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Classifying the age of a glass based on structural properties: A machine learning approach
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It is well established that physical aging of amorphous solids is governed by a marked change in dynamical
properties as the material becomes older. Conversely, structural properties such as the radial distribution function
exhibit only a very weak age dependence, usually deemed negligible with respect to the numerical noise. Here
we demonstrate that the extremely weak age-dependent changes in structure are, in fact, sufficient to reliably
assess the age of a glass with the support of machine learning. We employ a supervised learning method to
predict the age of a glass based on the system’s instantaneous radial distribution function. Specifically, we train
a multilayer perceptron for a model glass former quenched to different temperatures and find that this neural
network can accurately classify the age of our system across at least 4 orders of magnitude in time. Our analysis
also reveals which structural features encode the most useful information. Overall, this work shows that through
the aid of machine learning, a simple structure-dynamics link can, indeed, be established for physically aged
glasses.
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I. INTRODUCTION

The structural, dynamical, and mechanical properties of a
material change as it gets older, i.e., it ages [1–9]. Physical
aging is particularly well studied for glasses due to their
slow relaxation dynamics [10–14]. One of the most common
methods to study the aging dynamics of a glass consists of
a temperature quench toward a lower temperature [15–18].
After the quench, as the material seeks to recover equilibrium
at the new temperature, the relaxation time of the system
will increase with its age [10,19–21]. The physical aging in
glassy systems can thus be understood as a gradual approach
towards increasingly lower-energy equilibrium states [13]. It
is also well known that, besides a rapid short-time change,
the structural properties change only extremely weakly with
time [22–27]. In contrast, the dynamical properties exhibit
significant changes over multiple orders of magnitude in time,
as shown in Fig. 1 and the Supplemental Material [28]. It
is therefore customary to characterize the aging behavior of
a system by means of its dynamical properties. At the same
time, it remains unclear how these strong dynamical changes
of an aging glass are connected to its almost constant structure
[24].

To bridge this gap, Cubuk et al. [29] recently devel-
oped a pioneering approach which demonstrated that machine
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learning techniques can, in fact, successfully correlate struc-
ture and dynamics in glassy systems. Cubuk et al. introduced
a machine learning microscopic structural quantity, the so-
called softness, which characterizes the local structure around
each particle. Based on this approach, several recent works
[30–41] extended our conceptual understanding of glassy liq-
uids by convincingly demonstrating that machine learning is
able to accurately connect structural properties with the corre-
sponding dynamics. In particular, standard machine learning
tools like support vector machines have been able to compute
the relaxation time through softness [42] and collective effects
like fragility [36] and low-temperature defects [43]. More
sophisticated models like graph neural networks [44] give
accurate predictions of dynamic propensity, but similar results
can be achieved by simpler models with accurate structural
indicators [45]. It is thus evident that machine learning is a
powerful tool to study glassy systems, and as suggested by
Schoenholz et al. [42], it is plausible that it could also be used
to shed new light on aging behavior.

Still, it is a priori not clear whether this level of complexity,
both in the machine learning model and in the input set, is
strictly necessary to predict the age of a system from structural
properties. Indeed, an analysis of the softness suggests that the
radial distribution function’s first peak contributes the most to
predicting rearrangements [30]. Since the radial distribution
function does change weakly with age, one could argue that
a traditional approach, which could consist of selecting the
radial distribution function’s values that change the most with
age and applying linear regression [46–48], might already
be sufficient to extract the age of a system. However, such

2475-9953/2024/8(2)/025602(10) 025602-1 ©2024 American Physical Society

https://orcid.org/0000-0002-7957-0262
https://orcid.org/0009-0006-6092-5023
https://orcid.org/0009-0007-5738-7292
https://orcid.org/0000-0002-9247-139X
https://orcid.org/0000-0001-5283-1330
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.8.025602&domain=pdf&date_stamp=2024-02-21
https://doi.org/10.1103/PhysRevMaterials.8.025602


GIULIA JANZEN et al. PHYSICAL REVIEW MATERIALS 8, 025602 (2024)

(a) (b)

(c) (d)

FIG. 1. Age dependence in structural and dynamical prop-
erties. Snapshots after a temperature quench for waiting times
(a) tw = 1 and (b) tw = 1000. (c) Radial distribution function for
A particles gAA(r) and (d) mean-square displacement 〈δr2(tw, t +
tw )〉 at fixed quenching temperature Tq = 0.375 for waiting times
tw = 1, 10, 100, 1000.

a traditional approach would only be expected to work if
the uncertainty in the data is sufficiently small, e.g., in the
thermodynamic limit, while in reality a system is typically
finite sized and thus susceptible to noise.

