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Effects of vacancy transport and surface adsorption on grain boundary migration in pure metals
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Vacancy transport has a demonstrable impact on the microstructural evolution of polycrystalline metals, but
existing models typically require knowledge of the stress state in order to describe lattice site generation and
annihilation at interfaces. Using irreversible thermodynamics, the driving forces and equilibrium conditions
dictating the response of incoherent interfaces are derived for a pure metal with vacancies under stress-free
conditions. A phenomenological set of linear kinetic expressions that guarantees a decrease in the total energy
upon diffusion is proposed. A near-equilibrium steady-state analytical solution for grain boundaries is obtained.
In the stress-free limit, interface migration and transboundary diffusion are closely coupled, as are the production
or annihilation of vacancies and the rigid-body dilation or contraction of the bulk grains. Solutions for various
limiting kinetic regimes are also obtained, and the relevance of the kinetic parameters to pore nucleation at grain
boundaries is discussed.
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I. INTRODUCTION

Vacancies have long been known to affect the time-
dependent microstructural evolution of crystalline materials.
Vacancy transport and reaction kinetics strongly affect cer-
tain regimes of creep [1–9], the sintering of porous materials
[10–17], and grain growth [6,9,13,18], to name a few sce-
narios. Additionally, vacancies can interact with alloying
elements to produce solute trapping [19]. These kinetic effects
are exaggerated by the length scales of the system; for exam-
ple, increased vacancy transport strongly affects the evolution
of nanocrystalline materials [20,21], and the initial diameter
of Ni-Ti microwires determines whether Kirkendall pores that
form during interdiffusion will either coalesce into a central
channel or remain widely distributed throughout the wire [22].
The vacancies may be generated by various processes, such
as irradiation [15,19,23–26], imbalanced interdiffusion (i.e.,
the Kirkendall effect) [22,27–31], or simply by the motion of
interfaces between crystals [12,13,32–36].

Due to their influence on the overall evolution of the sys-
tem, it is therefore desirable to understand the implications
of how vacancies interact with interfaces in crystalline ma-
terials at the continuum scale, whether they be free surfaces
(i.e., at pores and voids), grain boundaries, or phase bound-
aries. Such a theory would then describe how these interfaces
move in conjunction with bulk transport of vacancies and
other species, as well as other phenomena. Examples of this
approach have previously been presented in the literature.
Larché and Cahn applied classical thermodynamics to derive
the equilibrium conditions at a solid-fluid interface for a rigid
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network lattice in both linear and nonlinear regimes [37,38].
They subsequently extended this approach to solid-solid in-
terfaces [39]. For these regimes, they found that the interface
was stationary when each side had the same grand potential
density, that the concentration field was at equilibrium when
the diffusion potentials were uniform, and that the system had
to be in global mechanical equilibrium. Later [40], Larché and
Cahn employed an irreversible thermodynamic formulation
of the previous models to obtain the kinetics by which the
previous examples evolved towards equilibrium and rigor-
ously derived an improved version of Herring’s analysis of
vacancy-mediated diffusional creep [2]. A pedagogical review
of this approach is given in [41].

An important consequence of the network lattice in the
Larché and Cahn models is that a nonzero vacancy chemical
potential is only a definable quantity at certain line de-
fects (e.g., dislocations) or interfaces under hydrostatic stress
states; therefore, particular care must be taken when construct-
ing the thermodynamic potentials of the system. Mishin et al.
derived a generalized framework from irreversible thermo-
dynamics to describe diffusional creep that considered both
classical and nonclassical (i.e., gradient) terms in the driving
forces [4]. While this model is able to relax the network lattice
constraint, it is challenging to employ in computations. Thus,
Mishin et al. subsequently derived a sharp-interface model
that, like their previous model, found that the grand potential
was the primary driving force for interface migration and
lattice site generation and annihilation at the interface [5]. Nu-
merical and transient analytical solutions of this latter model
have recently been presented by McFadden et al. [6]. Cermelli
and Gurtin also derived a general theory for the kinetics of
incoherent interfaces from irreversible thermodynamics that
included the effects of stress and configurational forces in the
interface, but required that species were in local equilibrium at
the interface [35]. The work of Svoboda, Fischer, and collab-
orators used the thermodynamic extremal principle to derive
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kinetic models for lattice site generation and annihilation at
line defects in the presence of stress [7,8]. In these models,
the driving force for the lattice site reaction is a general-
ized vacancy chemical potential tensor that should be roughly
equivalent to the grand potential of the previous models under
hydrostatic conditions. The derived model was subsequently
applied to study the Kirkendall effect (bulk material flow
during interdiffusion of materials with mismatched diffusion
coefficients) and predict the possibility of Kirkendall porosity
formation near interfaces in Cu-Sn intermetallic compounds
[27]. Various models of vacancy and interface interactions at
the atomistic scale have also been investigated [9,34,36,42].

While the previous continuum models are general in nature
and should therefore be broadly applicable, the inclusion of
nonhydrostatic stress states can make the resulting formu-
lations complex and computationally intensive [4]. Thus, it
would be worthwhile to derive the nonequilibrium thermo-
dynamics and kinetics of vacancy and interface interactions
in the absence of stress to understand how vacancy trans-
port affects interface motion and the resulting microstructural
evolution. One such set of kinetics was derived for voids
in irradiated Cu by Hochrainer and El-Azab [23]. In that
model, they investigated the activation barriers for the lattice
site annihilation reaction and the resulting interface veloc-
ity, as well as the deviations of the vacancy and interstitial
concentrations from the equilibrium Gibbs-Thomson con-
dition. A subsequent asymptotic analysis by Ahmed and
El-Azab found that typical Hohenberg-Halperin Model C
phase-field formulations can readily capture the nonequilib-
rium stress-free kinetics at void surfaces [43]. Several other
phase-field and smoothed-boundary methods have also been
proposed to examine various vacancy and interface interac-
tions [14–17,24,25,30,31]. The difference between many of
these models is whether vacancy sinks are source terms at
free surfaces [24,25,43], source terms at grain boundaries that
cause rigid-body motion [14,16,17], or if they are distributed
throughout the bulk of the crystal to produce variations in the
local lattice dilation rate [30,31]. Vacancies are thus removed
from the solid through an explicit reaction at interfaces or de-
fects. By comparison, the model of Greenquist et al. assumes
that grain boundaries provide enhanced vacancy diffusion to
the free surface, where the mobility is chosen to produce local
equilibrium of the vacancy concentration [15]. Therefore, any
vacancy production or annihilation reaction is assumed to
have ideally fast kinetics.

In addition to the work of Hochrainer and El-Azab [23],
a series of sharp-interface models were previously derived
by Estrin, Lücke, and Gottstein [32,33,44]. These models
constructed a set of moving-reference-frame expressions for
the vacancy concentration profile in the vicinity of a moving
grain boundary and introduced a vacancy drag correction to a
generalized driving force for interface motion. As desired in
this work, these models do not require knowledge of the stress
state in order to be solvable. However, the derivation of these
earlier models is phenomenological in nature. McFadden et al.
demonstrate that the sharp-interface model of Mishin et al.
may be simplified to a low-strain-rate regime where the elastic
stress in the bulk of a crystal vanishes [5,6]. However, the
lattice velocities in the model of Mishin et al. act to dissipate
mechanical stress within the bulk of a grain, and lattice site

creation at the grain boundary produces a local deformation
that is eventually accommodated by this bulk lattice flow
[5]. Therefore, McFadden et al. introduce an assumption of
rigid-body motion in order to solve the velocity profile within
each grain [6].

In this work, we therefore derive the overall energy dis-
sipation rate at free surfaces and solid-solid interfaces in the
stress-free limit. We follow a similar approach to Mishin et al.
[5], but we assume rigid-body motion as in McFadden et al.
[6]. This allows for facile inclusion of lattice site generation
and annihilation reactions in the stress-free regime, although
the present derivation is limited to planar interfaces. Addition-
ally, we relax the assumption of constant excess Helmholtz
free energy at the interface employed in Refs. [5,6] and
explicitly include the composition of the interface and its
resulting influence on the overall dissipation. We also do not
assume local chemical equilibrium, in contrast to Cermelli
and Gurtin [35]. After deriving the dissipation rate, we apply
the principles of irreversible thermodynamics to obtain a phe-
nomenological set of linear kinetic expressions describing the
evolution of the interfaces. Lastly, we obtain a set of approx-
imate analytical solutions for the steady-state response of the
interface to a set of applied bulk fluxes and examine limiting
values and simplifying regimes of the obtained solution for
the grain boundary response.

II. THEORY

In this section, we derive an irreversible thermodynamic
model of a metal comprised of one element and vacancies
and obtain the equilibrium conditions of the system and the
driving forces for the evolution of planar grain and phase
boundaries. In general, the model derivation is similar to
the approach of Mishin et al. [5], but several additional key
assumptions are employed for this work. The assumptions are
as follows:

(1) All interfaces are planar with no curvature. Addition-
ally, there are no gradients in any quantities along directions
tangential to the interfaces.

(2) The system is at a sufficient temperature such that all
stresses are fully relaxed, i.e., it is stress free.

