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We present the development of machine-learning interatomic potentials for uranium dioxide UO2. Density
functional theory calculations with a Hubbard U correction were leveraged to construct a training set of atomic
configurations. This training set was designed to capture elastic and plastic deformations, as well as point and
extended defects, and it was enriched through an active learning procedure. New configurations were added
to the training database using a multiobjective criterion based on predicted uncertainties on energy and forces
(obtained using a committee of models) and relative distances between new configurations in descriptor space.
Two machine-learning potentials were developed based on physically sound pairwise potentials, which include
the Coulombic interaction: a neural network potential and a SNAP potential. These potentials were optimized
to minimize the root mean square error on the training database. Subsequently, the SNAP potential was used to
compute the stacking fault energy surface in multiple directions, and the stabilized configurations were employed
for subsequent DFT minimizations. The final DFT stacking fault energy surfaces of UO2 are presented, and
the associated configurations are included in the training database for a new optimization. Finally, the results
obtained from both machine-learned potentials were compared to standard semiempirical ones, demonstrating
their excellent predictive capabilities for solid properties. These properties include defect formation energies, γ

surface, elastic properties, and phonon dispersion curves up to the Breidig transition temperature.
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I. INTRODUCTION

Pellets of uranium dioxide (UO2) are the reference fuel
of most nuclear power plants in the world. In reactor con-
ditions, these pellets are facing severe conditions of heat
gradient, stress and irradiation. This dramatically impacts
their microstructure, and leads to an evolution of their ther-
mophysical properties, such as the thermal conductivity [1],
or the elastoplastic response of the fuel [2,3]. To gain insights
into these phenomena and their interconnections, compre-
hensive characterizations and experimental measurements are
crucial. Although performing those experiments is hindered
by the associated cost and complexity [4,5], the acquisition of
such information holds crucial significance in constructing ac-
curate models and obtaining reliable data for fuel performance
codes [6–8]. Ultimately, this enables an accurate description
of the in-reactor evolution of nuclear fuels. In this context,
atomistic scale studies based on first-principles methods or
empirical potentials have been extensively employed to sup-
plement experimental data on UO2.

First-principles methods such as density functional theory
(DFT) have proven to be a reliable tool for predicting energies,
atomic forces, and stress tensors of small atomic configura-
tions [9,10]. However, for UO2, the application of a Hubbard
U correction term is necessary to account for the strong cor-
relations among uranium 5 f electrons [11–14], introducing
additional complexity compared to standard DFT [14,15] to
converge towards the ground state due to metastable states
in the electronic structure. Within this DFT + U framework,
accurate computations of formation energies of interstitial

atoms or vacancies, such as the neutral bounded Schottky
defects (BSDs), have been extensively performed [14,16,17].
These formation energies can be incorporated into thermody-
namic models, to calculate diffusion rates of defects [18,19].
Although more challenging, small clusters of those defects
can also be considered at the DFT level [16]. Recent studies
have highlighted the importance of considering larger simula-
tion cells (for example 3 × 3 × 3 supercells, with 324 atoms)
for accurately predicting BSD formation energies [20,21],
emphasizing the need for calculations at a larger scale than
typical DFT simulations.

While recent advances have allowed DFT-based descrip-
tions of thermophysical properties in nuclear fuels [22], these
methods are still limited to small atomic configurations, and
modeling temperature-dependent large-scale effects remains
challenging within the DFT + U framework.

At larger scales, semiempirical interatomic potentials
(SEIPs) have been developed and applied to UO2. Those
SEIPs define a potential energy landscape from which ener-
gies of atomic configurations and forces between atoms can be
computed. Traditionally, SEIPs for UO2 have combined pair
potentials, such as the Coulombic interaction and the Buck-
ingham model [23], fitted to experimental properties [24–27].
Once constructed, those potentials were used in large-scale
classical molecular dynamics (MD) or Monte Carlo simula-
tions [28] to investigate extended defective structures, such
as displacement cascades, dislocations or grain boundaries
[29–31].

More recently, Cooper, Rushton, and Grimmes introduced
a many-body embedded atom method (EAM) contribution
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to pairwise terms [32,33]. Their SEIP, referred to as CRG,
improved upon previously observed deviations from experi-
mental elastic and plastic properties [34,35], and accurately
predicted elastic constants and thermophysical properties in
excellent agreement with experimental measurements. No-
tably, the CRG potential has been employed in various studies,
including the derivation of a heat-capacity law tested in
fuel-performance codes [36], extensive investigations of the
temperature dependence of UO2 thermal conductivity by Liu
et al. [37], and the computation of grain boundary structures
with excellent agreement to experimental observations [38].

However, none of the SEIPs mentioned above were specif-
ically designed to reproduce the formation and migration
energies of small atomic structures, such as defects, as pre-
dicted by DFT + U [20,21]. Furthermore, these SEIPs exhibit
significant discrepancies among themselves regarding defect
formation energies, which can have crucial consequences
when performing MD simulations of damage accumulation,
as recently discussed by van Brutzel et al. [39]. Differences in
the calculated γ surfaces, crucial for the prediction of disloca-
tion and grain-boundary structures, have also been observed
in UO2 SEIPs [40]. The observed differences can lead to large
discrepancies in terms of predicted extended defect configura-
tions, such as dislocations. Overall, the inconsistencies among
available models (DFT + U and different SEIPs) hamper the
predictability of damage accumulation and plastic behavior
simulations, despite their fundamental importance in nuclear
fuels.

In recent years, machine-learning tools have successfully
been employed to learn potential energy surfaces from ref-
erence ab-initio calculation datasets. These machine-learning
interatomic potentials (MLIPs) have proven effective in accu-
rately describing various classes of materials [41]. Two recent
studies have explored the potential of MLIPs in nuclear fuel
materials. Yang et al. trained a neural-network potential on
UO2 configurations for specifically temperature dependant
calculations of thermal conductivity [42]. Kobayashi et al.
applied neural-network potentials to train three MLIPs for
thorium dioxide ThO2 [43]. Both studies obtained excellent
thermophysical properties, but did not investigate point or
extended defect configurations. They also highlighted the
challenges of extending their study to defect structures in
UO2, particularly due to the additional complexity introduced
by DFT + U calculations. To the best of our knowledge, the
computation of stacking fault energy surfaces of UO2 using
DFT is still beyond current capabilities. Our work aims to
address these limitations.

In this study, we have developed two MLIPs for UO2,
leveraging the Behler-Parinnello high-dimensional neural net-
work [44] and spectral neighbor analysis approaches [45].
By combining state-of-the-art DFT calculations on actinide
oxides with active-learning methods, we ensured an efficient
sampling of the potential energy surface, enabling the gen-
eration of a diverse dataset for training the potentials. We
employed a SNAP potential to relax configurations on the
stacking fault energy surface for several slip planes, followed
by full DFT + U minimizations. From the γ surfaces, we
extracted minimum energy paths, significantly improving the
description of material behavior at the atomistic level.

First, we provide a brief description of the computational
methods used and the theoretical background of MLIP and
active learning procedures. Then, we thoroughly assess the
performance of the trained potentials against reference DFT
calculations. Finally, we utilize these potentials to predict ther-
momechanical properties of UO2, including defect formation
energies, and compare the results with standard predictions
from semiempirical potentials CRG and MOX07.

II. METHODS

A. General structure of the potentials

The total potential energy of our system Ep is constructed
by summing three distinct contributions:

Ep = Er + Ec + Eml , (1)

where Er is a short-range and pair-wise repulsive interaction,
Ec a Coulombic contribution, and Eml is the machine learned
contribution. Both Er and Ec can be referred to as reference
potentials.

The short-range Er contribution aims at representing a
screened nuclear repulsion. In addition, it is also known
to efficiently stabilize the potentials at very short-range,
and to avoid inconsistent behavior [46]. In this work, this
short-range repulsion is accounted for through the Ziegler-
Biersack-Littmark (ZBL) pair potential [47]:

Er =
∑
i, j

1

4πε0

ZiZ je2

ri j
φ(ri j/a) + S(ri j ) (2)

with Zi and Zj the atomic numbers of atoms i and j, e
the elementary charge, ri j the distance between atoms i and
j, ε0 the vacuum permittivity, and a, φ(x), and S(ri j ) are
defined following the work of Ziegler et al. [47]. Those
parameters where adjusted to approximately match highly
compressed DFT + U calculations of the UO2 primitive cell
(see Ref. [48]).

The second contribution Ec accounts for the electrostatic
interactions:

Ec =
∑
i, j

qiq j

4πε0ri j
(3)

with qi and q j the charges of two atoms i and j. In this study,
we considered the constant partial charge values as optimized
by Yakub et al. [27] for actinide oxides. This electrostatic
interaction term is computed by leveraging the Ewald or
PPPM summation methods (both methods were tested and
proved to give equivalent results), accounting for long-range
contributions. Note that the constant charge approximation
only affects long range interactions as the short-range part
will be corrected by the ML contribution. The correspond-
ing assumption is that local variations of charges (due, for
example, to a defect) have a limited contribution to long range
interactions; then, only the mean field due to constant atomic
charges is computed.

The combination of a MLIP with the long-range Coulom-
bic interactions has already demonstrated successful applica-
tions to Li3N by Deng et al. [49] and GaN by Bartok et al.
[50]. It is important to note that the use of constant atomic
charges limits the potential’s applicability to nonreactive
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simulations, where the chemical nature of the atomic envi-
ronment remains weakly perturbed. To address the significant
evolution of atomic charges during simulations, specific
strategies integrated into machine learning frameworks have
been developed (for more details, see the recent review on
neural network potentials by Behler et al. [51]).

The last contribution to Ep is Eml , which represents one
of the two MLIPs trained in this study. The objective of
those MLIPs is to map, through a function �, the remaining
contribution to the potential energy (after accounting for the
two reference potentials) of the ith atom EML

i of species α to
its local atomic environment in a descriptor space Gi, given a
set of parameters �α ,

EML
i = �(�α, Gi ), (4)

where � is an energy function that depends on the de-
scriptors rather than on Cartesian coordinates and Gi ≡
{gi1, gi2, . . . , giK } is the K-component descriptor vector for
atom i. Each component giK is a smooth function of the
ith atom’s Cartesian local environment ci ≡ {ri1, ri2, . . . , rin}
corresponding to the set of positions of its n neighbors within
a cutoff sphere of radius rcut. These functions are chosen
to ensure energy invariance under translation, rotation and
permutation of atoms.