Here our goal is to classify the age of a glassy system
based solely on a snapshot, i.e., an instantaneous particle
configuration of a finite-sized system. In particular, we com-
pute the radial distribution function at every age, and we use
this simple feature as input for a neural network. We find
that a neural network that is trained and tested at a fixed
quenching temperature can distinguish between a young glass
and an old glass with 94%–97% accuracy. We compare our
machine learning method with a traditional approach, con-
firming the superiority of the first. The traditional approach
involves manual selection of features that, on average, exhibit
the most significant changes with age. However, due to noise,
these features yields significantly less reliable age predictions
compared to those obtained using features selected through a
machine learning approach.

In order to analyze our machine learning results in more
detail, we perform both a principal component analysis (PCA)
and a Shapley additive explanation (SHAP). These methods
reveal the principal components or the structural features that
most strongly encode the age, also allowing us to infer the
age of the system from only a subset of the structural data.
Finally, we explore the role of the quenching temperature, also
proving that a neural network trained with a set of multiple
quenching temperatures generalizes well when tested at a new
temperature. Although we primarily focus on passive systems,
we also verify our model for active systems. Ultimately, we
conclude that a machine learning approach purely based on

simple structural properties can reliably infer the age of a
glassy system.

II. METHODS

A. Simulation model

We study a two-dimensional (2D) binary mixture of
Brownian particles. The overdamped equations of motion for
each particle i are given by

γ ṙi =
∑
j �=i

f i j +
√

2DT η, (1)

where ri = (xi, yi ) represents the particle’s spatial coordinates
and the overdot denotes the time derivative. The translational
diffusion constant is denoted as DT = kBT/γ , and the ther-
mal noise is represented by independent Gaussian stochastic
processes η = (ηx, ηy) with zero mean and variance δ(t − t ′),
where kB is the Boltzmann constant, T is the temperature,
and γ is the friction coefficient. Last, f i j = −∇iV (ri j ) is
the interaction force between particles i and j, where ri j =
|ri − r j | and V is a Lennard-Jones potential [49] with a cutoff
distance ri j = 2.5σi j . In order to prevent crystallization we
use the 2D binary Kob-Andersen mixture [50]: A = 65%, B =
35%, εAA = 1, εBB = 0.5εAA, εAB = 1.5εAA, σAA = 1, σBB =
0.88σAA, and σAB = 0.8σAA. We set the number density to
ρ = 1.2, the number of particles to N = 10 000, and DT to

1. Results are in reduced units, where σAA, εAA, σ 2
AAγ

εAA
, and

εAA
kB

are the units of length, energy, time, and temperature,
respectively. Simulations were performed using LAMMPS [51]
by solving Eq. (1) via the Euler-Maruyama method [52] with
a step size δt = 10−4.

As additional verification of our method, we also study the
aging behavior of an active glass. For this we use the active
Brownian particle (ABP) model, which combines thermal mo-
tion with a constant self-propulsion speed [53–58]. To obtain
the equation of motion for ABPs, in Eq. (1) we need to add
the self-propulsion term. This term is defined as f ni, where
f /γ is the constant self-propulsion speed along a direction
ni = (cos θi, sin θi ), θi is the rotational coordinate, and f is the
magnitude of the active force. The rotational coordinate obeys
θ̇i = √

2Dr ηθ , where Dr is the rotational diffusion coefficient
and ηθ is a Gaussian stochastic process. The persistence time
τr is defined as the inverse of the rotational diffusion coeffi-
cient and determines the decay time of a particle’s orientation
[59]. Finally, we choose to focus on a relatively large system
with N = 10 000 particles, but we verified that our machine
learning approach also performs well for a smaller system
with N = 1000 (see the Supplemental Material [28]).

B. Aging

For our data set, we prepare 20 independent configurations
and let each of them equilibrate at the initial temperature Ti.
In this work we consider Ti = 1, which corresponds to the
liquid phase, but similar results can, in principle, be obtained
for other initial temperatures. Moreover, the dataset consists
of 20 independent configurations since they are sufficient to
obtain good performance. After the equilibration process we
apply a quench to the final temperature Tq, which is lower than
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TABLE I. Description of the dataset. Data are collected from age
0 to age 104 and then divided in five different classes. The left column
shows the label given to each class, the middle column indicates the
ages that belong to each class, and the right column gives the time
interval ts used to collect data.

Class Age ts

0 tw = 0 10−4

1 100 � tw < 101 10−2

2 101 � tw < 102 10−1

3 102 � tw < 103 100

4 103 � tw < 104 101

the glass transition temperature Tg (for this system Tg ≈ 0.4
[60–62]). We use quenching temperatures between Tq = 0.1
and Tq = 0.375 and collect data for waiting times between 0
and 104. It is well known that the relaxation time as a function
of the waiting time follows a power law [15]. We therefore
split the data into five different classes following a logarithmic
scale, as shown in Table I. Each class consists of 900 different
waiting times tw that we also refer to as ages, except for class
0, which consists of only the single age tw = 0. In order to
have the same amount of data in each class, we save the
particles’ configurations every ts time units, with ts specified
in Table I.