(3) Within a phase, all species have equal partial molar
volumes.

(4) If necessary, grains may translate relative to each other
by rigid-body motion.

(5) Dislocations that may climb by absorption or emission
of vacancies are present at solid-solid interfaces such that
these boundaries can create or annihilate lattice sites.

(6) Solid-solid interfaces are incoherent; thus, there is no
misfit strain.

Assumptions 1–4 simplify the resulting model as
they eliminate the plastic deformation that is present in
Refs. [5,35]. Additionally, assumption 3 leads to a network
lattice constraint in the bulk crystals away from interfaces.
However, the inclusion of assumption 4 allows the model to be
applicable to both grain boundaries in polycrystalline single-
phase materials and allotropic phase boundaries that differ in
their equilibrium lattice site density. When there is a jump
in the lattice site density across the incoherent interface, the
mismatch may be accommodated by the rigid-body motion of
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the phases. In general, assumptions 1–4 may not be needed in
order to derive a stress-free model. However, in more than
one dimension the resulting rigid-body motion introduces
significant complexity to both thermodynamic and numerical
models and is not necessarily well posed [28–30,45,46]. As-
sumptions 4–6 are necessary to allow the model to consider
lattice site generation and annihilation at solid-solid inter-
faces; in Ref. [5], these processes were solely due to the elastic
effects that have been neglected.

We begin with a few preliminary definitions. The
Helmholtz free energy density of the bulk solid is

f b = f b(T, ρA), (1)

where f b is the Helmholtz free energy per unit volume, T is
temperature, and ρA is the number density of A atoms [41].
The number density of vacancies ρV can be calculated by the
relationship

ρA + ρV = ρ0, (2)

where ρ0 is the nominal lattice site density. As in Mishin
et al. [5], we assume that the solid is comprised of a primitive
Bravais lattice such that the equivalence of different lattice site
configurations can be neglected. Assuming that the system is
isothermal, closed, and stress free, Eq. (1) is [41]

f b = MbρA + μb
V ρ0, (3)

where Mb is the diffusion potential of atoms with respect to
vacancies and μb

V is the chemical potential of vacancies or
vacancy chemical potential. The values of Mb and μb

V are
related by

Mb = μb
A − μb

V , (4)

where μb
A is the chemical potential of atoms. In Eq. (3), Mb

arises variationally as a local Lagrange multiplier that relates
the change in f b to a change in ρA for a fixed number density
of lattice sites [40,41]. Likewise, μb

V is a local Lagrange multi-
plier that relates the change in f b to a change in ρV for a fixed
number density of atoms. The vacancy chemical potential μb

V
is only definable due to the lack of shear stresses in the system,
which is not the case in Ref. [5]. The first variation of Eq. (3)
is [41]

δ f b = MbδρA, (5)

as ρ0 is fixed in the bulk phase. Lastly, the assumption of a
network lattice leads to a constraint on the bulk fluxes of each
species:

Jb
V + Jb

A = 0, (6)

where Jb
A is the bulk flux of atoms and Jb

V is the bulk flux of
vacancies.

In this work, we explicitly consider the composition of the
interface. The interface, whether a free surface or a solid-solid
boundary, is treated as a Gibbs dividing surface with associ-
ated excess quantities of the energies, potentials, and densities
[47]. Here,

f � = f � (T, �A, �V , γ ) (7)

is the excess Helmholtz free energy per unit area of the divid-
ing surface, where �A and �V are the excess number densities

FIG. 1. A schematic of the system considered in Sec. II A, com-
prised of a semi-infinite slab (R) with a single planar dividing surface
(�) exposed to a vacuum. The location of �, the outward unit
normal, and the velocity vector are marked.

per unit area of atoms and vacancies, respectively, and γ

is the interfacial energy. While it is possible for the excess
surface density of lattice sites (�0 = �A + �V ) to vary at grain
boundaries, this may introduce an excess stress to the interface
that must then be accommodated [36]. As we have assumed a
negligible stress state in the system (assumption 2), we shall
also assume that �0 is a constant. This assumption also leads
to well-defined values of the equilibrium chemical potentials
[48,49]. Therefore, for fixed �0 in a planar, isothermal system,
the first variation of f � is assumed to be

δ f � = M�δ�A, (8)

where M� is the excess diffusion potential of atoms. The vari-
ation of f � with respect to γ vanishes due to the assumption
of a planar interface. As we have introduced the composition
dependence of the interface into the model, we must also de-
rive corresponding modifications to the generalized transport
laws of the system [46]. These are detailed as needed in the
following sections and the Appendixes.

A. Behavior of free surfaces

While this work focuses on the response of grain and phase
boundaries, we first consider the irreversible thermodynamics
of a system comprised of a slab of material with one planar
Gibbsian free surface exposed to vacuum. This allows for
better insight into the thermodynamics of the solid-solid in-
terface, as the associated derivations for each domain contain
similar terms. A schematic depiction of this example is given
in Fig. 1. For such a system, the total free energy � is

� =
∫

R
f bdV +

∫
�

f �dA, (9)

where R denotes the slab and � denotes the Gibbsian free
surface. Following Refs. [5,41,46], the total rate at which
energy is dissipated in this system, �̇, can be expressed as

�̇ = d

dt

∫
R

f bdV + d

dt

∫
�

f �dA

=
∫

R

∂ f b

∂t
dV +

∫
�

∂ f �

∂t
dA +

∫
�

f bn̂ · v dA, (10)

where the second line arises after applying Reynolds’ theo-
rem. Here, t is time, n̂ is the outward unit normal vector that
points from the solid to the vacuum, and v is the velocity of
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the free surface in the laboratory frame. The first integral,
which corresponds to the rate of dissipation in the bulk of
the grain, arises due to the transport of species within the
grain. The second integral, which corresponds to dissipation
on the surface, arises due to adsorption or transport of species
to the surface. The third integral, which corresponds to the
rate of dissipation at the surface of the slab due to the moving
boundary, arises from the accretion of lattice sites.

By Eqs. (5) and (8), �̇ becomes

�̇ =
∫

R
Mb ∂ρA

∂t
dV +

∫
�

M� ∂�A

∂t
dA +

∫
�

f bn̂ · v dA. (11)

The time derivative of the bulk concentration is assumed to
obey the continuity equation

∂ρA

∂t
= −∇ · Jb

A. (12)

Per our model assumptions, the interface is planar with uni-
form values of surface quantities; therefore, for the evolution
of the surface concentration, we employ a continuity equation
of the form [41,50]

∂�A

∂t
= − jT

A , (13)

where jT
A is a transverse adsorption flux of atoms from the

surface. Inserting Eqs. (12) and (13), Eq. (11) becomes

�̇ = −
∫

R
Mb∇ · Jb

AdV −
∫

�

M� jT
A dA +

∫
�

f bn̂ · v dA.

(14)

Next, we apply the divergence theorem to the first integral of
Eq. (14). If we assume that � is the only active surface, we
obtain

�̇ =
∫

R
Jb

A · ∇MbdV −
∫

�

Mbn̂ · Jb
AdA

−
∫

�

M� jT
A dA +

∫
�

f bn̂ · v dA, (15)

where the second integral represents the boundary conditions
for bulk diffusion at the free surface.

To complete the derivation, we introduce expressions to
capture the overall mass balance at the free surface [5,51]:

n̂ · Jb
A = −qb

A + ρAn̂ · v, (16)

jT
A = −q�

A , (17)

where qb
A and q�

A are scalar adsorption fluxes that are positive
when atoms are added to the bulk or surface and negative
when removed. Additionally, the overall balance of vacancies
in the system leads to the surface condition

H�
V = ρ0n̂ · v, (18)

where H�
V is a vacancy generation and annihilation rate in

the interface that is positive when vacancies are created and
negative when they are destroyed. Thus, the motion of the
surface requires that vacancies be created or destroyed at the
free surface. The derivation of Eqs. (16)–(18) is presented in
Appendix A. As described in Appendix A, the total number

of atoms is conserved, and therefore

qb
A + q�

A = 0. (19)

However, vacancies may be generated or annihilated as
needed, and therefore H�

V can be nonzero. We may now begin
simplifying Eq. (10) by inserting Eqs. (11)–(18). Doing so, we
eventually obtain1

�̇ =
∫

R
Jb

A · ∇MbdV +
∫

�

(Mb − M� )qb
AdA +

∫
�

ωn̂ · v dA,

(20)

where

ω = f b − ρAMb = ρ0μ
b
V (21)

is the grand potential density in the bulk [5,41]. Thus, the
value of the grand potential is related to the vacancy chemical
potential.

By inspection of Eq. (20), there are three conditions dic-
tating the global thermodynamic equilibrium of the slab that
correspond to each set of integrals. These conditions and the
phenomena that occur if they are violated are as follows:

(1) ∇Mb = 0, or there will be bulk diffusion of atoms
within the slab.

(2) Mb = M� , or there will be an adsorptive flux of atoms
between the bulk and surface phases, depending upon the
relative difference in potentials.

(3) ω = 0, or the surface will migrate by creating or de-
stroying vacancies.