In this study, we employed two specific potentials:
the spectral neighbor analysis potential (SNAP) and the
Behler-Parrinello high dimensional neural-Network poten-
tial (HDNNP) [44] using as descriptors SO-4 bispectrum
[45] and atom centered symmetry functions, respectively.
Appendixes A and B review the formalism associated with
these potentials. We also note that those two types of ML po-
tentials offer a good trade-off between accuracy and compu-
tational performance, as described in a recent analysis by Zuo
et al. [41].

B. Active learning procedure for dataset generation

In the field of ML, one of the major challenges is to build
accurate and versatile models that can effectively handle a
wide range of configurations. Achieving this requires con-
structing a comprehensive training dataset that encompasses
various configurations representative of the entire accessible
space. While it is impossible to exhaustively sample the entire
phase space, classical statistical mechanics suggests that the
thermally accessible and physically relevant regions can be
found within a significantly smaller subset of possible config-
urations. Since the capabilities of machine learning potentials
are solely determined by the information contained in the
training database, considerable efforts have been dedicated
to its construction, with a particular focus on sampling this
relevant configuration space.

In recent years, active learning strategies have gained pop-
ularity in the field of material sciences for efficiently building
training sets at a reduced CPU cost [52–62]. The main idea
is to label new configurations (i.e., to compute first-principles
energy, forces, and stresses) based on their capability to im-
prove a model. In each generation, a set of candidate instances
(i.e., new atomic configurations) is generated at low cost using
classical molecular dynamics. From this set, only a subset
is eventually selected for labeling. Those strategies become

particularly relevant when the associated first-principles cal-
culations are cumbersome and computationally heavy, such
as in UO2.

One popular selection strategy is called Query by commit-
tee [52,63,64]. This approach involves training a committee
of multiple learners (in this case, MLIP) rather than relying
on a single learner. The uncertainty, or committee disagree-
ment, associated with a prediction is quantified as the variance
among the predictions made by the committee. Both energy
and forces can be used to calculate the disagreement, with the
former serving as a global indicator for a structure denoted
as x ≡ {xi}n

i=1, while the latter accounts for per-atom informa-
tion.

The energy disagreement is given by

σE (x) =
[

1

Nc

Nc∑
c=1

(Ec − 〈E〉Nc
)2

] 1
2

(5)

and the disagreement associated with the forces is given by

σFi,ζ (x) =
[

1

Nc

Nc∑
c=1

(Fi,ζ ,c − 〈Fi,ζ 〉Nc
)2

] 1
2

, (6)

where Nc is the size of the committee, i represents an atom of
the configuration x, and ζ the x, y, or z direction. From the
energy and force disagreements, an uncertainty criterion can
be defined as

u(x) = σE (x)

σ (σE )
+ 〈σF (x)〉i,ζ

σ (〈σF 〉i,ζ )
, (7)

where 〈σF (x)〉i,ζ is the average force disagreement over all
atoms and directions. Both terms are divided by their standard
deviation over the pool of unlabeled instance. In a sampling
scenario, the q selected structures are those with the largest
u(x). However, for q > 1 (batch active learning), uncertainty
sampling alone can lead to redundant queries, as two instances
are likely to share prediction results if they are close to each
other in the input space.

To reduce redundancy by selecting close or correlated con-
figurations, a diversity criterion [65] d (x) is defined as

d (x) =
∑

α

min
i

DMAH
(
Gα

i ,Qα
)
, (8)

DMAH
(
Gα

i ,Qα
) =

√(
Gα

i − μα
Q

)T
S+
Q

(
Gα

i − μα
Q

)
, (9)

where DMAH is the Mahalanobis distance between the atomic
environment of atom i and all atomic environments in the
current queried ensemble Q for the atomic species α. Note
that the usual inverse of the Q ensemble covariance matrix
has been replaced by the pseudo-inverse (S+

Q) for numerical
stability. Diversity is achieved when d (x) is maximum.

The final selected instances should maximize a weighted
sum of the uncertainty criterion and the diversity criterion:

s(x) = (1 − γ )u(x) + γ d (x), (10)

where γ ∈ [0; 1] is a user-defined parameter. In the following,
we use γ = 0.5 to balance the diversity and uncertainty cri-
teria. The structure selection is performed sequentially : S+

Q,
and thus d (x) must be updated each time a new configuration
is selected and added to Q.
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TABLE I. Errors for SNAP and BP-HDNNP potential.

Energy RMSE Energy MAE Forces RMSE Forces MAE Stress RMSE Stress MAE
(meV/atom) (meV/atom) (meV/Å) (meV/Å) (meV/Å3) (meV/Å3)

SNAP f m3̄m 1.60 1.27 3.10 0.73 5.69 3.01
Polymorph 0.64 0.49 156.74 115.22 3.93 1.89

Hot bulk 1 (300 to 2000 K) 3.39 2.25 221.11 159.65 5.67 3.65
Hot bulk 2 (2200 to 2500 K) 5.70 4.47 385.19 295.84 6.00 4.19
Hot bulk 3 (2800 to 3200 K) 8.45 7.04 493.72 377.91 7.45 5.27

Defects 6.16 4.57 300.68 211.02 6.66 4.15
γ surfaces 6.42 4.97 163.15 82.47 6.67 3.41

Total 5.26 3.52 308.81 206.00 6.07 3.62

HDNNP f m3̄m 2.71 2.33 11.72 2.30 10.53 4.01
Polymorph 3.47 2.81 63.17 46.95 14.37 5.13

Hot bulk 1 (300 to 2000 K) 2.53 2.10 99.49 72.13 3.91 2.14
Hot bulk 2 (2200 to 2500 K) 3.59 3.68 175.46 130.76 2.24 1.52
Hot bulk 3 (2800 to 3200 K) 4.51 2.14 246.58 177.47 2.80 1.96

Defects 2.53 3.68 115.77 85.07 3.67 2.15
γ surfaces 4.33 3.31 64.75 35.49 5.82 3.02

Total 3.38 2.67 139.63 90.48 7.32 2.82

III. RESULTS

An initial database is constructed based on physical in-
tuition, containing representative configurations of the cold
curves of several crystalline structures including f m3̄m,
p42mnm, pnma, and pbcn as well as small deformations
around the stable structure f m3̄m.

Based on this database, a first SNAP potential is opti-
mized and NV T trajectories of a 96-atom supercell using the
LAMMPS code are performed at several temperatures in the hot
solid phase to create an ensemble of candidate configurations
for subsequent learning [66]. The active learning procedure
described in Sec. II is then employed to select the most ap-
propriate configurations, which are subsequently computed
using single-point DFT calculations using the ABINIT package
[67–69]. The database is finally expanded with configurations
targeting specific properties (such as the γ surface, or specific
defects), as discussed in the following. Appendix C provides
a review of our DFT setup and the content of our training set.

A. Performance against reference data

In order to evaluate the performance of the two potentials,
we conducted an assessment against reference data. For this
purpose, a subset of the database, approximately 10%, was ex-
tracted solely for testing purposes. These configurations were
not included in the learning process. Subsequently, the trained
potentials were evaluated exclusively on this testing database.
The results in terms of root mean square error (RMSE) and
mean absolute error (MAE) are presented in Table I.

The energy RMSE of the SNAP and HDNNP potentials on
the whole database are 5.26 and 3.38 meV/atom, respectively.
These results are highly satisfactory, especially considering
the diverse range of configurations in the database, en-
compassing different polymorphs, deformations, defects, and
temperatures. Very good agreement was also observed for
the stress predictions, as indicated in detail in Table I. The
force RMSEs of the two potentials can be considered as less

satisfactory. The SNAP and HDNNP potentials yielded total
values of 308 and 139 meV/Å, respectively. It should be
noted that typically, RMSEs below 100 meV/Å are com-
monly expected [46]. Nevertheless, an examination of Table I
reveals that the average values are significantly influenced
by the scores on the hot bulk 2 and 3, which correspond
to ionic temperatures above 2000K, as well as the defective
structures. This deviation from the standard values may be
attributed to the corresponding DFT + U calculations, par-
ticularly the complexity involved in operating the occupation
matrix control procedure (as discussed in Appendix C) far
from equilibrium configurations.

In summary, the overall agreement on the testing set is
highly satisfactory. Correlation plots depicting this agreement
are provided in Ref. [48].

As part of our testing procedure, we computed the
energy-volume and pressure-volume curves for different UO2

polymorphs. These curves were generated through static cal-
culations of scaled relaxed structures. Figure 1 displays the
obtained results. We achieved excellent agreement between
the DFT results and our two MLIP predictions for the four
considered polymorphs included in the training set. The max-
imum RMSE was lower than 3.5 meV/at, with the highly
deformed configurations contributing most to the RMSE. It
should be noted that HDNNP were not explicitly trained on
pressure, which explains the observed inflection points in the
P-V curves for the polymorphic phases.

When considering the effect of irradiation on UO2, it
is important to account for the creation of defects in the
crystalline material. These defects significantly alter the ther-
momechanical properties of the material. The most common
types of defects in UO2 are the neutral bounded Schottky
defects (BSD, with three different configurations depending
of the location of the oxygen vacancies around the uranium
vacancy) and the oxygen Frenkel pairs (FPO). For each type
of defect, we conducted DFT + U calculations to relax the
structure around the defect and compute its formation energy.
Similar relaxation simulations were performed at 0 K for each
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FIG. 1. Equation of state at 0 K of four different UO2 poly-
morphs: f m3̄m (continuous lines), p42mnm (small dashed lines),
pnma (dotted lines), and pbcn (larger dashed lines). DFT results are
represented with symbols, whereas the SNAP and HDNNP results
are displayed as purple and green lines respectively.

potential. The results are presented in Table II. We found
that the MLIPs display good agreement with the DFT + U
results from the litterature, with an average error of less than
10 meV/atom.

B. Thermomechanical properties

We then moved on to evaluate the thermomechanical prop-
erties of our potentials. The elastic tensor C at 0 K was
obtained using the conventional Hooke’s law, σ = Cε, where
the stress tensor σ and the strain tensor ε were constructed by
applying positives and negatives deformations to the unit cell

TABLE II. Defects formation energies (eV).

