra are also given (a0).

Bulk Al �13 �33 Bulk Fe �29 �9

P11 (eV) −3.9 −11.2 −7.5 −1.3 −21.0 −7.8
P22 (eV) −3.9 −8.8 −3.3 −1.3 −4.0 −8.2
P33 (eV) −3.9 −4.5 −7.2 −1.3 −11.8 −7.1
P12 (eV) 0.0 −4.0 −2.3 0.0 −0.3 0.0
P13 (eV) 0.0 0.0 0.0 0.0 0.0 0.0
P23 (eV) 0.0 0.0 0.0 0.0 0.0 0.0
P11 (eV) −2.5a −3.6b

re (a0) 2.5–3.0 3.0 3.0 3.5 3.5 3.5
ra (a0) 0. 7 1.58 1.75 1.41 1.75 1.75

aDFT value from Ref. [60].
bDFT value from Ref. [61].
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