If any of these conditions are not satisfied, then the free sur-
face evolves to dissipate energy. The first and third integrals of
Eq. (20) and their corresponding effects are generally equiva-
lent to Eq. (45) in Ref. [5] in the absence of elastic effects and
adsorption. The second integral arises from the presence of a
varying f � in the present model. Equation (20) and conditions
1–3 also agree with previously derived equilibrium conditions
derived for the free surface [38,40,41].

B. Behavior of solid-solid interfaces

We now consider the behavior of a general solid-solid
interface. The derivation should be equally applicable to grain
boundaries and phase boundaries, provided the general as-
sumptions of the model are satisfied. Here, the system is
composed of two semi-infinite slab grains α and β, with
associated domains Rα and Rβ , as depicted in Fig. 2. The
grains are separated by an interface or dividing surface �, and
each grain is partially enclosed by an outer inert surface Sα

and Sβ , respectively. We assume that � may act as a source
or sink of lattice sites by generating or annihilating vacancies.
Therefore, the total volume of the system is not fixed (i.e.,
the system will dilate or contract as lattice sites are produced
or destroyed), and rigid-body motion must be introduced to
the model to accommodate the relative translation of β with
respect to α, or vice versa. As will be discussed later, the

1We note that we can equivalently choose jT
A or q�

A to represent
the fluxes at the surface in Eq. (20); the present choice is made for
parallelism with the solid-solid interface behavior that is derived later
in this work.
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FIG. 2. A schematic of the system employed in Sec. II B, com-
prised of two grains α and β and a planar dividing surface �. Each
grain also has its own inert bounding surface Sα and Sβ . The grains
�, Sα , and Sβ , the velocities, and the outward normal vectors at each
interface are all marked.

location of either �, Sα , or Sβ may be fixed in the laboratory
reference frame, but the particular choice does not necessarily
matter.

There is a contact boundary condition between α and β;
thus, n̂αβ = −n̂βα , where n̂αβ is the outward unit normal
vector pointing from α to β and n̂βα is the outward unit normal
vector pointing from β to α. Additionally, we assume that Sα

and Sβ are both parallel to � such that n̂αβ = −n̂α = n̂β ,
where n̂α is the outward unit normal vector pointing from
α to outside the system and n̂β is the outward unit normal
vector pointing from β to outside the system. In the sub-
sequent derivations, many terms depend on average values
and differences of a quantity between the two bulk phases.
For simplicity, we denote the average value of a quantity ψ

between bulk phases as

〈ψ〉 = (ψα + ψβ )/2 (22)

and the difference or jump as

�ψ� = ψα − ψβ. (23)

These identities also hold for vector quantities.
As in Sec. II A, the goal is to obtain the total rate at

which free energy is dissipated from the system. The analog
to Eq. (9) for the two-grain system is

� = �α + �β + ��

=
∫

Rα

f αdV +
∫

Rβ

f βdV +
∫

�

f �dA, (24)

where �α and �β are the energies contributed by each grain,
which are associated with their respective bulk Helmholtz
energy densities f α and f β , and �� is the energy contributed
by the interface with excess areal Helmholtz energy density
f � defined by Eq. (7) and associated variation (8).

We proceed by applying the generalized transport laws
derived in Appendix B. Applying Eq. (B11) to (24) yields

�̇ =
∫

Rα

D f α

Dt
dV +

∫
Rβ

D f β

Dt
dV +

∫
�

∂ f �

∂t
dA

+
∫

�

� f �nαβ · (v − 〈u〉)dA −
∫

�

〈 f 〉nαβ · �u�dA. (25)

Here, D/Dt indicates the material derivative in the moving
reference of the corresponding grain, v is the velocity of the

grain boundary, and uα and uβ are the velocities of Sα and Sβ ,
respectively. Due to the assumption of rigid-body motion, uα

and uβ also indicate the translation velocity of the bulk lattice
in each grain. The quantity v − 〈u〉 indicates the migration of
the grain boundary relative to the average translation of the
bulk lattices, and �u� indicates the dilation or contraction of
the system. The temporal derivatives in the first three integrals
may be obtained from substituting the relevant variations of
the Helmholtz energy densities, Eqs. (5) and (8). Simultane-
ously, we adopt continuity equations of the form

Dρ
ζ
A

Dt
= −∇ · Jζ

A (26)

for the bulk concentrations, where Jζ
A is the bulk flux of A

in ζ , and Eq. (13) for the surface concentrations. Therefore,
Eq. (25) becomes

�̇ = −
∫

Rα

Mα∇ · Jα
AdV −

∫
Rβ

Mβ∇ · Jβ
AdV

−
∫

�

M� jT
A dA +

∫
�

� f �nαβ · (v − 〈u〉)dA

−
∫

�

〈 f 〉nαβ · �u�dA. (27)

We may apply vector calculus identities and the divergence
theorem to the first two integrals, which yields

�̇ =
∫

Rα

Jα
A · ∇MαdV +

∫
Rβ

Jβ
A · ∇MβdV

−
∫

�

Mαnαβ · Jα
AdA +

∫
�

Mβnαβ · Jβ
AdA

−
∫

�

M� jT
A dA +

∫
�

� fb�nαβ · (v − 〈u〉)dA

−
∫

�

〈 fb〉nαβ · �u�dA. (28)

As in Sec. II A, further simplification of Eq. (28) requires
the incorporation of the mass balance conditions at the grain
boundary, which are derived in Appendix C. For atoms, we
obtain the set of conditions at the solid-solid interface,

qα
A = −nαβ · Jα

A + ρα
A nαβ · (v − uα ), (29)

qβ
A = nαβ · Jβ

A − ρ
β
A nαβ · (v − uβ ), (30)

q�
A = − jT

A , (31)

where each qζ
A is a scalar adsorption flux of atoms that is

positive when atoms are added to region ζ and negative when
removed [5,51]. In a closed, isolated system, the total number
of atoms is conserved and, therefore,

qα
A + qβ

A + q�
A = 0. (32)

A similar set of fluxes and interface conditions exist for va-
cancies; as in Sec. II A vacancies are not conserved, leading to
a production rate of vacancies at the interface H�

V . As derived
in Appendix C, we eventually obtain the constraint

H�
V = �ρ0�nαβ · (v − 〈u〉) − 〈ρ0〉nαβ · �u�, (33)
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where ρ
ζ
0 is the bulk lattice site density in the corresponding

phase. Equation (33) dictates the relationship between the va-
cancy production rate, the interface migration, and the dilation
or contraction of the system. We may now begin to simplify
Eq. (28); by combining it with Eqs. (29)–(33), we obtain

�̇ =
∫

Rα

Jα
A · ∇MαdV +

∫
Rβ

Jβ
A · ∇MβdV

+
∫

�

(
qα

AMα + qβ
AMβ + q�

A M�
)
dA

+
∫

�

(� fb� − �MρA�)nαβ · (v − 〈u〉)dA

−
∫

�

(〈 fb〉 − 〈MρA〉)nαβ · �u�dA. (34)

After further simplification, we finally obtain

�̇ =
∫

Rα

Jα
A · ∇MαdV +

∫
Rβ

Jβ
A · ∇MβdV

+
∫

�

(
qα

A

(
Mα − M�

) + qβ
A

(
Mβ − M�

))
dA

+
∫

�

�ω�nαβ · (v − 〈u〉)dA −
∫

�

〈ω〉nαβ · �u�dA. (35)

Here, we have employed Eq. (32) to eliminate q�
A from the

dissipation rate. The bulk grand potential densities ωα and ωβ

are defined equivalently to Eq. (21).
In the simplified overall dissipation rate, there are multiple

processes that act to equilibrate the system, leading to a total
of six conditions that must be satisfied to ensure equilibrium:

(1) ∇Mα = 0, or bulk diffusion occurs in grain α.
(2) ∇Mβ = 0, or bulk diffusion occurs in grain β.
(3) Mα = M� , or atoms adsorb at the interface from α.
(4) Mβ = M� , or atoms adsorb at the interface from β.
(5) �ω� = 0, or the interface will migrate.
(6) 〈ω〉 = 0, or the system will dilate or contract.
Depending upon the values of �ρ0� and 〈ρ0〉, the final two

conditions may also imply a nonzero H�
V . Conditions 1 and

2 are consistent with the previous model of Mishin et al.
[5]. Additionally, if qα

A and qβ
A are equal and opposed, the

dependence upon M� vanishes from (35) and the resulting
equilibrium condition of Mα = Mβ is equivalent to the one
for transboundary diffusion in Mishin et al. [5]. The largest
difference in this work arises from conditions 5 and 6, which
govern the lattice site generation or annihilation, the interface
migration, and the dilation or contraction of the system. In this
work, each of these processes has a unique equilibrium con-
dition due to the stress-free assumption and the introduction
of variable surface concentrations. However, due to Eq. (32),
either migration, dilation, or contraction in the system requires
that vacancies be generated or annihilated. By comparison,
in Mishin et al. the corresponding lattice site generation or
annihilation process was only linked with lattice translation,
which itself was due to mechanical effects in the system [5].
Additionally, as we have assumed planar interfaces to ensure
the solvability of the rigid-body motion, no contributions from
curvature exist in the present driving forces or equilibrium
conditions. The existence of conditions 5 and 6 is consistent

with the work of Larché and Cahn [37–40] and Voorhees
and Johnson [41], who argued that, at incoherent boundaries
or in the presence of climbable dislocations, the interface
should act to equilibrate the vacancy chemical potential. This
may be demonstrated by recognizing that �ω� = �ρ0μV � and
〈ω〉 = 〈ρ0μV 〉. If we explicitly include H�

V through Eq. (33),
the final two terms of Eq. (35) may be equivalently written as∫

�

�ω�nαβ · (v − 〈u〉)dA −
∫

�

〈ω〉nαβ · �u�dA

=
∫

�

〈μV 〉H�
V dA +

∫
�

〈ρ0〉�μV �nαβ · (v − 〈u〉)dA

− 1

4

∫
�

�ρ0��μV �nαβ · �u�dA. (36)

Thus, Eq. (36) demonstrates that the vacancy generation or
annihilation reaction acts to equilibrate 〈μV 〉 to zero, while
the migration, dilation, and contraction processes act to equi-
librate �μV � to zero. This also implies that if �μV � �= 0, the
interface will migrate while the overall system contracts or
dilates, and if 〈μV 〉 �= 0 then vacancies will be created or
destroyed at the interface.