BSD1 BSD2 BSD3 FPO

atoms/cell 96 96 96 144

CRG 6.42 5.08 5.18 5.66
MOX07 5.60 4.88 4.82 3.58
GGA+U [70] 3.32 2.54 2.82 4.96
SNAP 4.09 3.08 3.23 4.66
HDNNP 4.03 3.55 3.75 4.08

in all directions (xx, yy, zz, yz, xz, xy). For the temperature-
dependent elastic tensor, the same methodology was applied.
However, for each deformation, the simulation box was first
heated and equilibrated at a given temperature for 30 ps in the
NV T ensemble. Then, the stress tensor was averaged over a
30 ps simulation in the NVE ensemble. All calculations were
performed on 6 × 6 × 6 supercells (except at 0K, where unit
cell calculations are sufficient) with a timestep of 1 fs and a
temperature damping parameter of 0.1 ps. The Bulk modulus
(B), Shear modulus (G), Young’s modulus (E ), and the Zener
ratio αr were computed using standard relations derived from
the elastic tensor, and the results are displayed in Table III.

The results obtained using the CRG potential showed ex-
cellent agreement with the experimental values, which the
potential was fitted to. Our SNAP and HDNNP potentials
exhibited very good agreement with the DFT reference values
for all elastic properties, albeit underestimating the experi-
mental values by approximately 10%.

The temperature dependence of the three elastic constants
is shown in Fig. 2. The evolution of C11 for the two MLIPs
exhibited the same trend as that computed with the CRG po-
tential, with a shift towards lower values (consistent with the
0 K DFT + U prediction). A continuous decrease is observed
up to approximately 1800 K, followed by a stronger nonlinear
decrease attributed to the onset of the Bredig transition (see
below). Similar observations are made for C44 except that
the SNAP potential predicts an almost constant value until
1600 K. Significant differences are observed for C12, with
HDNNP predicting a rapid softening between 300 and 800 K,
while SNAP leads to a constant value and CRG shows a linear
decrease. This low temperature behavior might be associated
with the MLIPs’ extrapolation due to the absence of relevant
configurations in the training database, which mainly consist
of isotropic NPT simulation within the considered range of
temperature. However, for C12, the available experimental data
is very noisy, so that it is hard to extract a general trend from
it, and it is therefore difficult to draw a conclusion in terms of
agreement of the different tested potentials.

C. Thermodynamic properties and phonon density of states

The potentials were then tested on their ability to reproduce
well-known trends of two thermodynamic properties and on
the phonon density of states.

TABLE III. Elastic constant, bulk modulus, shear modulus,
Young modulus and Zener ratio from experiments, CRG and MOX07
semiempirical potentials, and DFT, SNAP, and HDNNP MLIP
potentials.

C11 C12 C44 B E G
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) αr

Exp [71] 396 121 64 213 87 230 0.46
CRG 406 124 66 218 90 237 0.47
MOX07 216 76 73 122 72 180 0.47
GGA+U 364 112 58 196 79 210 0.46
SNAP 360 114 59 196 80 211 0.48
HDNNP 373 121 64 205 84 222 0.50
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FIG. 2. Evolution of the elastic constants (C11, C12, and C44) with
temperature, for four reference potentials (CRG in filled blue circles,
MOX07 in open red circles, SNAP in filled purple squares, and
HDNNP in open green squares). The black diamonds display the
existing experimental data, extracted from Fink [72].

The evolution of the enthalpy was computed in the isobaric
isothermal (NPT ) ensemble. A supercell of 6 × 6 × 6 (2592
atoms) was equilibrated at P = 1.0 bar and the target tempera-
ture for 80 ps, with quantities of interest averaged over the last
30 ps. This procedure was repeated for temperatures ranging
from 300 to 3000 K, with a step of 25 K. All calculations were
performed using a 1 fs time step, with damping parameters
set to 0.1 ps and 1 ps for the thermostat and barostat re-
spectively. The lattice parameter a was directly obtained from
the simulation, and the specific heat capacity Cp was com-

FIG. 3. Evolution of the ratio a/a300 with temperature. The blue
triangles represent experimental measurements extracted from Fink
[72]. The black diamond was extracted from the ab initio work of
Pang et al. [73].

puted by differentiating the volume and enthalpy curves with
respect to temperature. The results are presented in Figs. 3
and 4.

For the evolution of the lattice parameter, as expected,
the CRG potential provides the best agreement compared to
experimental data (blue dots and green triangles on Fig. 3,
respectively). The trends exhibited by our MLIPs present a
slight overestimation of the thermal expansion coefficient.
However, those trends seem consistent with the existing
DFT + U data (black dot on Fig. 3) [74].

Notably, our MLIPs successfully reproduce the Bredig
transition around T = 2500 K [75]. The existence of this
transition, also referred to as “premelting” transition, is sup-
ported by experimental evidence [76]. It is associated with the
emergence of a superionic state and a sudden increase of the
oxygen mobility (while the uranium sublattice remains very
stable). As depicted in Fig. 4, this second-order transition

FIG. 4. Evolution of the heat capacity Cp with temperature. The
blue line display the experimental recommendation from Fink [72].
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FIG. 5. Comparison of the phonon density of states of UO2 at
300 K obtained with our MLIPs, CRG, and MOX07 with the experi-
mental data [79] and the result of the QHA [73].

is characterized by a peak in the specific heat capacity. The
onset of the transition appears earlier with the SNAP poten-
tial while the HDNNP shows better agreement with CRG
results. Potashnikov et al. discussed the need to simulate
3 × 3 × 3 supercells to observe this transition [24]. However,
our MLIPs, trained on 2 × 2 × 2 DFT + U supercells, are
able to reproduce the expected behavior. This is a significant
finding since 3 × 3 × 3 cells require approximately 38 times
more computational power to solve (N3

e scaling of DFT + U ,
where Ne the number of simulated valence electrons) com-
pared to 2 × 2 × 2 cells.

The phonon densities of states (PHDOS) at 300 K were
computed using the temperature dependent effective poten-
tial (TDEP) method [77] and 5 × 5 × 5 supercells. Results
are presented in Fig. 5 for our MLIPs, the CRG and the
MOX07 potentials, with a comparison to experimental data
of J. W. L. Pang et al. [73,74] and their results using the quasi
harmonic approximation (QHA) with GGA + U . The CRG
and MOX07 potentials reproduce correctly the acoustic region
(0–25 meV) but the optical modes are strongly overestimated
with CRG, as discussed in the work of M. Jin et al. [78],
while MOX07 underestimates them. GGA + U [73] is also
in good agreement for the acoustic region but to a lesser
extent for the optical region, particularly the dispersion of the
highest branch, between 70 and 80 meV, which is strongly
underestimated. Our HDNNP shows excellent agreement with
the QHA results, with a better comparison to experimental
data for lower optical energies (25 to 55 meV). This can
be attributed to the inclusion of anharmonic effects in the
TDEP method, which are not accounted for in the QHA. The
SNAP exhibits a stronger softening of energies compared to

the QHA but shows a better agreement with the DFT results
and experimental data compared to the CRG and MOX07 po-
tentials. This is particularly important since quantities relevant
to nuclear fuels such as thermal conductivity are related to
the PHDOS, as shown by the overestimation of the phonon
lifetime and consequently of the thermal conductivity by the
CRG potential [78].

One final comment of this section concerns low temper-
ature properties and magnetism. At approximately 30 K, the
magnetic configuration of UO2 goes through a Néel transition.
Its magnetic order goes from antiferromagnetic to paramag-
netic. Some structural properties can be influenced by this
rapid loss of magnetic order through magnon-phonon interac-
tions. This is for example the case of the thermal conductivity
[80]. As discussed in Appendix C, our DFT + U calculations
are set to represent antiferromagnetic spin configurations only.
Besides, in their current formalism, our ML-IAPs are blind
to magnetism and magnetoelastic effects. Therefore they are
unable to simulate any of the magnetically driven phenomena
observed at those temperatures. In our conclusions, we dis-
cuss how future investigations could improve our models to
account for magnetic effects.

D. Generalized stacking fault energy surfaces

Generalized stacking fault (GSF) energy surfaces, also
known as γ surfaces, are a crucial ingredient for the simula-
tion of dislocation mobility. To this date, numerous empirical
potentials have been used to simulate plasticity and disloca-
tion motion in UO2, but the γ surface predictions of those
potentials were never tested versus reference first-principles
data [31,40,81]. Indeed, the γ surfaces have never been
computed within the complex DFT + U setup necessary for
accurate first-principles UO2 description. Therefore it remains
a lacking step of former studies. In this section, we display
how our MLIPs were leveraged to enable a first-principles
computation of those γ surfaces.

The γ surfaces were computed in the {100}, {110}, and
{111} slip planes, which correspond to the main disloca-
tions observed in UO2 [82,83]. By using suitable oriented
supercells with slip planes orthogonal to the z direction, the
excess energy was obtained by translating the upper half of
the supercell along a 50 × 50 (respectively 10 × 10 for DFT
calculations) grid of displacement vectors in the x and y di-
rections. To prevent the system from returning to its original
state, relaxation of atomic positions was only allowed in the
z direction (orthogonal to the slip plane). Due to periodic
boundary conditions, this set up resulted in the existence of
two stacking faults localized at zmax

2 and zmax, where zmax is the
size of the supercell in the z direction. The supercells were
constructed in such a way that the two planes associated with
the stacking faults are equivalent. The periodic image of the
stacking fault at the box’s boundary was taken into account by
correcting the excess energy by a factor of 0.5. The resulting
stacking fault energy is given by

�(�) = 1

2

E (�) − E (0)

A
, (11)

where E (�) is the energy of the configuration shifted by the
vector � = (δx, δy) and A is the area of the glide plane.
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FIG. 6. Generalised stacking fault energy surfaces (γ surfaces) for the (a) {100}, (b) {110}, and (c) {111} slip planes in UO2. For each
plane, the Burgers vector is represented by a red arrow.