For each age, we compute the radial distribution func-
tion gi(r) averaged over the number of particles, where
i ∈ {AA, BB, AB} indicates the interaction pairs. It has been
shown that the radial distribution function’s first peak is one
of the most important features for predicting rearrangements
[30]. To verify whether this also applies to the age classifi-
cation, we compare the results when the radial distribution
function includes or excludes the first peak, corresponding
to gi(r) with σi � r < 3σi and gi(r′) with σi + 0.15 � r′ <

3σi + 0.15, respectively. In this paper, we will refer to the
radial distribution function without the first peak as ĝi(r).
To compute ĝi(r) or gi(r) we use a bin width of δr = 0.05,
resulting in 40 data points for each of the three partial radial
distribution functions gi(r). These 120 structural properties
will be used as an input for our machine learning model.
The dataset is randomly divided into a training set and a test
set that include 70% and 30% of the data, respectively. To
verify that this model also works for an active particle system,
we study ABPs with an active force f = 0.5, a persistence
time τr = 1, and a quenching temperature Tq = 0.25. We
chose these parameters such that the relaxation times of the
active and passive systems are of the same order of magnitude
[62].

C. Classification model

To carry out the age classification task we use a multilayer
perceptron [63,64] as implemented in SCIKIT-LEARN [65]. This
neural network (NN) is composed of multiple layers of inter-
connected neurons. In the first layer, i.e., the input layer, the
neurons receive the input vector, while the output layer yields
the output signals or classifications with an assigned weight.
The hidden layers optimize the weights until the neural net-
work’s margin of error is minimal [66].

In this work we will use two different NN architectures
consisting of either 4 or 12 hidden layers. In both cases, all
hidden layers have 100 nodes except for the last two, which
have 50 and 30 nodes, respectively. The ADAM algorithm has
been used to update the weights [67].

To evaluate the model we compute the F1 score

F1 score = 2
precision × recall

precision + recall
,

where the precision is the sum of true positives across all
classes divided by the sum of both true and false positives over
all classes and the recall is the sum of true positives across all
classes divided by the sum of true positives and false negatives
across all classes. The F1 score reaches its largest value of 1
when the model has perfect precision and recall and its lowest
value of 0 if either the precision or the recall is equal to 0. The
list of hyperparameters used for the multilayer perceptron is
reported in the Supplemental Material [28].

D. Feature selection: Traditional approach, SHAP
analysis, and PCA

A key aspect of our work is to establish whether machine
learning is truly of added value when inferring the age of
a finite system, as opposed to a more traditional approach.
Some signatures of aging in g(r) have already been observed
[22–25], and a traditional approach would focus on the fea-
tures that change the most with age, which usually include the
first peak. If the age dependence of these features is linear or
polynomial, we could apply a simple algorithm, e.g., linear re-
gression, to make predictions. To verify whether this approach
is efficient, we compute

〈δgi(tw, r)〉 =
〈

gi(tw, r) − gi(tw = 1, r)

gi(tw = 1, r)

〉
,

where i ∈ {AA, BB, AB}, σi � r < 3σi, and 〈· · · 〉 denotes an
average over 20 independent configurations. The variation
〈δgi(tw, r)〉 tells us how much the radial distribution function
at age tw changes compared to g(r) obtained for a very young
glass, i.e., tw = 1. To select the features that change the most,
we measure δ = max[〈δgi(tw, r)〉] − min[〈δgi(tw, r)〉] and
select those with higher δ.

We then compare this traditional approach to our machine
learning strategy. The machine learning model calculates its
predictions using all the available data, but we can also
identify which features have a stronger influence on the
neural network’s prediction. We can then verify whether
these features correspond to those selected with the tradi-
tional approach. Moreover, in order to gain more insight
into the machine learning model’s prediction, we perform a
SHAP analysis [68] that calculates the relative contribution
of each feature to the prediction. Briefly, the SHAP explana-
tion method computes Shapley values incorporating concepts
from cooperative game theory. The goal of this analysis is to
distribute the total payoff among players taking into account
the importance of their contribution to the final outcome. In
this context, the feature values are the players, the model is
the coalition, and the payoff is the model’s prediction.