C. Phenomenological kinetics

Having obtained a thermodynamic description of the gen-
eralized solid-solid interface, we present a phenomenological
kinetics consistent with Eq. (35). Since the energy must decay
under isothermal conditions for spontaneous processes, diffu-
sion and interface motion must occur such that �̇ < 0. Using
this, kinetic expressions can be postulated such that, when
inserted into Eq. (35), the overall dissipation rate is negative
[5,51,52]. Thus, neglecting cross coupling, the bulk diffusive
fluxes are

Jα
A = −mb,α

A ∇Mα (37)

and

Jβ
A = −mb,β

A ∇Mβ, (38)

where mb,α
A and mb,β

A are the bulk diffusive mobilities of atoms
in each grain. The adsorption fluxes are

qα
A = −mt,α

A (Mα − M� ), (39)

qβ
A = −mt,β

A (Mβ − M� ), (40)

where mt,ζ
A is the mobility of atoms leaving the corresponding

bulk grain and adsorbing to the boundary. In the limit of qα
A =

−qβ
A and mt,α

A = mt,β
A , these latter fluxes and mobilities are

comparable to transboundary fluxes that have been postulated
in other dissipative models of phase transformations [5,51,53–
55]. The interface migration rate vmgr is

vmgr = nαβ · (v − 〈u〉) = −L��ω�, (41)

where L� is the interface mobility. Lastly, the relative dilation
or contraction rate ud is

ud = nαβ · �u� = Ld〈ω〉, (42)

where Ld is a kinetic constant for dilation or contraction that
indicates how readily lattice sites are incorporated into or re-
moved from a grain. In order to guarantee that the dissipation
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rate is negative, the kinetic constants of Eqs. (37)–(42) must
all be positive.

III. MODEL FORMULATION

We now formulate a model of the planar grain boundary
response under imposed bulk fluxes. Thus, when employing
the equations derived in Secs. II B and II C, all instances of �

are replaced by GB to indicate the corresponding grain bound-
ary quantity. While the same procedure may be employed to
obtain a model for the allotropic phase boundary, such a study
remains beyond the scope of this work.

For given normal bulk fluxes Jα
A = nαβ · Jα

A and Jβ
A = nαβ ·

Jβ
A , we derive expressions for the compositions of the bulk

phases and the grain boundary (ρα
A , ρ

β
A , and �A). From these

compositions, we then obtain expressions for the interface
fluxes (qα

A and qβ
A) and the migration and dilation or contrac-

tion rates (vmgr and ud ), and we may also recover the vacancy
production rate (HGB

V ). The derivation of the model requires
the solution of the surface continuity equation [Eq. (13)] for
atoms, the interface conditions [Eqs. (29)–(33)], and the phe-
nomenological kinetics [Eqs. (39)–(42)]. From the formulated
model, we may then obtain solutions of the system.

We begin with Eq. (13) for �A. Substituting in Eqs. (31)–
(33), (39)–(42), and noting that �ρ0� ≡ 0 for a grain boundary,
we obtain

∂�A

∂t
= −qα

A − qβ
A = 2mt

A(〈M〉 − MGB), (43)

where we have made the assumption mt,α
A = mt,β

A = mt
A. Two

additional equations are available from Eqs. (29) and (30):

qα
A = −Jα

A + ρα
A (v − uα ), (44)

qβ
A = Jβ

A − ρ
β
A (v − uβ ), (45)

where v = nαβ · v, uα = nαβ · uα , and uβ = nαβ · uβ are the
normal components of the associated velocities. These are
related to vmgr and ud by

vmgr = v − uα + uβ

2
, (46)

ud = uα − uβ. (47)

We note that, per the model assumptions and definitions in
Sec. II, we may choose to define one of v, uα , or uβ to be
zero, fixing the position of either the grain boundary or one
outer surface while the remaining domains move in relation
to the fixed interface. This is only necessary to recover the
individual contributions of vmgr and ud , but not to derive the
overall interface response. Thus, after substituting Eqs. (39),
(40), (41), and (42), we obtain

Jα
A = mt

A(Mα − MGB) − ρα
A

(
LGB�ω� + Ld

2
〈ω〉

)
, (48)

Jβ
A = −mt

A(Mα − MGB) − ρ
β
A

(
LGB�ω� − Ld

2
〈ω〉

)
. (49)

Equations (43), (48), and (49) are functions of the diffu-
sion potentials and bulk grand potentials, which are functions
of the three desired unknowns: ρα

A , ρ
β
A ,and �A. The model

is therefore fully specified when an appropriate free-energy
model is provided.

A. Linearized interface response

Due to the strongly nonlinear equations for the concentra-
tions, the model represented by Eqs. (43), (48), and (49) is a
coupled, nonlinear set of differential and algebraic equations
(DAEs). However, first-order solutions for the compositions
at the boundary can be obtained by linearizing the model near
equilibrium. We take the Taylor expansion of Eqs. (43), (48),
and (49) to first order in ρα

A , ρ
β
A and, �A; i.e., an equation F is

linearized to first order in the deviation from equilibrium,

F̄ (ρα
A , ρ

β
A , �A) = F

∣∣∣∣
eq

+ δα
A

∂F

∂ρα
A

∣∣∣∣
eq

+ δ
β
A

∂F

∂ρ
β
A

∣∣∣∣
eq

+ δGB
A

∂F

∂�A

∣∣∣∣
eq

+ O(δ2), (50)

where F̄ is the linearized function, δα
A = ρα

A − ρ
eq
A , δβ

A = ρ
β
A −

ρ
eq
A , and δGB

A = �A − �
eq
A are the perturbed compositions in

the corresponding phases; and ρ
eq
A and �

eq
A are the equilibrium

compositions of the corresponding phases. The subscript eq in
Eq. (50) indicates that the argument is evaluated at the equi-
librium condition given by (ρeq

A , ρ
eq
A , �

eq
A ).

The thermodynamic driving forces must also be linearized
to obtain the desired solutions. The bulk diffusion potential
and grand potential density are linearized as

M̄b = Mb

∣∣∣∣
eq

+ δ
ζ
A

∂Mb

∂ρ
ζ
A

∣∣∣∣
eq

+ O(δ2)

= Meq + δ
ζ
A

∂2 f b

∂ρ2
A

∣∣∣∣
eq

(51)

= Meq + δ
ζ
A f b

AA, (52)

ω̄ = ω

∣∣∣∣
eq

+ δ
ζ
A

∂ω

∂ρ
ζ
A

∣∣∣∣
eq

+ O(δ2)

= δ
ζ
A

(
∂ f b

∂ρA
− Mb − ρA

∂2 f b

∂ρ2
A

)∣∣∣∣
eq

(53)

= −δ
ζ
Aρ

eq
A f b

AA, (54)

where ζ denotes α or β and

f b
AA = ∂2 f b

∂ρ2
A

∣∣∣∣
eq

(55)

is the equilibrium Hessian of the bulk Helmholtz free-energy
density. The values of all equilibrium quantities must be the
same for α and β at a grain boundary, and therefore we
do not include additional superscripts to delineate between
the grains. Also, ωeq must be zero in order to satisfy the
planar equilibrium condition, and thus it drops out of the
linear expression. Likewise, the diffusion potential at the grain
boundary is linearized as

M̄GB = MGB

∣∣∣∣
eq

+ δGB
A

∂MGB

∂�A

∣∣∣∣
eq

+ O(δ2) = Meq + δGB
A f GB

AA ,

(56)
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where

f GB
AA = ∂2 f GB

∂�2
A

∣∣∣∣
eq

(57)

is the Hessian of the excess Helmholtz free-energy density at
equilibrium. Both the bulk and grain boundary phases have
the same value of Meq for consistency with Eq. (35).