This methodology was applied to compute first-principle
γ surfaces. However, a direct application of the procedure
led to convergence issues in our DFT + U calculations. To
overcome this difficulty, we implemented a self-consistent
scheme leveraging our SNAP potential (the HDNNP potential
would have been yielding equivalent results). The supercells
were first relaxed using an initial SNAP potential (initially not
trained on γ surfaces). The resulting configurations were then
computed using single-point DFT + U calculations. These
new labeled DFT + U results were added to the database,
and an updated SNAP potential was trained. This procedure
was repeated until the configurations relaxed using the SNAP
potential were minimized within the DFT + U framework,
with forces lower than 10−3 eV/Å. The DFT results for the γ

surface along the 100 slip plane are displayed in Fig. 6(a) and
compared with the results obtained with our MLIPs and with
the CRG potential. Results obtained by two other empirical
potentials are displayed in Ref. [48].

Along the {100} slip plane, the glide directions a ([100]),
a-b ([110]), and b ([010]) restore the lattice upon unit slip.
The γ surface suggests that the a and b directions have a lower
energetic barrier for glide compared to the a-b direction. This
behavior is quantitatively retrieved by our SNAP and HDNNP
potentials as well as by the CRG potential. Results obtained
with the MORELON and MOX07 potentials are displayed in
SM. The MORELON potential predicts a lower energy barrier

in the a-b direction whereas the MOX07 potential fails to
reproduce the energy barrier in the a-b direction. Minimum
energy paths (MEP) along the a and a-b directions were
extracted from the γ surface and are shown in Fig. 7. Both
The SNAP and HDNNP exhibit excellent agreement with the
DFT results in the [100] and [110] directions. Surprisingly,
the CRG potential exhibits a marked minimum along [100],
stabilizing a partial dislocation with a stacking fault. This dif-
ference may have significant implications in terms of plastic
behavior.

Figure 6(b) displays the γ surfaces corresponding to the
{110} slip plane. For this plane, the glide directions [001],
[1̄10], and [1̄11] restore the lattice upon unit slip. The first
principle γ surface reveals that the glide would preferentially
occur along the [001] and [1̄10] rather than along the [1̄11]
direction. Results obtained with our SNAP and HDNNP po-
tential are in very good agreement with the DFT results and
reproduce accurately the MEPs along these three directions.
The results along the [1̄10] are displayed in Fig. 7(c). The
CRG potential reproduces the shape of the MEP but over-
estimates the energy barrier by 30%. Similarly, the overall
shape of the γ surfaces obtained with the CRG potentials is
consistent with the DFT reference, but the height of the energy
barriers is overvalued by a factor of two. We anticipate that
those results can have significant consequences in predicting
the plastic behavior and dislocation mobility.
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FIG. 7. (a) 〈110〉{100}, (b) 〈100〉{100}, (c) 1
2 〈110〉{110}, and (d) 1

2 〈110〉{111} γ lines in UO2.

The γ surfaces corresponding to the {111} slip plane are
shown in Fig. 6(c). For this plane, the glide directions [112̄],
[1̄10], and [011̄] restore the lattice upon unit slip. Glide is
expected to occur along any of the degenerate [1̄10] and
[011̄] directions, with the dislocation eventually splitting into
partials. All potentials except CRG reproduce the shape and
energetic of the γ surface. The CRG potential exhibits higher
energy barriers along the MEP [see Fig. 7(d)].

The overall agreement between first-principles calculations
and SNAP or HDNNP is very satisfactory for the γ surfaces
of the three slip planes considered here. On the contrary,
the three semiempirical potentials exhibits some discrepan-
cies compared to the DFT data, particularly regarding the
energy barriers along the MEP. Since these energy barriers
control the ease of glide, the elastic-plastic threshold, and the
material’s behavior under deformation, these discrepancies
can have significant implications in terms of plastic behavior
predictions, which is crucial for irradiated fuel materials. A
detailed investigation of these properties will be the subject of
future investigations.

IV. CONCLUSION

Two interatomic potentials were developed and tested for
UO2, the reference nuclear fuel material. These potentials
combine short-range repulsion, long-range Coulombic inter-
actions, and MLIP contributions at intermediate distances
using the SNAP and HDNNP methodologies, respectively. To

construct a comprehensive training database capable of de-
scribing various material properties, an active learning scheme
was deployed. This scheme enabled representative sampling
of atomic environments, which was achieved by performing
reference DFT calculations with the Hubbard U correction
and an occupation matrix control procedure. These calcu-
lations accurately accounted for the correlations between f
electrons. Despite the complexity of the reference DFT + U
calculations, both potentials exhibit good agreement with
a large and selective set of ab initio and experimental
metrics.

Notably, both potentials accurately describe the energy-
volume curves for the main f m3̄m and 3 polymorphic phases
of UO2. This promising result enables the study of phase
transitions under extreme conditions. The potentials also
demonstrate excellent agreement with the reference DFT + U
calculations and existing experimental values for point de-
fect energies and elastic constants (at 0 K). As discussed
in the introduction, an accurate description of the defect
formation energies is key for atomistic predictions of the
material behavior under irradiation. Our potential, combined
with short-range repulsion, qualifies for primary knock-on and
damage accumulation simulations, in a framework that allows
direct comparison to DFT + U predictions.

The temperature dependence of the potentials was in-
vestigated, specifically regarding the evolution of elastic
constants, thermal expansion, and heat capacity. Comparison
with existing experimental data shows reasonable agree-
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ment. Additionally, our potentials successfully reproduce the
superionic transition (Bredig transition) around 2500 K, de-
spite the relatively small 96-atom configurations used in our
training set. This transition, associated with increased mo-
bility of the oxygen sublattice, has been theoretically and
experimentally discussed and is still the object of intense
investigations [75,76].

While our potentials remain stable up to the melting point
and exhibit reasonable trends for the discussed properties,
we observed larger force errors associated with higher-
temperature configurations in the training set (“hot bulk”
2 and 3). We hypothesize that these errors stem from our
DFT + U calculations and the occupation matrix control pro-
cedure. Recent studies have proposed improved and more
consistent DFT + U descriptions that incorporate spin-orbit
coupling [84]. Although this is leading to a large increase
in terms of computation cost (at least by a factor of 4, for
already expensive ab initio calculations), exploring the effect
of these improvements on the consistency of our training data
is a direction for future investigation.

Finally, we implemented a self-consistent scheme to com-
pute stacking fault energy surfaces for three slip planes
and their corresponding minimum energy path. This iterative
scheme leveraged our SNAP potential to relax stacking fault
configurations, enabling their subsequent evaluation using
DFT + U . The inclusion of these stacking fault configura-
tions progressively enriched our training set. Notably, this
represents the first DFT + U computation of stacking fault
energy surfaces. Our observation is that their computation
was made possible only because pre-relaxed configurations
could be provided to the DFT + U setup. Besides, this scheme
could not be applied with an empirical IAP, as its predic-
tions (lattice constant, or even equilibrium configurations)
would not be consistent with the DFT + U predictions, so that
the self-consistent scheme could not converge. The stacking
fault energy surfaces computed using our approach could
significantly contribute to understanding the plastic behavior
of UO2, including the evaluation of dislocation nucleation
stresses. Those results are fundamental to the field of nuclear
fuels. Indeed, they enable to probe the validity and accuracy
of MLIAPs and empirical interatomic potentials to simulate
dislocation mobility and stability in UO2, which is crucial in
the context of irradiated nuclear fuels.

Overall, we conclude that the description of the elastic as
well as the plastic behavior of UO2 has been significantly
improved by our MLIPs. Moving forward, our research will
focus on two major enhancements of our potentials.

Firstly, we aim to simulate more complex and realistic fuel
materials by expanding our training sets to include additional
species such as plutonium and xenon. This expansion would
enable the simulation of fission gas evolution in MOx fuels,
which is a crucial topic for pressurized water reactors (PWRs)
and fast neutron reactors. Secondly, we intend to investigate
the impact of augmented physical descriptions, such as mag-
netic spins and charge fluctuations, within the classical model.
Recent studies have combined magneto-elastic Hamiltonians
with MLIPs to simulate magneto-elastic phenomena [85–87].
Such models could be used to investigate the piezomagnetic
properties of UO2 [88–90], or the influence of the Néel
transition on its low temperature thermal conductivity [80].

Other studies discussed how MLIPs can be superposed to
variable charge models [91–93]. The incorporation of these
models could facilitate novel atomistic investigations of phe-
nomena crucial to nuclear fuel applications, such as accurate
atomistic computations of oxygen diffusivity as a function of
stoichiometry.

The data that support the findings of this study are avail-
able from the corresponding author upon reasonable request.
Besides, the coefficients for the SNAP potential are provided
in Ref. [48].
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APPENDIX A: SPECTRAL NEIGHBOR
ANALYSIS POTENTIAL

In this section, we review the SNAP framework as de-
scribed in previous studies [45,94]. Following the work of
Bartok et al., the method is based on the expansion of the den-
sity of neighbors on the basis of 4D hyperspherical harmonics
[95]. The corresponding bispectrum components, which are
real-valued and rotationally invariant, can be constructed as
the scalar triple product of the expansion coefficients of the
neighbor density in this basis [96]. The SNAP contribution to
the potential energy of an atom i can then be expressed as a
linear combination of these bispectrum components:

ESNAP
i = β0 +

K∑
k=1

βk
(
Bi

k − Bi
k0

) = β0 + β · Bi, (A1)

where Bi
k represents the kth bispectrum component of atom

i and βk its associated linear coefficient. Bi is the vector of
bispectrum component of atom i. In our study, we fixed K =
55 for each atomic species, resulting in a total of 110 linear
coefficients βk . The terms βkBi

k0 shift the contribution of each
bispectrum component, ensuring that the SNAP energy of an
isolated atom is equal to β0.