Finally, we perform a PCA analysis [69]. PCA is a valuable
tool for condensing multidimensional data with correlated
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variables into new variables that represent linear combinations
of the original ones. Essentially, PCA serves as a means to
reduce the dimensionality of high-dimensional data. Through
the identification of variables exhibiting significant variances,
we can uncover the inherent characteristics within the data.
The first component corresponds to the projection axis that
maximizes the variance in a certain direction, while the sec-
ond principal component is an orthogonal projection axis that
maximizes the variance along the next-leading direction. This
process can be iterated to identify additional components.

We will explain in the following sections how machine
learning approaches outperform the traditional approach for
the system under study, demonstrating that machine learning
can be more efficient in inferring the age of a material from
simple static properties when noise is inherently present in the
data.

III. RESULTS AND DISCUSSION

A. Fixed quenching temperature

Let us first focus on the situation in which both the training
and prediction are carried out for a single quenching temper-
ature Tq. This allows us to finely tune the machine learning
model. In the following, networks that are trained with a single
quenching temperature will be referred to as S . In Sec. III B
we compare these models with a more generalized machine
learning model that is trained for a broad range of quenching
temperatures.

1. Age prediction

To infer the age of a glass, we use a NN that only uses the
instantaneous radial distribution functions gi(r) (120 features
in total) as input. We train three different neural networks
S , composed of four hidden layers and trained and tested at
quenching temperatures Tq = 0.1, 0.25, and 0.375. We veri-
fied that our bigger alternative NN with 12 hidden layers does
not improve the performance (see the Supplemental Material
[28]). In Table II, we show the F1 score for each class and the
overall score computed in the test set. Table II shows that the
F1 score for each class is always higher than 0.9, regardless of
the quenching temperature. From this excellent score across
all age categories it is clear that, even if the waiting time
dependence of the radial distribution function is considered
weak, a NN trained exclusively on this structural property
is able to distinguish between young and old glasses with
remarkable accuracy.

To verify whether our machine learning approach can also
classify the age of an active system, we train and test a model
S with the data of dense ABPs. In Table II we show the
F1 score corresponding to an aging active system ( f = 0.5,
τr = 1) at quenching temperature Tq = 0.25. As in the pas-
sive case, the F1 scores exceed 0.9 for all age categories
across four decades in time. Thus, the neural network also
performs well for active glasses when trained and tested at
the same temperature. This is consistent with recent works
[62,70] demonstrating that an active system’s aging behavior
shares several similarities with a passive glass, notably the
power-law growth of the α relaxation time as a function of
the waiting time. In particular, this explains why our machine

TABLE II. Classification performance of the neural networks
S in the passive and active cases. The passive neural networks
are trained and tested with Tq = {0.1, 0.25, 0.375}, while the active
NN is trained and tested with Tq = 0.25, an active force f = 0.5,
and a persistence time τr = 1. The model has gi(r) as input, with
σi � r < 3σi. In the left column we show the Tq at which each S is
trained; then we show the class label and its corresponding F1 score.
In the last column we provide the overall score obtained in the test
set.

Tq Class F1 score Score

Passive system
0.1 0 1 0.97

1 0.99
2 0.97
3 0.96
4 0.98

0.25 0 1 0.94
1 0.98
2 0.92
3 0.91
4 0.97

0.375 0 1 0.95
1 0.97
2 0.93
3 0.94
4 0.96

Active system
0.25 0 1 0.93

1 0.96
2 0.92
3 0.91
4 0.92

learning models for passive and active systems have a similar
predictive performance. Finally, while we focused on a two-
dimensional system, we verified that this model also works for
a three-dimensional system [28].

2. Traditional approach versus machine learning

In the previous section we showed that a NN trained with
120 static features can reliably predict the age of the system
at a given temperature. Here we explore whether all these
features are necessary to train a well-performing model since
a subset of features might already efficiently encode the age of
the material. To this end, we sort all gi(r) features in order of
importance. The order is determined either from a traditional
approach that simply looks for the values of gi(r) changing the
most with age, a machine-learning-based SHAP analysis, or a
PCA analysis which extracts the most important components
(see Sec. II D). For these three sortings, we can then train a NN
with only the most important features and establish how the
age can be most efficiently predicted from minimal structural
information.