We may now obtain the linearized DAE system. Equa-
tions (43), (48), and (49) are linearized according to Eq. (50),
which yields

∂δGB
A

∂t
= 2mt

A

(
f b
AA

2

(
δα

A + δ
β
A

) − δGB
A f GB

AA

)
, (58)

Jα
A = mt

A

(
δα

A f b
AA − δGB

A f GB
AA

)
+ (

ρ
eq
A

)2
f b
AA

(
LGB

(
δα

A − δ
β
A

) + Ld
(
δα

A + δ
β
A

)
4

)
, (59)

−Jβ
A = mt

A

(
δ

β
A f b

AA − δGB
A f GB

AA

)
− (

ρ
eq
A

)2
f b
AA

(
LGB

(
δα

A − δ
β
A

) − Ld
(
δα

A + δ
β
A

)
4

)
. (60)

The velocities and interface fluxes can then be recovered from
the linearized solutions. Here, we take the Taylor expansion of
Eqs. (39)–(42) to first order in ρα

A , ρ
β
A , and �A. The linearized

forms of qα
A and qβ

A are

q̄α
A = −mt

A

(
δα

A f b
AA − δGB

A f GB
AA

)
, (61)

q̄β
A = −mt

A

(
δ

β
A f b

AA − δGB
A f GB

AA

)
. (62)

Likewise, the linearized forms of vmgr and ud are

v̄mgr = LGBρA,eq f b
AA

(
δα

A − δ
β
A

)
, (63)

ūd = −LdρA,eq f b
AA

2

(
δα

A + δ
β
A

)
. (64)

Collecting Eqs. (58)–(60) and Eqs. (61)–(64), we have a
solvable linear index-1 DAE system whose general solution is
well posed. A linear ordinary differential equation (ODE) for
δGB

A may be obtained by progressively combining Eqs. (58)–
(60) to eliminate δα

A and δ
β
A . This yields the linear ODE

∂δGB
A

∂t
= −2Ld mt

A f GB
AA

(
ρ

eq
A

)2

2mt
A + Ld

(
ρ

eq
A

)2 δGB
A

+ 2mt
A

2mt
A + Ld

(
ρ

eq
A

)2 �JA�. (65)

For an initial value of the perturbation δGB
A,0, Eq. (65) has the

exact solution

δGB
A (t ) = δGB

A,SS + (
δGB

A,0 − δGB
A,SS

)
exp

[
−2Ld mt

A f GB
AA

(
ρ

eq
A

)2

2mt
A + Ld

(
ρ

eq
A

)2 t

]
,

(66)

where

δGB
A,SS = �JA�

Ld f GB
AA

(
ρ

eq
A

)2 (67)

is the steady-state solution of the perturbed concentration of
atoms in the boundary. Thus, for an initial composition of
the grain boundary, a change in �JA� results in an exponen-
tial decay to a new steady-state composition. If there is no
discontinuity in the bulk flux at the boundary, then atoms will
neither accumulate nor deplete in the interface. From either
Eqs. (66) or (67), the bulk perturbations and the interfacial
velocities and fluxes may be recovered. For brevity, we will
only consider the steady-state solutions of the model given by
Eq. (67) in the remainder of the work.

B. Free-energy model

To solve the grain boundary response, we must specify
the free-energy model of the bulk and the grain boundary.
As will be described, we only need the expressions for the
diffusion potentials and vacancy chemical potentials. For the
bulk, we assume that the solid is an ideal solution of atoms and
vacancies, for which the chemical potentials in a bulk grain
are

μb
A = μ�

A + kBT ln
ρA

ρ0
, (68)

μb
V = μ�

V + kBT ln
ρ0 − ρA

ρ0
, (69)

for atoms and vacancies, respectively, where μ�

A and μ�

V are
the corresponding reference chemical potentials and kB is the
Boltzmann constant. The diffusion potential is therefore

Mb = (μ�

A − μ�

V ) + kBT ln
ρA

ρ0 − ρA

= Meq + kBT ln
ρA

(
ρ0 − ρ

eq
A

)
ρ

eq
A (ρ0 − ρA)

, (70)

where the second equality arises due to the requirement that
Mb = Meq at the equilibrium composition. For the linearized
model, the equilibrium value of f b

AA is therefore

f b
AA = kBT ρ0

ρ
eq
A

(
ρ0 − ρ

eq
A

) = kBT

ρ0ceq
A

(
1 − ceq

A

) , (71)

where cA = ρA/ρ0 is the site occupancy in the bulk.
For the grain boundary, we assume that the atoms and

vacancies form a perfect solution [48,49,56–58]. The corre-
sponding chemical potentials are

μGB
A = μ�

A − γ − γA

�0
+ kBT ln

�A

�0
, (72)

μGB
V = μ�

V − γ − γV

�0
+ kBT ln

�0 − �A

�0
, (73)

where γA and γV are the interfacial energies for a system com-
posed entirely of atoms and vacancies, respectively. However,
the natural logarithm terms in Eqs. (72) and (73) diverge in
these regimes, so the construction of the interface to obtain γA

and γV is purely conceptual. Note that the reference chemical
potentials are identical between the bulk and grain boundary
phases. The diffusion potential of atoms is therefore

MGB = (μ�

A − μ�

V ) − γV − γA

�0
+ kBT ln

�A

�0 − �A

= Meq + kBT ln
�A

(
�0 − �

eq
A

)
�

eq
A (�0 − �A)

, (74)

023602-8



EFFECTS OF VACANCY TRANSPORT AND SURFACE … PHYSICAL REVIEW MATERIALS 8, 023602 (2024)

where we observe that the dependence upon γ has vanished,
and again the second equality arises due to the requirement
that MGB = Meq at the equilibrium composition. The values
of γA and γV have been absorbed into �

eq
A and are constant;

thus, the equilibrium f GB
AA is

f GB
AA = kBT �0

�
eq
A

(
�0 − �

eq
A

) = kBT

�0θ
eq
A

(
1 − θ

eq
A

) . (75)

Here, θA = �A/�0 is the site occupancy of the grain boundary.

IV. RESULTS AND DISCUSSION

After combining the linearized expressions and constraints
from Sec. III A and the expressions for the free energy from
Sec. III B, we obtain the steady-state solution for the grain
boundary response. The perturbed grain boundary composi-
tion is

�A = �
eq
A +

(
1 − θ

eq
A

)
θ

eq
A �0

kBT Ld
(
ceq

A ρ0
)2 �JA�. (76)

The term 1 − θ
eq
A is equivalent to the equilibrium mole frac-

tion of vacancies θ
eq
V ; similarly, ceq

V = 1 − ceq
A . At equilibrium,

the vacancies are likely very dilute in the metal such that that
ceq

V � 1 and θ
eq
V � 1. In this limit, terms in the linear solution

that are proportional to 1 − ceq
A or 1 − θ

eq
A are replaced with

ceq
V and θ

eq
V , respectively, while terms proportional to ceq

A or
θ

eq
A may be replaced by one with minimal loss of accuracy.

Thus, Eq. (76) becomes

�A = �
eq
A + θ

eq
V �0

kBT Ldρ
2
0

�JA�. (77)

We will assume that the vacancies are very dilute in the re-
mainder of the work to simplify the resulting expressions. In
Eq. (77), the value of �A diverges if Ld → 0. This is consistent
with Eq. (35), as the production or annihilation of lattice sites
is required to retain knowledge of 〈ω〉 in the overall dissipa-
tion. Conversely, �A approaches �

eq
A as Ld → ∞ since in this

limit a local equilibrium exists where the average grand poten-
tial is fixed at zero: any necessary lattice site is immediately
produced and any excess lattice site is immediately destroyed.
It is possible that off-diagonal mobilities for the dissipation
terms at the interface may eliminate this divergence, but this
is beyond the scope of this study.

From here, we may recover the steady-state solutions for
the bulk concentrations on either side of the grain boundary,
which are

ρα
A = ρ

eq
A + ceq

V

kBT ρ0

(�JA�
Ld

+ ρ2
0 〈JA〉

2LGBρ2
0 + mt

A

)
, (78)

ρ
β
A = ρ

eq
A + ceq

V

kBT ρ0

(�JA�
Ld

− ρ2
0 〈JA〉

2LGBρ2
0 + mt

A

)
. (79)

Equations (78) and (79) also diverge if Ld → 0, which is again
consistent with the loss of knowledge of 〈ω〉 from the overall
energy dissipation rate of the system. Either LGB or mt

A may
be zero, but the solutions diverge if both are zero. Comparing
Eqs. (76), (78), and (79), all the atom concentrations of the
grain boundary depend upon �JA� and Ld , but only the bulk
concentrations at the grain boundary depend upon 〈JA〉, LGB,

and mt
A. Therefore, for finite kinetics the surface excess will

always be at equilibrium if there is no discontinuity in the bulk
flux because the second term of Eq. (76) vanishes when atoms
neither accumulate nor deplete at the interface. However, both
bulk compositions can have their equilibrium values if and
only if both �JA� = 0 and 〈JA〉 = 0 (i.e., the trivial equilibrium
solution). As the kinetic constants are all positive, ρα

A and ρ
β
A

both shift by the same amount proportional to �JA�, but the
magnitude of this shift may have a different magnitude than
the shift in �A depending on the values of the equilibrium
vacancy fractions in all phases.