From Eq. (A1), we can derive the SNAP contribution to the
forces acting on atom j:

FSNAP
j = −∇ j

N∑
i=1

ESNAP
i = −β ·

N∑
i=1

∂Bi

∂r j
, (A2)

where r j represents the position of atom j. Similarly, the
contributions to the stress tensor can be obtained as follows:

W SNAP = −
N∑

j=1

r j ⊗ F j = −β ·
N∑

j=1

r j ⊗
N∑

i=1

∂Bi

∂r j
, (A3)
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where ⊗ denotes the Cartesian outer product operator. It
is important to note that the SNAP contribution to the en-
ergy, forces, and stress tensor components [as expressed in
Eqs. (A1), (A2), and (A3)] are all obtained as linear combi-
nations of the 110 βk coefficients. The training procedure for
the SNAP contribution to the potential involves finding opti-
mal values for these coefficients, which reproduce the DFT
quantities (total energy, forces, and stress) after substracting
the contributions of the reference potentials. We refer to the
vector representing these reference contributions as y. Each
configuration c in the training database can be represented in
the descriptor space by a matrix Ac, where the rows corre-
spond to different reference data (total energy, forces, stress)
and the columns correspond to the contributions of the sum of
kth coefficients of the bispectrum vectors over all N atoms in
the configuration. By stacking all matrices Ac we obtain the
matrix A. The optimization of the β coefficient then relies in
solving the set of linear equations:

Aβ = y. (A4)

Furthermore, the training database is divided into several
groups associated with different parts of the configuration
space. For example, configurations related to the cold equa-
tion of state are separated from configurations sampling the
liquid state. Each training group is assigned a unique weight
for its associated energies, atomic forces and stress tensor
components. The weight vector w is optimized together with
the β coefficients using an evolutionary algorithm controlled
by Dakota [97]. The final coefficients of the potential are ob-
tained as the solution to the following optimization problem:

β̂ = argmin
β

∥∥∥ w

σN
◦ (A · β − y)

∥∥∥2
, (A5)

where σ is the standard deviation of the quantity of interest.
The remaining hyperparameters include the cutoff radius

Rcut, which determines the size of the local atomic environ-
ments around each atom and the effective radius associated
with each atomic type. These coefficients allows the weight-
ing of the SNAP energy contribution from each atom based on
its chemical type. The optimization of these hyperparameters
is incorporated into the global optimization procedure. The
optimal cutoff radius is finally equal to 5.18 Å.

APPENDIX B: BEHLER-PARRINELLO
HIGH-DIMENSIONAL NEURAL NETWORK POTENTIAL

In a recent benchmark, the effectiveness of physics-
based interatomic potentials, such as the embedded atom
model (EAM) [32] and the modified embedded atom model
(MEAM) [98], was compared to state-of-the-art machine
learning (ML) methods [41] using a shared training set.
The results revealed that the machine learning potentials
(MTPs) with the highest accuracy and computational effi-
ciency occupy the optimal point on the Pareto front. Although
neural network potentials (NNPs) require more computational
resources compared to MTPs or SNAP, they still offer a
satisfactory balance between computational cost and accu-
racy, making them suitable for materials exploration purposes,
especially for complex systems [99]. The SNAP potential,

although less accurate than the others potentials, appears more
robust when used for extrapolation on unseen structures.

In the case of HDNNP, �(�α, Gi ) represents a multilay-
ered perceptron, i.e., a fully connected deep neural network.
Descriptors functions are chosen to be type-2, type-4, and
type-5 atom centered symmetry functions [44,100].

G2
i =

∑
i 	= j

e−η(ri j−rs)2
fc(ri j ), (B1)

G4
i = 21−ζ

∑
j,k 	=i
j<k

(1 + λ cos θi jk )ζ e−η(r2
i j+r2

ik+r2
jk )

× fc(ri j ) fc(rik ) fc(r jk ), (B2)

G5
i = 21−ζ

∑
j,k 	=i
j<k

(1 + λ cos θi jk )ζ e−η(r2
i j+r2

ik ) fc(ri j ) fc(rik ),

(B3)

where fc(r) is a cutoff function defined as

fc(r) =
{

1
2

(
cos π r

rc
+ 1

)
for r � rc

0 for rc < r
. (B4)

To select the most relevant set of symmetry functions for
our case study, given a database of m atomic environments,
we first generate a large pool of n functions by following the
systematic procedure proposed by Imbalzano et al. [101]. The
feature matrix A ∈ Rm×n is contructed over the full dataset and
immediatly pruned by discarding the l functions with a range
inferior to a given threshold ε = 10−4. The resulting A ∈
Rm×(n−l ) is then sparsified using a CUR matrix approximation
[102]: A = CUR, where C ∈ Rm×k is a subset of the columns
of A, R ∈ Rk×n is a subset of the rows of A and U ∈ Rk×k is a
lower-rank approximation of A. The C and R matrices can be
seen as the most expressed columns or rows of A. Therefore C
contains the k most relevant symmetry functions for the given
case. The final set of chosen descriptors is given in Ref. [48].

Neural networks are trained on energy and forces by mini-
mizing the following loss function:

L(θ ) =
N∑

c=1

|Ec − f̂ (θ, {r}c)|2

+ λ2
N∑

c=1

Nc∑
i=1

∥∥∥∥∥F c
i + ∂ f̂

∂ri
(θ, {r}c)

∥∥∥∥∥
2

2

, (B5)

where the force weight λ is a user defined parameter chosen
such that the normalized error over the testing set is minimum.
The parameter optimization is performed using a multi-stream
extended Kalman filter (EFK) [103–105]. The corresponding
parameters are listed in Table IV.

All HDNNP were trained using the N2P2 software
[106,107] with a 60 × 45 × 45 × 1 neural-network architec-

TABLE IV. Extended Kalman filter parameters.

ε q0 qτ qmin η ητ ηmax

0.01 0.01 2.302 1 × 10−6 0.3 2.304 1.0
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TABLE V. Training set.

N configs. Atoms/cell N data k mesh

f m3̄m 130 12 5590 4 × 4 × 4
Polymorph 300 12 12900 4 × 4 × 4
Hot bulk 1 409 96 120655 2 × 2 × 2
(300 to 2000 K)
Hot bulk 2 145 96 42775 2 × 2 × 2
(2200 to 2500 K)
Hot bulk 3 223 96 65785 2 × 2 × 2
(2800 to 3200 K)
Defects 375 96, 144 124692 2 × 2 × 2
γ surfaces 262 96, 144 73978 2 × 2 × 2

Total 1844 446375

ture and forces weighting factor λ = 2.0. These hyperparam-
eters were chosen to minimize the normalized error on the
testing set.

Given a training dataset and a set of hyper-parameters, the
parameter vector θ lies in a high-dimensional space. As the
final set of parameters is a result of a local minimization in this
high dimensional space, they depend on their initial values. A
recent study has shown that the performances of networks ob-
tained from distinct random initial parameters follow a � law
[108]. In the following, we systematically consider several
neural networks at each optimization step and retain only the
best one for subsequent evaluation and/or computing unless
specified.

APPENDIX C: DENSITY FUNCTIONAL
THEORY CALCULATIONS

All DFT calculations were performed using the ABINIT

package [67–69] in the framework of the projector aug-
mented wave (PAW) method [109,110]. The parametrization
of Perdew, Burke, and Ernzerhof (PBE) of the generelized

gradient approximation (GGA) was used to describe the
exchange-correlation energy and potential [111], with a cutoff
energy of 680 eV.

In order to take into account the strong correlations be-
tween the f electrons, a Hubbard-like term is added by
means of the DFT + U Liechtenstein scheme [12]. The (U ,
J) parameters for the uranium cations are similar to previous
DFT + U calculations, i.e., U = 4.5 eV and J = 0.54 eV, and
were estimated by Kotani and Yamazaki on the basis of an
analysis of x-ray photoemission spectra [112,113]. An occu-
pation matrix control scheme was applied to the f orbitals in
order to search for the ground state of our DFT + U calcula-
tions [15,70].

The magnetic configuration of the uranium atoms is set
to reproduce a longitudinal 1k antiferromagnetic (AFM) or-
der which, without including the spin-orbit coupling (SOC),
is more stable than the experimentally observed transverse
3k AFM order [112]. In agreement with previous studies
[42,114], the SOC was neglected. Its addition would increase
the computational complexity of our DFT + U calculations,
although it has been shown to have a negligible impact on the
ground state and defect formation energies [16,115]. Besides,
the energy differences generated by the addition of the SOC
is very close or below the expected accuracy of our ML-
IAPS (few meVs per UO2) [84] and would therefore lead to
almost no improvement of their accuracy. A recent study by
Zhou et al. confirmed those predictions, and showed that the
magnetic configuration has an overall small influence on the
phonon spectrum in UO2 [116].

All calculations were performed on k-point mesh generated
by the Monkhorst-Pack method [117]. Table V summarizes
the different group of configurations in the training dataset,
and the corresponding k-point meshes for all the correspond-
ing DFT + U calculations.

In addition to active-learning strategy, uncorrelated atomic
configurations were generated by performing several set of
calculation using the recently developed machine learning
assisted canonical sampling (MLACS) [22].

[1] P. G. Lucuta, I. J. Hastings et al., A pragmatic approach to
modelling thermal conductivity of irradiated UO2 fuel: Review
and recommendations, J. Nucl. Mater. 232, 166 (1996).

[2] F. Cappia, D. Pizzocri, M. Marchetti, A. Schubert, P. Van
Uffelen, L. Luzzi, D. Papaioannou, R. Macian-Juan, and
V. V. Rondinella, Microhardness and Young’s modulus of high
burn-up UO2 fuel, J. Nucl. Mater. 479, 447 (2016).

[3] R. Henry, I. Zacharie-Aubrun, T. Blay, N. Tarisien, S. Chalal,
X. Iltis, J.-M. Gatt, C. Langlois, and S. Meille, Irradiation
effects on the fracture properties of UO2 fuels studied by
micro-mechanical testing, J. Nucl. Mater. 536, 152179 (2020).

[4] J. Noirot, L. Desgranges, and J. Lamontagne, Detailed charac-
terisations of high burn-up structures in oxide fuels, J. Nucl.
Mater. 372, 318 (2008).

[5] E. Geiger, C. L. Gall, A. Gallais-During, Y. Pontillon, J.
Lamontagne, E. Hanus, and G. Ducros, Fission products and
nuclear fuel behaviour under severe accident conditions part

2: Fuel behaviour in the verdon-1 sample, J. Nucl. Mater. 495,
49 (2017).

[6] V. Marelle, P. Goldbronn, S. Bernaud, É. Castelier, J. Julien,
K. Nkonga, L. Noirot, and I. Ramière, New developments
in ALCYONE 2.0 fuel performance code, in Proceedings
Conference Top Fuel (2016), https://www.osti.gov/biblio/
22764059.