To compare the traditional approach with machine learn-
ing, we train neural networks S with a different number of
features Nf , where Nf ∈ {1, 2, 3, 4, 5, 6}. In Fig. 2 we show
the F1 score as a function of Nf for both the traditional and
machine techniques, namely, SHAP-based feature selection
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(a) (b) (c)

FIG. 2. The F1 score as a function of the number of features Nf used in the machine learning model. The blue dashed line corresponds
to the F1 score shown in Table II obtained with the full dataset (120 features). The orange squares represent the F1 score obtained with the
principal components selected by PCA, the pink dots correspond to the F1 score obtained with the most important features selected with a
SHAP analysis, and the light blue triangles represent the F1 score gained using the features that change the most on average. (a) Quenching
temperature Tq = 0.1. The SHAP analysis shows that the six most important features are gAA(1.05), gAA(1.65), gAB(1.35), gAA(1.80), gAA(1.75),
and gAB(1.30). The six features that change the most on average are gAA(1.00), gBB(2.00), gAB(1.25), gBB(2.05), gAA(1.60), and gAB(1.40).
(b) Quenching temperature Tq = 0.25. The SHAP analysis shows that the six most important features are gAA(1.00), gAA(1.65), gAB(1.60),
gAB(1.55), gBB(1.80), and gAA(1.05). The six features that change the most on average are gAA(1.00), gAB(1.55), gBB(1.00), gBB(2.25),
gAB(1.40), and gBB(1.05). (c) Quenching temperature Tq = 0.375. The SHAP analysis shows that the six most important features are gBB(1.50),
gAA(1.00), gAA(2.45), gAB(1.60), gBB(1.55), and gBB(1.45). The six features that change the most on average are gBB(1.00), gBB(1.55),
gBB(1.05), gBB(1.50), gBB(2.35), and gBB(2.30).

and PCA. Each panel corresponds to a different quenching
temperature. It can be seen that for all considered temper-
atures, the predictions restricted to the features selected by
SHAP are better than the traditional approach, demonstrating
that machine-learning-based feature selection is superior to
the traditional “human learning” approach in this case. Fur-
thermore, PCA outperforms both the conventional method
and the SHAP analysis. Importantly, however, the variance
associated with the number of principal components ranging
from one to six is below 0.5, meaning that the first six compo-
nents do not contain all the information within the dataset (see
the Supplemental Material [28]). Consequently, this suggests
that the dimensionality-reduced dataset from PCA does not
comprehensively represent the entire dataset.

Even though the F1 score for a restricted model is always
lower than that for the full model with 120 features (see
Fig. 2), both PCA and SHAP restricted to Nf = 6 can be
considered good classifiers since their F1 scores are always
greater than 0.76 and 0.80, respectively. However, the list of
the six optimal features for both SHAP and PCA changes with
the quenching temperature, while the full model leads to an F1
score higher than 0.9 regardless of the quenching temperature.
Thus, while fewer features can, indeed, be used to obtain good
predictions, this comes at the price of performing a new PCA
or SHAP analysis for the full model at each temperature, and
hence, the full model can be deemed more efficient overall.

Let us now inspect the feature selection more closely
to determine why the machine-learning-based selection out-
performs the traditional approach. To compare the most
important features selected by these two approaches, the focus
of the remainder of this section will be on the SHAP analysis
and the traditional approach. We note that one could also per-
form a more in-depth analysis of the main PCA components,

but due to their relatively small variance, we prefer to focus
on SHAP instead.

A key point in support of machine learning is its ability
to perform well for noisy data, i.e., in the presence of fluctu-
ations that are inevitable in experimental or simulation data
of finite-sized systems. Figure 3 shows the six features that
change the most on average for a system with quenching
temperature Tq = 0.1. From this plot it is clear that gAA(1.00)

FIG. 3. Variation of the radial distribution function 〈δgi(tw, r)〉
as a function of age tw . The symbols represent the six features that
change the most on average for a system at Tq = 0.1. In the inset the
red diamonds show the feature that changes the most, 〈δgAA(1.00)〉,
with its corresponding standard deviation, and the blue dots corre-
spond to the most important feature according to the SHAP analysis,
〈δgAA(1.05)〉, and its standard deviation.
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is the feature that varies the most with age. In particular, an
older system corresponds to a larger value of 〈δgAA(1.00)〉.
Therefore, one could argue that this feature alone should be
sufficient to predict the age of the system. However, Fig. 2(a)
shows that the F1 score obtained from a NN trained with only
gAA(1.00) (light blue point at Nf = 1) is lower than 0.5, while
the one corresponding to a single SHAP-selected feature (pink
point at Nf = 1) is greater than 0.6. This single most im-
portant feature according to SHAP is gAA(1.05), which the
machine learning model selects even if it does not change
much with age (inset in Fig. 3). The reason for this choice,
also highlighted in the inset of Fig. 3, is that the standard devi-
ation associated with 〈δgAA(1.00)〉 is much larger than the one
obtained for 〈δgAA(1.05)〉. Furthermore, in the Supplemental
Material [28], we present the results achieved by subtracting
the mean radial distribution function of the complete dataset
from the radial distribution function at different ages, denoted
as gi(r) − 〈gi(r)〉, with i ∈ AA, BB, AB, at Tq = 0.375 for a
single snapshot. This analysis confirms results similar to those
reported in Fig. 3, and we do not observe any additional
significant effects.