We now determine the relevant interfacial velocities and
fluxes. The migration and dilation or contraction rates are

v̄mgr = 2ρ0LGB〈JA〉
2LGBρ2

0 + mt
A

, (80)

ūd = −�JA�
ρ0

, (81)

respectively, where ūd has no dependence upon the kinetic
constants of the interface as Ld cancels out upon simplification
[cf. Eqs. (64), (78), and (79)]. The vacancy generation and
annihilation rates and the dilation and contraction rates are
related, given by the expression

H̄GB
V = −ρ0ūd = �JA�. (82)

As noted in the discussion of Eqs. (46) and (47), we may also
recover two of either v, uα , or uβ by choosing the GB, Sα or
Sβ to have fixed position in the laboratory reference frame. If
we choose uα ≡ 0 (i.e., Sα is fixed), we obtain

v = v̄mgr − ūd

2
= 4ρ2

0 LGBJα
A + mt

A�JA�
4LGBρ3

0 + 2ρ0mt
A

, (83)

uβ = −ūd = �JA�
ρ0

= H̄GB
V

ρ0
. (84)

Thus, in the frame of reference where Sα is fixed, the motion
of the grain boundary depends upon both �JA� as well as Jα

A ,
but not 〈JA〉. Additionally, the relative motion of grain β is
a measure of both the dilation and contraction rates and the
vacancy production, as the lattice dilates or contracts by the
absorption or desorption of vacancies at the grain boundary.
Lastly, the values of q̄α

A and q̄β
A are equal and opposed,

q̄α
A = −q̄β

A = − mt
A〈JA〉

2LGBρ2
0 + mt

A

, (85)

which implies that there is no net absorption of atoms to the
interface qGB

A = 0. This is a direct consequence of assuming
that the excess surface concentration is at steady state for the
given applied flux [cf. Eqs. (65)–(67) and their derivation].

By inspection of Eqs. (76)–(79), we observe that there is a
characteristic flux that can be defined for the grain boundary:

J∗ = kBT
[
(2LGB + Ld )ρ2

0 + mt
A

]
. (86)

This in turn allows us to define dimensionless values of
the bulk flux as J̃α

A = Jα
A /J∗ and J̃β

A = Jβ
A /J∗. Therefore,
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FIG. 3. The interface kinetic response diagram of a grain bound-
ary due to the bulk flux of atoms on either side of the interface,
consistent with Eqs. (80)–(82) in the absence of any bounds on the
bulk fluxes. In each of the four regions outlined by 〈J̃A〉 = 0 and
�J̃A� = 0, we indicate whether the grain boundary migrates towards α

(GB → α) or β (GB → β) and whether the total number of vacancies
is increasing (NV ↑) or decreasing (NV ↓).

Eqs. (76)–(79) may be written in the dimensionless form

θA = θ
eq
A + θ

eq
V

�J̃A�
L̃d

, (87)

cα
A = ceq

A + ceq
V

(�J̃A�
L̃d

+ 〈J̃A〉
1 − L̃d

)
, (88)

cβ
A = ceq

A + ceq
V

(�J̃A�
L̃d

− 〈J̃A〉
1 − L̃d

)
. (89)

Here, L̃d = kBT ρ2
0 Ld/J∗ is a dimensionless parameter that

indicates whether the grain boundary kinetics is controlled
by dilation or contraction and vacancy generation or anni-
hilation (L̃d → 1) or migration and transboundary diffusion
(L̃d → 0). Thus, in this dimensionless space, we can differ-
entiate two vastly different regimes of the grain boundary
concentration response. However, in the limit of L̃d → 0, we
cannot determine whether the resulting behavior is dominated
by migration or transboundary diffusion. Given values of L̃d ,
θ

eq
A , and ceq

A , there are combinations of �J̃A� and 〈J̃A〉 that will
drive one or more of θA, cα

A, and cβ
A to full saturation of atoms

(i.e., one) or full depletion of atoms (i.e., zero), which we
refer to as critical fluxes. These critical fluxes act to bound
the magnitude of the possible interfacial response. In other
words, Eqs. (87)–(89) represent an overdetermined system of
six implicit equations for �J̃A� and 〈J̃A〉: the three equations
have two solutions for the critical fluxes depending on whether
the resulting concentration is equal to zero or one.

A. Graphical interpretation and response under critical fluxes

The behaviors implied by Eqs. (80)–(82) and (87)–(89)
can be represented on interface kinetic response diagrams. In
Fig. 3, we plot the baseline response of the GB associated
with Eqs. (80)–(82) without the constraints implied by the

critical fluxes. The axes of the plot are the dimensionless bulk
fluxes in each grain, J̃α

A and J̃β
A . The red line that starts in the

top-left corner and ends in the bottom-right corner indicates
that the bulk fluxes are equal and opposed, thus 〈J̃A〉 = 0.
For the grain boundary, a point along this line corresponds
to zero migration [Eq. (80)]. Above and to the right of the red
line, 〈J̃A〉 > 0, which indicates that the interface will migrate
towards the direction of grain β in the sign convention of
the model, which is denoted by GB → β in the plot. Below
and to the left, 〈J̃A〉 < 0, indicating that the interface will
migrate towards the direction of grain α, which is denoted by
GB → α in the plot. By comparison, the blue line from the
bottom-left corner to the upper-right corner indicates that the
bulk fluxes are equal in sign and magnitude, i.e., �J̃A� = 0.
This line indicates that the system does not dilate or con-
tract [Eq. (81)]; additionally, vacancies are neither generated
nor annihilated [Eq. (82)]. Below and to the right, �J̃A� > 0,
and therefore vacancies are generated to counteract the ten-
dency of the interface to become saturated with atoms, which
is indicated by NV ↑ on the plot (i.e., the total number of
vacancies in the system is increased). Simultaneously, ac-
cording to Eq. (82) the production reaction requires that the
system dilates to accommodate the new lattice sites. Above
and to the left of the blue line, �J̃A� < 0, and thus the grain
boundary is becoming depleted of atoms (i.e., saturated with
vacancies) and will annihilate vacancies as a result (indicated
by NV ↓); the system will contract as these lattice sites are
eliminated to decrease the total number of vacancies in the
system.

The two dominant modes of the bicrystal evolution are
either the migration of the grain boundary from one crystal
to another or dilation or contraction of the system; we il-
lustrate these two responses in Fig. 4. If a point is exactly
along the blue �J̃A� = 0 line in Fig. 3, then the migration
has the apparent effect of one grain growing at the expense
of the other. This is demonstrated in Fig. 4(a) for 〈J̃A〉 > 0
and 4(b) for 〈J̃A〉 < 0. Here, we observe that either grain α

grows at the expense of grain β (a) or that grain β grows at
the expense of grain α (b), due to the respective sign of 〈J̃A〉.
However, the overall system size remains fixed, as the total
number of vacancies is conserved. By comparison, if a point is
exactly along the red 〈J̃A〉 = 0 line in Fig. 3, only a dilation or
contraction of the system due to production or annihilation of
vacancies will be observed. This is demonstrated in Figs. 4(c)
for �J̃A� > 0 (dilation) and 4(d) for �J̃A� < 0 (contraction).
The system size is no longer fixed, as the total number of
vacancies is nonconserved. The grain boundary will still move
with respect to the outer edge of grain α, but the grain bound-
ary velocity must be half of the outer edge of grain β [cf.
Eqs. (83) and (84)]. Within the triangular quadrants of Fig. 3
defined by the red and blue lines, both modes are active. The
resulting interface motions will be a mixture of the behaviors
in Fig. 4.

However, the allowed magnitude of each bulk flux at the
grain boundary is finite when we consider the constraining
effects of Eqs. (87)–(89), which denote the bounds of J̃α

A

and J̃β
A that produce the critical fluxes 〈J̃A〉crit and �J̃A�crit .

These implicit bounds are imposed on the interface kinetic
response diagrams in Figs. 5(a)–5(c), where the orange lines
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FIG. 4. Schematic of the evolving bicrystal by pure migration
(a), (b) and pure dilation or contraction (c), (d) in the reference frame
where Sα is pinned. In each panel, the signs of 〈J̃A〉 and �J̃A� are
indicated. Here, the GB always moves, but the total system size is
fixed only during migration.

correspond to Eq. (87), the green lines correspond to Eq. (88),
and the purple lines correspond to Eq. (89). Additionally,
the solid versions of these lines indicate when that portion
of the grain boundary is depleted of atoms (saturated with
vacancies), and the dashed lines indicate when that portion
is saturated with atoms (depleted of vacancies). Here, we as-
sume ceq

V = 10−1 and θ
eq
V = 3ceq

V /2 for illustrative purposes;
more dilute values of the equilibrium vacancy concentration
dramatically increase the range of the plots where J̃α

A < 0 and
J̃β

A > 0 and make it difficult to see other regions of the plots.
The three plots represent the constrained response of the grain
boundary for different values of L̃d : only pairs of bulk fluxes in
the shaded gray regions produce stable steady-state solutions.
Bulk fluxes outside the truncated rhomboidal regions that are
outlined by the six saturation and depletion lines cannot occur,

FIG. 5. Constrained interface kinetic response diagrams of a
grain boundary due to the bulk flux of atoms on either side of the
interface. The two lines for the baseline response (cf. Fig. 3) are
marked in each panel. Additionally, we superimpose the six lines
defined by Eqs. (87)–(89) that set the critical fluxes for (a) L̃d = 1

2 ,
(b) L̃d = 1

10 , and (c) L̃d = 9
10 , assuming ceq

V = 10−1 and θ
eq
V = 3ceq

V /2
for demonstrative purposes. The shaded regions are the portions of
the plot that have a valid steady-state solution.

as one or more concentrations at the interface would be greater
than one or less than zero. If we are outside one of the solid
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lines that indicates θA = 0, cα
A = 0, or cβ

A = 0, the physical
interpretation is that the grain boundary would likely produce
pores and voids.