[7] R. L. Williamson, J. D. Hales, S. R. Novascone, G. Pastore,
K. A. Gamble, B. W. Spencer, W. Jiang, S. A. Pitts,
Albert Casagranda, D. Schwen et al., Bison: A flexible
code for advanced simulation of the performance of mul-
tiple nuclear fuel forms, Nuclear Technology 207, 954
(2021).

[8] R. Devanathan, L. Van Brutzel, A. Chartier, C. Guéneau, A. E.
Mattsson, V. Tikare, T. Bartel, T. Besmann, M. Stan, and P. Van
Uffelen, Modeling and simulation of nuclear fuel materials,
Energy Environ. Sci. 3, 1406 (2010).

025402-12

https://doi.org/10.1016/S0022-3115(96)00404-7
https://doi.org/10.1016/j.jnucmat.2016.07.015
https://doi.org/10.1016/j.jnucmat.2020.152179
https://doi.org/10.1016/j.jnucmat.2007.04.037
https://doi.org/10.1016/j.jnucmat.2017.08.002
https://www.osti.gov/biblio/22764059
https://doi.org/10.1080/00295450.2020.1836940
https://doi.org/10.1039/c0ee00028k


ATOMISTIC SIMULATIONS OF NUCLEAR FUEL UO2 … PHYSICAL REVIEW MATERIALS 8, 025402 (2024)

[9] P. Hohenberg and W. Kohn, Inhomogeneous electron gas,
Phys. Rev. 136, B864 (1964).

[10] W. Kohn and Lu J. Sham, Self-consistent equations includ-
ing exchange and correlation effects, Phys. Rev. 140, A1133
(1965).

[11] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory
and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev.
B 44, 943 (1991).

[12] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Density-
functional theory and strong interactions: Orbital ordering in
mott-hubbard insulators, Phys. Rev. B 52, R5467 (1995).

[13] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys,
and A. P. Sutton, Electron-energy-loss spectra and the struc-
tural stability of nickel oxide: An LSDA+U study, Phys. Rev.
B 57, 1505 (1998).

[14] B. Dorado, D. A. Andersson, C. R. Stanek, M. Bertolus, B. P.
Uberuaga, G. Martin, M. Freyss, and P. Garcia, First-principles
calculations of uranium diffusion in uranium dioxide, Phys.
Rev. B 86, 035110 (2012).

[15] G. Jomard, B. Amadon, F. Bottin, and M. Torrent, Structural,
thermodynamic, and electronic properties of plutonium oxides
from first principles, Phys. Rev. B 78, 075125 (2008).

[16] E. Vathonne, J. Wiktor, M. Freyss, G. Jomard, and M.
Bertolus, DFT + U investigation of charged point defects and
clusters in UO2, J. Phys.: Condens. Matter 26, 325501 (2014).

[17] B. Dorado, M. Freyss, B. Amadon, M. Bertolus, G. Jomard,
and P. Garcia, Advances in first-principles modelling of point
defects in UO2: f electron correlations and the issue of local
energy minima, J. Phys.: Condens. Matter 25, 333201 (2013).

[18] D. A. Andersson, P. Garcia, X.-Y. Liu, G. Pastore, M. Tonks, P.
Millett, B. Dorado, D. R. Gaston, D. Andrs, R. L. Williamson
et al., Atomistic modeling of intrinsic and radiation-enhanced
fission gas (Xe) diffusion in UO2±x: Implications for nu-
clear fuel performance modeling, J. Nucl. Mater. 451, 225
(2014).

[19] S. Maillard, D. Andersson, M. Freyss, and F. Bruneval,
Assessment of atomistic data for predicting the phase di-
agram and defect thermodynamics. The example of non-
stoichiometric uranium dioxide, J. Nucl. Mater. 569, 153864
(2022).

[20] P. A. Burr and M. W. D. Cooper, Importance of elastic finite-
size effects: Neutral defects in ionic compounds, Phys. Rev. B
96, 094107 (2017).

[21] D. Bathellier, L. Messina, M. Freyss, M. Bertolus, Thomas
Schuler, M. Nastar, P. Olsson, and E. Bourasseau, Effect of
cationic chemical disorder on defect formation energies in
uranium–plutonium mixed oxides, J. Appl. Phys. 132, 175103
(2022).

[22] A. Castellano, F. Bottin, J. Bouchet, A. Levitt, and G. Stoltz,
A b initio canonical sampling based on variational inference,
Phys. Rev. B 106, L161110 (2022).

[23] R. A. Buckingham, The classical equation of state of gaseous
helium, neon and argon, Proc. R. Soc. London. Series A: Math.
Phys. Sci. 168, 264 (1938).

[24] S. I. Potashnikov, A. S. Boyarchenkov, K. A. Nekrasov, and
A. Y. Kupryazhkin, High-precision molecular dynamics simu-
lation of UO2 − PuO2: Pair potentials comparison in UO2, J.
Nucl. Mater. 419, 217 (2011).

[25] N.-D. Morelon, D. Ghaleb, J.-M. Delaye, and L. V. Brutzel, A
new empirical potential for simulating the formation of defects

and their mobility in uranium dioxide, Philos. Mag. 83, 1533
(2003).

[26] C. B. Basak, A. K. Sengupta, and H. S. Kamath, Classical
molecular dynamics simulation of UO2 to predict thermophys-
ical properties, J. Alloys Compd. 360, 210 (2003).

[27] E. Yakub, C. Ronchi, and D. Staicu, Molecular dynamics
simulation of premelting and melting phase transitions in
stoichiometric uranium dioxide, J. Chem. Phys. 127, 094508
(2007).

[28] S. T. Murphy, A. Chartier, L. Van Brutzel, and J.-P.
Crocombette, Free energy of xe incorporation at point defects
and in nanovoids and bubbles in UO2, Phys. Rev. B 85, 144102
(2012).

[29] L. Van Brutzel and M. Rarivomanantsoa, Molecular dynam-
ics simulation study of primary damage in UO2 produced by
cascade overlaps, J. Nucl. Mater. 358, 209 (2006).

[30] L. Van Brutzel and E. Vincent-Aublant, Grain boundary influ-
ence on displacement cascades in UO2: A molecular dynamics
study, J. Nucl. Mater. 377, 522 (2008).

[31] P. Fossati, L. Van Brutzel, and B. Devincre, Molecular dy-
namics simulation of dislocations in uranium dioxide, J. Nucl.
Mater. 443, 359 (2013).

[32] M. S. Daw and M. I. Baskes, Embedded-atom method: Deriva-
tion and application to impurities, surfaces, and other defects
in metals, Phys. Rev. B 29, 6443 (1984).

[33] M. W. D. Cooper, M. J. D. Rushton, and R. W. Grimes,
A many-body potential approach to modelling the thermo-
mechanical properties of actinide oxides, J. Phys.: Condens.
Matter 26, 105401 (2014).

[34] K. Govers, S. Lemehov, M. Hou, and M. Verwerft, Com-
parison of interatomic potentials for UO2. part i: Static
calculations, J. Nucl. Mater. 366, 161 (2007).

[35] Y. Zhang, P. C. Millett, M. R. Tonks, Xian-M. Bai, and S. B.
Biner, Molecular dynamics simulations of intergranular frac-
ture in UO2 with nine empirical interatomic potentials, J. Nucl.
Mater. 452, 296 (2014).

[36] D. Bathellier, M. Lainet, M. Freyss, P. Olsson, and E.
Bourasseau, A new heat capacity law for UO2, PuO2 and (U,
Pu)O2 derived from molecular dynamics simulations and use-
able in fuel performance codes, J. Nucl. Mater. 549, 152877
(2021).

[37] H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and
R. J. Hemley, Potential high-Tc superconducting lanthanum
and yttrium hydrides at high pressure, Proc. Natl. Acad. Sci.
114, 6990 (2017).

[38] E. Bourasseau, C. Onofri, A. Ksibi, X. Iltis, R. C. Belin, and
G. Lapertot, Atomic structure of grain boundaries in UO2

bicrystals: A coupled high resolution transmission electron
microscopy/atomistic simulation approach, Scr. Mater. 206,
114191 (2022).

[39] L. Van Brutzel, P. Fossati, and A. Chartier, Molecular dynam-
ics simulations of microstructural evolution of irradiated (U,
Pu)O2 studied via simulated XRD patterns, J. Nucl. Mater.
567, 153834 (2022).

[40] R. Skelton and A. M. Walker, Peierls-nabarro modeling of
dislocations in UO2, J. Nucl. Mater. 495, 202 (2017).

[41] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G.
Csányi, V. Shapeev, A. P. Thompson, A. Wood, and S. P.
Ong, Performance and cost assessment of machine learning
interatomic potentials, J. Phys. Chem. A 124, 731 (2020).

025402-13

https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevB.44.943
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1103/PhysRevB.86.035110
https://doi.org/10.1103/PhysRevB.78.075125
https://doi.org/10.1088/0953-8984/26/32/325501
https://doi.org/10.1088/0953-8984/25/33/333201
https://doi.org/10.1016/j.jnucmat.2014.03.041
https://doi.org/10.1016/j.jnucmat.2022.153864
https://doi.org/10.1103/PhysRevB.96.094107
https://doi.org/10.1063/5.0103166
https://doi.org/10.1103/PhysRevB.106.L161110
https://doi.org/10.1098/rspa.1938.0173
https://doi.org/10.1016/j.jnucmat.2011.08.033
https://doi.org/10.1080/1478643031000091454
https://doi.org/10.1016/S0925-8388(03)00350-5
https://doi.org/10.1063/1.2764484
https://doi.org/10.1103/PhysRevB.85.144102
https://doi.org/10.1016/j.jnucmat.2006.07.009
https://doi.org/10.1016/j.jnucmat.2008.04.010
https://doi.org/10.1016/j.jnucmat.2013.07.059
https://doi.org/10.1103/PhysRevB.29.6443
https://doi.org/10.1088/0953-8984/26/10/105401
https://doi.org/10.1016/j.jnucmat.2006.12.070
https://doi.org/10.1016/j.jnucmat.2014.05.034
https://doi.org/10.1016/j.jnucmat.2021.152877
https://doi.org/10.1073/pnas.1704505114
https://doi.org/10.1016/j.scriptamat.2021.114191
https://doi.org/10.1016/j.jnucmat.2022.153834
https://doi.org/10.1016/j.jnucmat.2017.08.024
https://doi.org/10.1021/acs.jpca.9b08723


DUBOIS, TRANCHIDA, BOUCHET, AND MAILLET PHYSICAL REVIEW MATERIALS 8, 025402 (2024)

[42] X. Yang, J. Tiwari, and T. Feng, Reduced anharmonic
phonon scattering cross-section slows the decrease of thermal
conductivity with temperature, Mater. Today Phys. 24, 100689
(2022).