From this analysis we can conclude that, according to
SHAP, the features that have the biggest influence on the
model’s prediction are not necessarily those that change the
most with age, but rather features that change monotonically
with age and have a relatively small standard deviation. Over-
all, we see that the noise associated with an instantaneous
configuration is usually too large to make reliable age predic-
tions based on features selected with the traditional approach.
Therefore, we conclude that in order to properly classify the
age of a glass from a single snapshot, a machine learning
approach is preferred since it is better equipped to handle
noise.

B. Quenching temperature dependence

1. Age prediction with a generalized model

We now aim to build a general model that is able to classify
the age of the system at any quenching temperature regardless
of the Tq used in the training. The first attempt to achieve this
goal consists of determining whether the model S , introduced
in Sec. III A, can correctly classify unseen data at differ-
ent temperatures. Therefore, we test each neural network S
with Tqtest = 0.11, 0.12, 0.15, 0.17, 0.2, 0.23, 0.3, 0.32, 0.35.
Our results show that the model S trained with the par-
tial radial distribution functions without the first peaks ĝi(r)
generalizes better than that trained with the full radial distri-
bution functions gi(r) [28]. This is due not only to the strong
temperature dependence of the main peaks but also to the
fact that those data points are extremely noisy (as shown in
Sec. III A 2). For this reason, in this section we will focus
on the results corresponding to neural networks trained with
ĝi(r). Moreover, we found that this model can extrapolate rea-
sonably well only when the difference between Tqtrain and Tqtest

remains sufficiently small. Since this model cannot be used to
predict the age of the system at an arbitrary quenching tem-
perature, we examine whether the performance of our model
further improves when it is trained with a set of multiple (in
our case three or six) different quenching temperatures.

FIG. 4. The F1 score as a function of the quenching temperature
used to test the model Tqtest . The purple line shows the neural net-
work M trained with Tqtrain = 0.1, 0.15, 0.2, 0.25, 0.35, 0.375, the
red line represents Mhigh trained with Tqtrain = 0.25, 0.35, 0.375,
and the blue line indicates Mlow trained for Tqtrain = 0.1, 0.15, 0.2.
Each dot corresponds to the F1 score obtained in the test set
when Tqtest �= Tqtrain . The temperatures used in the test set are Tqtest =
0.1, 0.11, 0.12, 0.15, 0.17, 0.2, 0.23, 0.25, 0.27, 0.3, 0.32. The inset
shows the F1 score when the networks M, Mhigh, and Mlow are
tested with Tqtest = Tqtrain .

To this end we use a new neural network with 12
hidden layers, referred to as M, that is trained with
Tqtrain = 0.1, 0.15, 0.2, 0.25, 0.35, 0.375 and subsequently
tested with Tqtest = 0.11, 0.12, 0.17, 0.23, 0.27, 0.3, 0.32.
We also verified that for this dataset a NN with 12 hidden
layers generalizes better than a smaller network (see the
Supplemental Material [28]) and that using Tq and ĝi(r) as
input yields the best performance. The purple line in Fig. 4
shows the F1 score of our most general model M as a
function of Tqtest . It can be seen that the F1 score in the test
set is always higher than 0.76. Therefore, this model is able
to interpolate reasonably well for unseen data. Specifically,
for 0.11 � Tqtest � 0.17 we find that 0.76 � F1 score � 0.82,
while, when 0.23 � Tqtest � 0.32, the model has 0.87 � F1
score � 0.91. Our neural network M thus performs better for
the higher quenching temperatures, i.e., when Tqtest � 0.23.

To better understand this behavior and to test whether
different aging regimes exist, we split the training set into
two parts: one for low temperatures Mlow, with Tqtrain =
0.1, 0.15, 0.2, and one for higher quenching temperatures
Mhigh, with Tqtrain = 0.25, 0.35, 0.375. In both cases we use
a NN with four hidden layers because for these two datasets it
performs better than a larger NN. From Fig. 4 we can see that
Mhigh (red curve) performs well (F1 score � 0.86) for Tqtest �
0.23. For these Tqtest values the F1 score is very similar to the
one obtained with M. This means that for high temperatures
even a small network trained with a smaller set of quenching
temperatures is able to generalize to quenching temperatures
close to those used in the training set. However, when Mhigh

is tested with Tqtest < 0.23 the corresponding F1 score is lower
than 0.7. For these temperatures Mhigh systematically overes-
timates the age of the system (see the Supplemental Material
[28]). For lower quenching temperatures, instead, Mlow (blue
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curve) has an F1 score higher than 0.7 when it is tested with
Tqtest � 0.25. In this case this NN performs worse compared
to M, but Mlow is able to generalize in a larger range of
Tqtest compared to S trained with Tqtrain = 0.1 (reported in the
Supplemental Material [28]). In order to have higher perfor-
mances, the low-temperature regime needs a bigger set of
Tqtrain and a bigger NN. Moreover, similar to Mhigh, Mlow

has an F1 score lower than 0.7 when tested with Tqtest > 0.23.
In this case, Mlow underestimates the age of the system (see
the Supplemental Material [28]). As we shall discuss in the
following section, the over- or underestimation of Mhigh and
Mlow in unseen temperature ranges might be related to the
true underlying physics, as the rate of aging depends on the
quenching temperature.