In Fig. 5(a), L̃d = 1
2 , indicating balanced contributions

from vacancy generation or annihilation and migration or
transboundary diffusion. We observe that all three of the
dashed saturation lines intersect at the same point on the red
line for 〈J̃A〉 = 0. The two bulk depletion lines also intersect at
a common point on the red line; however, because θ

eq
V > ceq

V ,
the surface depletion line does not pass through this point. If
θ

eq
V = ceq

V , then all three of the depletion lines would intersect
at the same point. The bounds indicated by θA = 0 or θA = 1
are parallel to the �J̃A� = 0 isoline. Thus, the positive and
negative bounds of �J̃A�crit are uniquely determined by the
surface saturation and depletion lines, but the positive bound
and negative bound are not equal in magnitude. All three con-
centrations will saturate at the positive bound of �J̃A�crit , but it
is possible for just θA = 0 to be satisfied at the negative bound
of �J̃A�crit . In contrast, the largest bounds of 〈J̃A〉crit do not lie
along the blue �J̃A� = 0 line. In the upper right, the positive
bound of 〈J̃A〉crit is set by the intersection of the cα

A = 1 and
cβ

A = 0 lines, and in the lower left, the negative bound of
〈J̃A〉crit is set by the intersection of the cα

A = 0 and cβ
A = 1

lines. Both bounds are equal in magnitude, unlike �J̃A�crit . If
we were to assume θ

eq
V = 2ceq

V , the θA = 0 constraint would
intersect both the positive and negative bounds of 〈J̃A〉crit . In
this regime, the allowed region of fluxes would be triangular,
and the grain boundary could be saturated with vacancies at
any point between 〈J̃A〉 = 0 and ±〈J̃A〉crit . If we ascribe the
θA = 0 line to one possible onset of void nucleation, then our
interpretation of this result is that increasing the equilibrium
vacancy fraction in the grain boundary increases the likeli-
hood of void nucleation.

In Fig. 5(b), L̃d = 1
10 , indicating comparatively fast migra-

tion or transboundary diffusion kinetics and comparatively
slow vacancy generation or annihilation kinetics. The trun-
cated rhomboidal region of allowed bulk fluxes is still present,
but the saturation and depletion lines are beginning to flatten
out along the �J̃A� = 0 line. As L̃d → 0, all the saturation and
depletion bounds would collapse onto the blue line, indicating
that the grain boundary cannot sustain bulk fluxes such that
�J̃A� �= 0. Thus, any nonzero �J̃A� should tend to produce
voids in this regime. Finally, in Fig. 5(c), L̃d = 9

10 , indicating
comparatively fast vacancy generation or annihilation kinetics
and comparatively slow migration or transboundary diffusion
kinetics. Here, the bulk saturation and depletion lines start
to approach the 〈J̃A〉 = 0 line, and as L̃d → 1 then the bulk
lines would collapse entirely onto the red line. The grain
boundary would then be unable to sustain bulk fluxes such
that 〈J̃A〉 �= 0, and a nonzero 〈J̃A〉 would tend to produce
voids. Comparing all of Figs. 5(a)–5(c), it is immediately
apparent that the allowed region of fluxes where �J̃A� > 0
is much smaller than the region where �J̃A� < 0. Intuitively,
this makes sense if vacancies are dilute, very few lattice sites
exist in the grain boundary or bulk that can accommodate
additional atoms, but many atoms can be removed to produce
vacancies.

From the graphical construction of the critical fluxes, we
now obtain expressions for the GB response. First, from the

intersection of cα
A = 1, cβ

A = 1, and θA = 1, we find

〈JA〉 = 0, (90)

�JA� = J∗�J̃A� = kBT ρ2
0 Ld = HGB

V . (91)

By Eqs. (80)–(85), this implies v̄mgr = 0 and q̄α
A = −q̄β

A = 0.
Further, Eq. (91) is the maximum vacancy production rate and
the most positive value of uβ (i.e., the fastest growth rate of the
overall bicrystal). Next, we consider the intersection of either
cα

A = 1 and cβ
A = 0 or cα

A = 0 and cβ
A = 1 (i.e., one bulk grain

is entirely composed of vacancies at the boundary), which
yields

〈JA〉 = J∗〈J̃A〉 = ± kBT

2ceq
V

(
2LGBρ2

0 + mt
A

)
, (92)

�JA� = J∗�J̃A� = −kBT ρ2
0 Ld

1 − 2ceq
V

2ceq
V

= HGB
V . (93)

This combination of fluxes produces the largest magnitudes of
v̄mgr and q̄α

A = −q̄β
A , with

v̄mgr = ±kBT ρ0LGB

ceq
V

, (94)

q̄α
A = ∓kBT mt

A

2ceq
V

. (95)

This regime occurs with significant vacancy annihilation and
contraction of the bicrystal. If θ

eq
V = 2ceq

V , this is the max-
imum vacancy annihilation rate. However, if θ

eq
V = ceq

V , the
maximum vacancy annihilation rate instead occurs at the in-
tersection of cα

A = 0, cβ
A = 0, and θA = 0, which yields

〈JA〉 = 0, (96)

�JA� = J∗�J̃A� = −kBT ρ2
0 Ld

1 − θ
eq
V

θ
eq
V

= HGB
V . (97)

In this regime, the interface is composed entirely of vacancies.
Here, the migration rate and transboundary fluxes are again
zero, and the contraction rate of the bicrystal is at a maximum.
From the constraint equations, we may also determine that
ceq

V � θ
eq
V � 2ceq

V in order for the present model to be valid.
An outcome of this analysis is that the values of v̄mgr, q̄α

A,
and HGB

V defined from Eqs. (90)–(97) all depend upon the
respective kinetic constants LGB, mt

A, and Ld , as do the other
quantities related to these first three: q̄β

A , ūd , v, and uβ . The last
kinetic constant, Ld , canceled out of Eqs. (80)–(85), which
originally suggests an independence of the grain boundary
response from Ld . Further, v̄mgr and q̄α

A are decoupled from
each other’s kinetic constants, which was not previously the
case.

The examination of the critical values of the linearized
response of the grain boundary thus has surprising conse-
quences. Whereas the initial steady-state solution given by
Eqs. (76)–(85) requires that the kinetic constants be nonzero,
Eqs. (90)–(97) remain well posed for zero-valued kinetic con-
stants, provided that the equilibrium vacancy concentrations
are nonzero (which is already a requirement of the assumed
free-energy model). Thus, the divergence of the steady-state
solutions coincides with the magnitudes of the allowed crit-
ical fluxes approaching zero. For example, Eqs. (77)–(79)
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diverge when Ld → 0, as do Eqs. (87)–(89) when L̃d → 0.
This implies by necessity that �JA� → 0 (or �J̃A� → 0); i.e.,
the grain boundary cannot sustain any discontinuity in the
bulk flux without immediately violating the requirement that
the site fractions are between zero and one [cf. Fig. 5(b)].
Likewise, the divergence of Eqs. (78) and 79 as both LGB → 0
and mt

A → 0 [or Eqs. (88) and (89) as L̃d → 1] corresponds
to 〈JA〉 → 0 (or 〈J̃A〉 → 0). Here, the grain boundary cannot
sustain any nonzero average bulk flux without immediately
violating the requirement that the site fractions are between
zero and one [cf. Fig. 5(c)]. Therefore, although the nucleation
process of pores and voids is beyond the scope of this work,
we can ascribe the divergence of the steady-state solutions or
the vanishing of the allowed fluxes to regimes where such fea-
tures might begin to form. We note that these results suggest
the possibility that pores and voids might form due to either
sluggish lattice site annihilation kinetics or sluggish overall
atom transport across the grain boundary through a combi-
nation of migration and diffusion. Due to the use of linearized
kinetics, it is possible that the neglected higher-order terms are
significant as the interface fully saturates with or depletes of
vacancies. However, the present limits allow an understanding
of the basic regimes of the overall theory.