[43] K. Kobayashi, M. Okumura, H. Nakamura, M. Itakura, M.
Machida, and M. W. D. Cooper, Machine learning molecular
dynamics simulations toward exploration of high-temperature
properties of nuclear fuel materials: Case study of thorium
dioxide, Sci. Rep. 12, 9808 (2022).

[44] J. Behler, Atom-centered symmetry functions for constructing
high-dimensional neural network potentials, J. Chem. Phys.
134, 074106 (2011).

[45] A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and
G. J. Tucker, Spectral neighbor analysis method for auto-
mated generation of quantum-accurate interatomic potentials,
J. Comput. Phys. 285, 316 (2015).

[46] A. Bochkarev, Y. Lysogorskiy, S. Menon, M. Qamar, M.
Mrovec, and R. Drautz, Efficient parametrization of the atomic
cluster expansion, Phys. Rev. Mater. 6, 013804 (2022).

[47] J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and
Range of Ions in Matter (Pergamon, 1985).

[48] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevMaterials.8.025402 for additional structural
data, correlation results and data related to the reference po-
tentials.

[49] Z. Deng, C. Chen, Xiang-G. Li, and Shyue P. Ong, An electro-
static spectral neighbor analysis potential for lithium nitride,
npj Comput. Mater. 5, 75 (2019).

[50] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi,
Gaussian approximation potentials: The accuracy of quantum
mechanics, without the electrons, Phys. Rev. Lett. 104, 136403
(2010).

[51] J. Behler, Four generations of high-dimensional neural net-
work potentials, Chem. Rev. 121, 10037 (2021).

[52] N. Artrith and J. Behler, High-dimensional neural network
potentials for metal surfaces: A prototype study for copper,
Phys. Rev. B 85, 045439 (2012).

[53] G. Sivaraman, A. N. Krishnamoorthy, M. Baur, C. Holm, M.
Stan, G. Csányi, C. Benmore, and A. Vázquez-Mayagoitia,
Machine-learned interatomic potentials by active learning:
amorphous and liquid hafnium dioxide, npj Comput. Mater.
6, 104 (2020).

[54] S. Dasgupta and D. Hsu, Hierarchical sampling for active
learning, in Proceedings of the 25th International Conference
on Machine Learning, Helsinki, Finland (Association for Com-
puting Machinery, New York, NY, 2008), pp. 208–215.

[55] R. Jinnouchi, K. Miwa, F. Karsai, G. Kresse, and R. Asahi,
On-the-fly active learning of interatomic potentials for large-
scale atomistic simulations, J. Phys. Chem. Lett. 11, 6946
(2020).

[56] Z. Li, J. R. Kermode, and A. De Vita, Molecular dynam-
ics with on-the-fly machine learning of quantum-mechanical
forces, Phys. Rev. Lett. 114, 096405 (2015).

[57] E. V. Podryabinkin and A. V. Shapeev, Active learning of
linearly parametrized interatomic potentials, Comput. Mater.
Sci. 140, 171 (2017).

[58] T. L. Jacobsen, M. S. Jørgensen, and B. Hammer, On-the-fly
machine learning of atomic potential in density functional
theory structure optimization, Phys. Rev. Lett. 120, 026102
(2018).

[59] J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev, and A. E.
Roitberg, Less is more: Sampling chemical space with active
learning, J. Chem. Phys. 148, 241733 (2018).

[60] N. Bernstein and G. Csányi, and V. L. Deringer, Explo-
ration and self-guided learning of potential-energy surfaces,
npj Comput. Mater. 5, 99 (2019).

[61] L. Zhang, D.-Y. Lin, H. Wang, and R. Car, Active learning of
uniformly accurate interatomic potentials for materials simu-
lation, Phys. Rev. Mate. 3, 023804 (2019).

[62] J. Vandermause, S. Torrisi, S. B. Batzner, Y. Xie, L. Sun,
A. M. Kolpak, and B. Kozinsky, On-the-fly active learning of
interpretable bayesian force fields for atomistic rare events, npj
Comput. Mater. 6, 20 (2020).

[63] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, Selective
sampling using the query by committee algorithm, Machine
Learning 28, 133 (1997).

[64] C. Schran, K. Brezina, and O. Marsalek, Committee neural
network potentials control generalization errors and enable
active learning, J. Chem. Phys. 153, 104105 (2020).

[65] S. Kee, Enrique Del Castillo, and G. Runger, Query-
by-committee improvement with diversity and density in
batch active learning, Information Sciences 454-455, 401
(2018).

[66] A. P. Thompson, H. M. Aktulga, Richard Berger, D. S.
Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in’t Veld, A.
Kohlmeyer, S. G. Moore, Trung D. Nguyen et al., Lammps-a
flexible simulation tool for particle-based materials modeling
at the atomic, meso, and continuum scales, Comput. Phys.
Commun. 271, 108171 (2022).

[67] The ABINIT code is a common project of the Catholic Uni-
versity of Louvain (Belgium), Corning Incorporated, CEA
(France) and other collaborators (http://www.abinit.org).

[68] X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet,
J.-M. Beuken, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet, N.
Brouwer, F. Bruneval, G. Brunin, T. Cavignac, J.-B. Charraud,
W. Chen, M. Côté, S. Cottenier, J. Denier, G. Geneste et. at.,
The abinit project: Impact, environment and recent develop-
ments, Comput. Phys. Commun. 248, 107042 (2020).

[69] A. H. Romero, D. C. Allan, B. Amadon, G. Antonius, T.
Applencourt, L. Baguet, J. Bieder, F. Bottin, J. Bouchet, E.
Bousquet, F. Bruneval, G. Brunin, D. Caliste, M. Côté, J.
Denier, C. Dreyer, P. Ghosez, M. Giantomassi, Y. Gillet, O.
Gingras et al., ABINIT: Overview and focus on selected capa-
bilities, J. Chem. Phys. 152, 124102 (2020).

[70] B. Dorado, G. Jomard, M. Freyss, and M. Bertolus, Stability
of oxygen point defects in uo 2 by first-principles dft+ u cal-
culations: Occupation matrix control and jahn-teller distortion,
Phys. Rev. B 82, 035114 (2010).

[71] J. B. Wachtman, M. L. Wheat, H. J. Anderson, and J. L. Bates,
Elastic constants of single crystal UO2 at 25 °C, J. Nucl. Mater.
16, 39 (1965).

[72] J. K. Fink, Thermophysical properties of uranium dioxide, J.
Nucl. Mater. 279, 1 (2000).

[73] J. W. L. Pang, W. J. L. Buyers, A. Chernatynskiy, M. D.
Lumsden, B. C. Larson, and S. R. Phillpot, Phonon lifetime
investigation of anharmonicity and thermal conductivity of
UO2 by neutron scattering and theory, Phys. Rev. Lett. 110,
157401 (2013).

[74] J. W. L. Pang, A. Chernatynskiy, B. C. Larson, W. J. L. Buyers,
D. L. Abernathy, K. J. McClellan, and S. R. Phillpot, Phonon

025402-14

https://doi.org/10.1016/j.mtphys.2022.100689
https://doi.org/10.1038/s41598-022-13869-9
https://doi.org/10.1063/1.3553717
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1103/PhysRevMaterials.6.013804
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.8.025402
https://doi.org/10.1038/s41524-019-0212-1
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1021/acs.chemrev.0c00868
https://doi.org/10.1103/PhysRevB.85.045439
https://doi.org/10.1038/s41524-020-00367-7
https://doi.org/10.1021/acs.jpclett.0c01061
https://doi.org/10.1103/PhysRevLett.114.096405
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1103/PhysRevLett.120.026102
https://doi.org/10.1063/1.5023802
https://doi.org/10.1038/s41524-019-0236-6
https://doi.org/10.1103/PhysRevMaterials.3.023804
https://doi.org/10.1038/s41524-020-0283-z
https://doi.org/10.1023/A:1007330508534
https://doi.org/10.1063/5.0016004
https://doi.org/10.1016/j.ins.2018.05.014
https://doi.org/10.1016/j.cpc.2021.108171
http://www.abinit.org
https://doi.org/10.1016/j.cpc.2019.107042
https://doi.org/10.1063/1.5144261
https://doi.org/10.1103/PhysRevB.82.035114
https://doi.org/10.1016/0022-3115(65)90089-9
https://doi.org/10.1016/S0022-3115(99)00273-1
https://doi.org/10.1103/PhysRevLett.110.157401


ATOMISTIC SIMULATIONS OF NUCLEAR FUEL UO2 … PHYSICAL REVIEW MATERIALS 8, 025402 (2024)

density of states and anharmonicity of UO2, Phys. Rev. B 89,
115132 (2014).

[75] P. C. M. Fossati, A. Chartier, and A. Boulle, Structural aspects
of the superionic transition in AX2 compounds with the fluo-
rite structure, Front. Chem. 9, 723507 (2021).

[76] J. P. Hiernaut, G. J. Hyland, and C. Ronchi, Premelting transi-
tion in uranium dioxide, Int. J. Thermophys. 14, 259 (1993).

[77] F. Bottin, J. Bieder, and J. Bouchet, A-TDEP: Temperature
dependent effective potential for ABINIT – lattice dynamic
properties including anharmonicity, Comput. Phys. Commun.
254, 107301 (2020).

[78] M. Jin, M. Khafizov, C. Jiang, S. Zhou, Chris A. Marianetti,
M. S. Bryan, M. E. Manley, and D. H. Hurley, Assessment of
empirical interatomic potential to predict thermal conductiv-
ity in ThO2 and UO2, J. Phys.: Condens. Matter 33, 275402
(2021).

[79] G. C. Dolling, R. A. Cowley, and A. D. B. Woods, The
crystal dynamics of uranium dioxide, Can. J. Phys. 43, 1397
(1965).