The inset in Fig. 4 shows that when we test the three
neural networks (M, Mhigh, and Mlow) with Tqtest = Tqtrain ,
the F1 score is always higher than 0.93; i.e., all models yield
excellent predictions when tested for the temperatures they
were trained for. From Fig. 4, we can conclude that a NN
trained with quenching temperatures Tqtrain = Tq1 , . . . , Tqm per-
forms well when tested with Tq1 � Tqtest � Tqm . Schoenholz
et al. [42] showed that the history-dependent dynamics in
glassy systems can be quantified by the softness and that this
property can be used to predict tw even for systems at different
temperatures. Our results show that a simpler model, based
only on the radial distribution function, can predict the age of
a system at any temperature if the NN is trained on a set of
multiple quenching temperatures.

Finally, we also verified that the model M trained with
passive data can correctly classify the age of an unseen active
system ( f = 0.5 and Tq = 0.25) with an F1 score equal to
0.85. This remarkably good performance can be rationalized
as follows. In the steady state, an active system can be mapped
onto a passive system using an effective temperature, while
during aging the effective temperature will change with the
age of the system [62]. In this context each class will corre-
spond to a different effective temperature, and for this reason
the NN trained on a passive system with multiple quenching
temperatures has high performances when tested on an active
system.

2. Physical interpretation of the most important features

Last, we aim to identify which features have a bigger
impact on model M’s predictions and how to interpret the
machine learning approach from a physical point of view. For
this identification, we choose to employ a SHAP analysis, but
it is important to mention that a comparable analysis could
also be carried out using methods like PCA. The results of this
analysis for our most general model trained on all quenching
temperatures (purple line in Fig. 4) are presented in Fig. 5. In
particular, Fig. 5(a) shows the SHAP beeswarm plots which
indicate the six most important features and how the values of
these features influence the model’s predictions. The quench-
ing temperature Tq is seen to be the most important feature,
and the colors in Figure 5(a) show that the model interprets
low values of Tq as a young glass and high values of Tq as an
old glass.

To better understand this behavior, we also plot the partial
dependence of Tq in Fig. 5(b). In this plot the quenching

(a)

(b) (c)

FIG. 5. SHAP-based interpretation of the multilayer perceptron
predictions. Here we analyze a neural network M with 12 hidden
layers that has Tq and ĝi(r) as input and is trained with Tqtrain =
0.1, 0.15, 0.2, 0.25, 0.35, 0.375. (a) SHAP beeswarm plot that shows
how the most important features impact the model’s output. The x
position of the dots is determined by the SHAP values of the features,
and color is used to display the original value of the features. Partial
dependence plot for (b) Tq and (c) ĝAA(1.65). The x axis is the value
of the feature, and the y axis is the average value of the model
output when we fix Tq or ĝAA(1.65) to a given value. Each class has
a label that goes from 0, young glass with tw = 0, to 4, old glass
with 103 � tw � 104. The inset in (c) shows the waiting time tw as
a function of ĝAA(1.65). Here we show the actual data for a passive
system quenched at Tq = 0.35.

temperature is handled independently from the other features,
allowing us to precisely pinpoint how changing Tq impacts
the model’s predictions. In agreement with Fig. 5(a), this plot
shows that according to the NN a low Tq is more likely to
correspond to a young glass. At first glance this interpretation
may look incorrect since the dataset consists of the same
number of ages for each temperature. However, at any fixed
waiting time tw, a system quenched to a higher Tq is always
closer to its steady state than a system at a lower quenching
temperature because its temperature jump is smaller. There-
fore, for any given tw, the system at a higher Tq is effectively
older than the one quenched to a lower Tq. This analysis
shows that the NN understands that glasses quenched at higher
temperatures age faster. Therefore, the misclassification of
Mhigh and Mlow at low and high temperatures (as shown
in Sec. III B 1), respectively, might be due to the model’s
ability to learn that the rate of aging depends on the quenching
temperature.
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Finally, let us look at the most important structural feature
for model M’s predictions. Figure 5(a) shows that the most
important structural feature is ĝAA(1.65), i.e., the point just
before the second peak of ĝAA. As discussed in Sec. III B 1,
the main peak of the radial distribution function strongly
depends on temperature and is affected by noise. Therefore,
we excluded the first peak from the dataset. Our work does
not necessarily imply that the main peak is unimportant, and
indeed, Schoenholz et al. [30] showed that the radial dis-
tribution function’s first peak gives 77% accuracy to predict
rearrangements. Rather, our work shows that even without the
main peak and focusing only on a seemingly small feature
like ĝAA(1.65), we can reliably classify the age. Thus, even a
region where the correlation between particles is low contains
enough information to classify the system’s age. Moreover,
in Fig. 5(c) we show that the NN interprets large values of
ĝAA(1.65) as an old glass. This feature interpretation is in
agreement with the data, as shown in the inset of Fig. 5(c).