[80] K. Gofryk, S. Du, C. R. Stanek, J. C. Lashley, X.-Y. Liu,
R. K. Schulze, J. L. Smith, D. J. Safarik, D. D. Byler, K. J.
McClellan et al., Anisotrop ic thermal conductivity in uranium
dioxide, Nat. Commun. 5, 4551 (2014).

[81] A. Soulié, J.-P. Crocombette, A. Kraych, F. Garrido, G.
Sattonnay, and E. Clouet, Atomistically-informed thermal
glide model for edge dislocations in uranium dioxide, Acta
Mater. 150, 248 (2018).

[82] K. H. G. Ashbee and C. S. Yust, A mechanism for the ease of
slip in UO2+x , J. Nucl. Mater. 110, 246 (1982).

[83] R. J. Keller, T. E. Mitchell, and A. H. Heuer, Plastic deforma-
tion in nonstoichiometric UO2+x single crystalsII. deformation
at high temperatures, Acta Metall. 36, 1073 (1988).

[84] S. L. Dudarev, P. Liu, D. A. Andersson, C. R. Stanek, T.
Ozaki, and C. Franchini, Parametrization of LSDA + U for
noncollinear magnetic configurations: Multipolar magnetism
in UO2, Phys. Rev. Mater. 3, 083802 (2019).

[85] S. Nikolov, M. A. Wood, A. Cangi, Jean-B. Maillet, Mihai-C.
Marinica, A. P. Thompson, M. P. Desjarlais, and J. Tranchida,
Data-driven magneto-elastic predictions with scalable classi-
cal spin-lattice dynamics, npj Comput. Mater. 7, 153 (2021).

[86] S. Nikolov, P. Nieves, A. P. Thompson, M. A. Wood, and J.
Tranchida, Temperature dependence of magnetic anisotropy
and magnetoelasticity from classical spin-lattice calculations,
Phys. Rev. B 107, 094426 (2023).

[87] R. Drautz, Atomic cluster expansion of scalar, vectorial, and
tensorial properties including magnetism and charge transfer,
Phys. Rev. B 102, 024104 (2020).

[88] R. Caciuffo, P. Santini, S. Carretta, G. Amoretti, A. Hiess, N.
Magnani, L.-P. Regnault, and G. H. Lander, Multipolar, mag-
netic, and vibrational lattice dynamics in the low-temperature
phase of uranium dioxide, Phys. Rev. B 84, 104409 (2011).

[89] M. Jaime, A. Saul, M. Salamon, V. S. Zapf, N. Harrison, T.
Durakiewicz, J. C. Lashley, D. A. Andersson, C. R. Stanek,
J. L. Smith et al., Piezomagnetism and magnetoelastic memory
in uranium dioxide, Nat. Commun. 8, 99 (2017).

[90] D. J. Antonio, J. T. Weiss, K. S. Shanks, J. P. C. Ruff,
M. Jaime, A. Saul, T. Swinburne, M. Salamon, K. Shrestha,
Barbara Lavina et al, Piezomagnetic switching and complex
phase equilibria in uranium dioxide, Commun. Mater. 2, 17
(2021).

[91] G. Sattonnay and R. Tétot, Bulk, surface and point defect
properties in UO2 from a tight-binding variable-charge model,
J. Phys.: Condens. Matter 25, 125403 (2013).

[92] J. Goff, Y. Zhang, C. Negre, A. Rohskopf, and A. M. N.
Niklasson, Shadow molecular dynamics and atomic cluster ex-
pansions for flexible charge models, J. Chem. Theory Comput.
19, 4255 (2023).

[93] I. S. Novikov and A. V. Shapeev, Improving accuracy of inter-
atomic potentials: more physics or more data? a case study of
silica, Materials Today Communications 18, 74 (2019).

[94] M. A. Wood and A. P. Thompson, Extending the accuracy
of the SNAP interatomic potential form, J. Chem. Phys. 148,
241721 (2018).

[95] A. P. Bartók, R. Kondor, and G. Csányi, On representing
chemical environments, Phys. Rev. B 87, 184115 (2013).

[96] A. P. Bartók, Gaussian approximation potential: An Inter-
atomic Potential Derived from First Principles Quantum
Mechanics, Ph.D. thesis, University of Cambridge, 2009.

[97] B. M. Adams et al., Dakota, a multilevel parallel object-
oriented framework for design optimization, parameter es-
timation, uncertainty quantification, and sensitivity analysis:
Version 5.4 user’s manual, Sandia National Laboratory, Tech.
Rep. SAND2010-2183, 2009.

[98] M. I. Baskes, Modified embedded-atom potentials for cubic
materials and impurities, Phys. Rev. B 46, 2727 (1992).

[99] B. W. Hamilton, P. Yoo, M. N. Sakano, M. M. Islam, and
A. Strachan, High pressure and temperature neural network
reactive force field for energetic materials, J. Chem. Phys. 158,
144117 (2023).

[100] J. Behler and M. Parrinello, Generalized neural-network repre-
sentation of high-dimensional potential-energy surfaces, Phys.
Rev. Lett. 98, 146401 (2007).

[101] G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler, and
M. Ceriotti, Automatic selection of atomic fingerprints and
reference configurations for machine-learning potentials, J.
Chem. Phys. 148, 241730 (2018).

[102] M. W. Mahoney and P. Drineas, Cur matrix decompositions
for improved data analysis, Proc. Natl. Acad. Sci. USA 106,
697 (2009).

[103] R. E. Kalman, New approach to linear filtering and prediction
problems, J. Basic Eng. 82, 35 (1960).

[104] R. E. Kalman and R. S. Bucy, New results in linear filtering
and prediction theory, J. Basic Eng. 83, 95 (1961).

[105] G. L. Smith, S. F. Schmidt, and L. A. McGee, Application
of statistical filter theory to the optimal estimation of position
and velocity on board a circumlunar vehicle, National Aero-
nautics and Space Administration, Technical Report R-135,
1962.

[106] A. Singraber, J. Behler, and C. Dellago, Library-based lammps
implementation of high-dimensional neural network poten-
tials, J. Chem. Theory Comput. 15, 1827 (2019).

[107] A. Singraber, T. Morawietz, J. Behler, and C. Dellago, Par-
allel multistream training of high-dimensional neural network
potentials, J. Chem. Theory Comput. 15, 3075 (2019).

[108] Z. D. McClure, R. Appleton, N. Bouia, J.-B. Maillet, D.
Guzman, P. Adams, and A. Strachan, A neural network
potential for gesbte: database acquisition with iterative con-
vergence (unpublished).

[109] P. E. Blöchl, Projector augmented wave method, Phys. Rev. B
50, 17953 (1994).

025402-15

https://doi.org/10.1103/PhysRevB.89.115132
https://doi.org/10.3389/fchem.2021.723507
https://doi.org/10.1007/BF00507813
https://doi.org/10.1016/j.cpc.2020.107301
https://doi.org/10.1088/1361-648X/abdc8f
https://doi.org/10.1139/p65-135
https://doi.org/10.1038/ncomms5551
https://doi.org/10.1016/j.actamat.2018.03.024
https://doi.org/10.1016/0022-3115(82)90152-0
https://doi.org/10.1016/0001-6160(88)90161-7
https://doi.org/10.1103/PhysRevMaterials.3.083802
https://doi.org/10.1038/s41524-021-00617-2
https://doi.org/10.1103/PhysRevB.107.094426
https://doi.org/10.1103/PhysRevB.102.024104
https://doi.org/10.1103/PhysRevB.84.104409
https://doi.org/10.1038/s41467-017-00096-4
https://doi.org/10.1038/s43246-021-00121-6
https://doi.org/10.1088/0953-8984/25/12/125403
https://doi.org/10.1021/acs.jctc.3c00349
https://doi.org/10.1016/j.mtcomm.2018.11.008
https://doi.org/10.1063/1.5017641
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevB.46.2727
https://doi.org/10.1063/5.0146055
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1063/1.5024611
https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3658902
https://doi.org/10.1021/acs.jctc.8b00770
https://doi.org/10.1021/acs.jctc.8b01092
https://doi.org/10.1103/PhysRevB.50.17953


DUBOIS, TRANCHIDA, BOUCHET, AND MAILLET PHYSICAL REVIEW MATERIALS 8, 025402 (2024)

[110] M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze, Im-
plementation of the projector augmented-wave method in the
abinit code: Application to the study of iron under pressure,
Comput. Mater. Sci. 42, 337 (2008).

[111] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gra-
dient approximation made simple, Phys. Rev. Lett. 77, 3865
(1996).

[112] B. Dorado and P. Garcia, First-principles DFT+U modeling
of actinide-based alloys: Application to paramagnetic phases
of UO2 and (U, Pu) mixed oxides, Phys. Rev. B 87, 195139
(2013).

[113] A. Kotani and T. Yamazaki, Systematic analysis of core
photoemission spectra for actinide di-oxides and rare-earth
sesqui-oxides, Prog. Theor. Phys. Suppl. 108, 117 (1992).

[114] I. C. Njifon, M. Bertolus, R. Hayn, and M. Freyss, Electronic
Structure Investigation of the Bulk Properties of Uranium-
Plutonium Mixed Oxides (U, Pu)O2, Inorg. Chem. 57, 10974
(2018).

[115] J. Wang, R. C. Ewing, and U. Becker, Electronic structure and
stability of hyperstoichiometric UO2+x under pressure, Phys.
Rev. B 88, 024109 (2013).

[116] S. Zhou, H. Ma, E. Xiao, K. Gofryk, C. Jiang, M. E. Manley,
D. H. Hurley, and C. A. Marianetti, Capturing the ground state
of uranium dioxide from first principles: Crystal distortion,
magnetic structure, and phonons, Phys. Rev. B 106, 125134
(2022).

[117] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-
zone integrations, Phys. Rev. B 13, 5188 (1976).

025402-16

https://doi.org/10.1016/j.commatsci.2007.07.020
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.87.195139
https://doi.org/10.1143/PTPS.108.117
https://doi.org/10.1021/acs.inorgchem.8b01561
https://doi.org/10.1103/PhysRevB.88.024109
https://doi.org/10.1103/PhysRevB.106.125134
https://doi.org/10.1103/PhysRevB.13.5188