IV. CONCLUSIONS

In summary, this proof-of-principle study demonstrates
that a simple supervised machine learning method can accu-
rately classify the age of a glass undergoing a temperature
quench, relying only on partial radial distribution functions
(obtained from an instantaneous configuration, averaged over
all particles). The performance of our machine learning algo-
rithm is extremely accurate when the quenching temperature
Tq used during training is equal to the one used in the test set
(model S), and the model also generalizes well to datasets
consisting of multiple quenching temperatures (model M).
This good performance for various temperatures indicates the
robustness of our method. Extrapolation to unseen tempera-
tures outside the training window is also reasonable, provided
that the temperature difference is not too large. When extrapo-
lating to significantly lower or higher temperatures, however,
we find that our neural network tends to systematically under-
or overestimate the age of the glass, respectively. This break-
down of the model extrapolation could ultimately be driven
by a different physical behavior, as it is well known that
higher-temperature glasses effectively age faster.

To establish which features in the radial distribution func-
tions best encode the age of a glassy configuration, we
compared a traditional approach based on physical intuition
with a machine-learning-based analysis employing SHAP or
PCA. The traditional approach manually seeks the values
of the radial distribution functions that, on average, change
the most with age, while the SHAP method extracts the
most important features from a trained neural network. This
comparison revealed that machine learning methods strongly
outperform the more traditional one. The reason for this is
the inevitable statistical noise in the data. Indeed, the fluctua-
tions in the radial distribution functions can vary significantly
among different configurations, and the machine learning
model is able to adequately filter out these statistical fluctu-
ations. However, the list of key features selected by SHAP
or the principal components selected by PCA changes with
the quenching temperature (see the Supplemental Material

[28]). It follows that in order to identify the most important
structural features, one should, in principle, train a neural
network at each Tq with the full dataset and later perform
a SHAP analysis or PCA to identify the key features. Since
there is usually no cost associated with using a larger number
of features, overall, we conclude that a model trained with the
full data set (120 features) is the most efficient approach.

For our most general machine learning model (model M),
we also employed SHAP to explain the predictions. This
analysis showed that the two most important features are the
quenching temperature Tq and the partial radial distribution
function ĝAA(1.65). Interestingly, the model is thus able to
learn that the rate of aging depends on the quenching tempera-
ture and, surprisingly, that ĝAA(1.65), the point just before the
radial distribution function’s second peak, contains enough
information to predict the system’s age.

While we focused on the age classification of a passive
glass, we verified that this machine learning model works
remarkably well even for an active glass composed of active
Brownian particles. Our results showed that model M trained
with passive data can correctly classify the age of an active
system. Therefore, this method could also be used to map
the aging behavior of an active glass onto a passive glass at
different quenching temperatures [62].

A potential next step for this work could involve incorpo-
rating additional structural descriptors to further investigate
the relationship between structure and dynamics in aged
glasses. Since, in recent years, smooth overlap of atomic
positions (SOAP) parameters have proven to be effective
in encoding atomic structures [38,71,72], one could explore
training a machine learning algorithm using these parameters
as input.

Our work demonstrates that, even though the radial dis-
tribution function of an aging glass is usually considered to
remain constant with age, the age dependence, albeit subtle,
is already fully encoded in this simple structural property.
We thus argue that machine learning methods can be of true
added value compared to traditional physical approaches since
they can uncover previously unseen correlations that would
be difficult, if not impossible, to detect with the human eye.
Owing to the simplicity and computational efficiency of our
approach, we envision that our machine learning method
could be used in a variety of applications, e.g., to quickly
distinguish a system that has already reached its steady state
from a system that is still aging. This could be particularly
attractive for studies in which physical aging is an undesirable
and difficult problem, such as equilibration of deeply super-
cooled liquids. With our model, it would be possible to verify
whether a supercooled liquid has reached equilibrium from a
single snapshot.
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