B. Limiting regimes

There are also kinetic regimes of interest that lead to sim-
plifications of Eqs. (76)–(85). First, we consider the combined
regimes of local equilibrium and infinitely fast dilation and
contraction kinetics, which correspond to mt

A → ∞ and Ld →
∞, respectively. Taking the respective limits of the analytical
solution yields

�A = �
eq
A , (98)

ρα
A = ρ

β
A = ρ

eq
A , (99)

for the interfacial concentrations; i.e., we obtain the expected
result that the compositions of the interface are fixed at their
equilibrium values. For the migration rate, we obtain

v̄mgr = 0. (100)

By comparison, H̄GB
V and ūd have no dependence upon the

kinetic parameters of the model and are thus still given by
Eqs. (81) and (82), and therefore when grain α is fixed the
velocities of the boundary and grain β are

v = − ūd

2
= �JA�

2ρ0
= H̄GB

V

2ρ0
, (101)

uβ = −ūd = �JA�
ρ0

= H̄GB
V

ρ0
. (102)

Equation (100) indicates that, as expected, the planar grain
boundary does not migrate when the composition is at local
equilibrium [59,60]. However, even though there is no migra-
tion of the grain boundary, if �JA� �= 0 such that vacancies are
being created or destroyed, then the boundary will move with
respect to the edge of grain α at exactly half the rate at which
grain β translates. However, this motion is purely due to the
dilation or contraction of the grains as vacancies are created

or destroyed. The interface fluxes are

q̄α
A = −q̄β

A = −〈JA〉, (103)

which indicates that the interface fluxes are equivalent to the
average bulk flux. Therefore, even though we cannot measure
either an interface migration rate or a difference in composi-
tion at the ideal planar grain boundary, there is still a nonzero
flux of atoms across the interface.

Next, we consider the regime where the mobility of the
boundary is fast such that LGB → ∞, as well as infinitely
fast dilation and contraction kinetics Ld → ∞. Here, the grain
boundary is controlled by the comparatively slow kinetics of
transboundary diffusion. The limiting values of the concentra-
tions are

�A = �
eq
A , (104)

ρα
A = ρ

β
A = ρ

eq
A , (105)

which are identical to the local equilibrium case. When we
compare both this regime and the fast transboundary diffusion
regime to the results of Sec. IV A, both correspond to the L̃d =
1
2 regime [cf. Fig. 5(b)], and therefore their concentration re-
sponses are expected to be indistinguishable for given fluxes.
As in the local equilibrium regime, H̄GB

V and ūd are given by
Eqs. (81) and (82). The limiting value of the migration rate is

v̄mgr = 〈JA〉
ρ0

, (106)

and when grain α is fixed, the velocities of the boundary and
grain β are

v = v̄mgr − ūd

2
= Jα

A

ρ0
, (107)

uβ = −ūd = �JA�
ρ0

= H̄GB
V

ρ0
. (108)

Therefore, a planar grain boundary in this regime will migrate
due to the average bulk flux of atoms, which is distinct from
the previous local equilibrium regime despite the identical
limit of the compositions. As in the other regimes, the value
of uβ only depends upon the value of �JA�, but in the fast
migration regime, the velocity of the grain boundary only
depends upon Jα

A and is not necessarily proportional to uβ .
This is also distinct from the local equilibrium regime, and
should also allow for this regime to be distinguished from the
nonlimiting case. Lastly, the interface fluxes are

q̄α
A = −q̄β

A = 0. (109)

In this regime, there is no apparent diffusion of atoms across
the planar boundary: all atoms are transferred between grains
by the interface migration. However, because �JA� may be
nonzero, vacancy generation and annihilation and dilation and
contraction can also contribute to the rate at which vacancies,
but not atoms, are added to or removed from either grain.

For completeness, we last relax the assumption of Ld →
∞, but maintain either the assumption of mt

A → ∞ or LGB →
∞. This corresponds to the L̃d → 1 regime in Sec. IV A [cf.
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Fig. 5(d)]. Choosing either of the latter assumptions results in
the same interface compositions,

�A = �
eq
A + θ

eq
V �0

kBT Ldρ
2
0

�JA�, (110)

ρα
A = ρ

β
A = ρ

eq
A + ceq

V

kBT Ldρ0
�JA�, (111)

which indicate that the interface will either saturate or deplete
as a function of the applied flux. The interfacial velocities
and fluxes have no dependence upon Ld . Thus, if transbound-
ary diffusion is fast, then v̄mgr, q̄α

A, and q̄β
A will be given by

Eqs. (100) and (103). Otherwise, if migration is fast, then they
are given by Eqs. (106) and (109). From the above equations,
we conclude that Ld describes the efficiency of the grain
boundary as a source or sink of vacancies in the present model,
in addition to the kinetics of the dilation and contraction of
the overall system. Large values of Ld (fast kinetics) allow
the concentrations to approach their equilibrium values, while
smaller values (sluggish kinetics) allow for larger deviations
from equilibrium.

Overall, the general solution and the limiting regimes sug-
gest that there are a variety of diagnostic conditions that can
be considered to assess whether a grain boundary is an ideal
source or sink of vacancies:

(1) If the concentration at the grain boundary is not at the
expected equilibrium value, then the grain boundary is not an
ideal source or sink of vacancies.

(2) If the grain boundary has zero measurable migration,
but a nonzero bulk flux exists, then the kinetics of migration
are slow in comparison to transboundary diffusion, and local
equilibrium may exist.

(3) If a nonzero migration rate can be measured while a
nonzero bulk flux exists, then the kinetics of transboundary
diffusion may be slow in comparison to the migration.

Regimes 1 (i.e., the general solution) and 3 are key results
of the present model that arise from the consideration of
vacancy production in the interface, adsorption to the grain
boundary, and transboundary diffusion, whereas regime 2 cor-
responds to traditional definitions of the local equilibrium
regime with the explicit addition of vacancy production. Dis-
tinguishing among all three regimes should be possible by
measuring v and uβ in a frame where uα = 0 after the grain
boundary reaches a steady state for the current values of
bulk fluxes. In regime 2, uβ = 2v, indicating fully coupled
measurements for any set of bulk fluxes after the interface
reaches steady state. Regimes 1 and 3 will have uncoupled
measurements of v and uβ , but in regime 3 the value of
v will not depend upon �JA�. As an additional observation,
assuming that a given kinetic constant approaches ∞ causes
the respective flux expressions given by Eqs. (90)–(97) to also
approach ∞. Thus, these idealized kinetic regimes require
larger values of either 〈JA〉 or �JA� in order to saturate parts
of the grain boundary with vacancies, which should act to
suppress void formation. In other words, the current analysis
suggests that the presence of voids at the grain boundary
implies that it is not an ideal source or sink of vacancies and
that the processes of migration, transboundary diffusion, and
vacancy production and annihilation have finite kinetics.

V. CONCLUSION

By applying the methods of irreversible thermodynamics,
we derived the conditions for the motion of a planar grain
boundary or allotropic planar phase boundary in a pure metal
with vacancies in the stress-free limit. Subsequently, we ob-
tained a linearized analytical solution for the response of the
planar grain boundary under imposed bulk fluxes and exam-
ined the steady states of this solution for an ideal solution
model of atoms and vacancies in the bulk and a perfect so-
lution model in the grain boundary. From this approach, we
find the following:

(1) As a consequence of the generalized transport law, a
source or sink of vacancies exists at the boundary such that
vacancies must be generated or annihilated to equilibrate the
interface.

(2) Vacancy generation and annihilation at the boundary
are related to the dilation and contraction of the system, re-
spectively, and act to reduce the average bulk grand potential
density to zero. Thus, the mass balance conditions and phe-
nomenological kinetics have time-dependent and steady-state
solutions.

(3) Away from complete saturation or depletion at the
boundary, the migration rate and the transboundary diffusion
flux depend upon the average bulk flux, the grain boundary
mobility, and transboundary diffusive mobility. However, the
vacancy generation and annihilation rates and dilation and
contraction rates only depend upon the difference in bulk
fluxes across the boundary. Only the surface concentration
and the bulk concentrations near the grain boundary depend
upon the kinetic parameter for dilation and contraction or,
alternatively, the ability of the boundary to absorb or create
vacancies.

(4) The allowed values of the bulk fluxes are bounded
if any portion of the interfacial region becomes completely
saturated with atoms or totally depleted of atoms. In these
regimes, the resulting extrema are determined by the ki-
netic constants for migration, dilation and contraction, and
transboundary diffusion, as well as the equilibrium vacancy
fractions. It is possible for any or all of the surface and
bulk concentrations at the grain boundary to be saturated
with vacancies, which suggests the formation of pores and
voids can occur either due to sluggish lattice site annihi-
lation or sluggish migration and diffusion across the grain
boundary.

(5) For certain combinations of kinetic parameters and
bulk fluxes, atoms may transfer from one grain to the other
purely by either diffusion or interface migration. If vacancies
are created or destroyed, the grains may still grow or shrink as
the lattices translate to accommodate the new vacancies, even
though the migration rate in the laboratory frame can be zero.

(6) The divergence of the steady-state compositions of the
grain boundary coincide with zero values of the bulk fluxes
that would tend to saturate or deplete the interfacial region
with vacancies. Thus, sluggish interfacial kinetics at the grain
boundary should tend to promote the formation of pores and
voids in its vicinity. However, an interface with sufficiently
fast lattice site generation and annihilation kinetics will be less
likely to saturate with vacancies, suppressing the formation of
pores and voids. Additionally, this regime will feature local
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equilibrium of the diffusion potentials, but not necessarily a
zero grand potential.

The expressions derived in this work should be useful in
future studies, either for estimating the kinetic parameters
of the interface from experiments or for verifying numerical
models of vacancy-mediated interface motion.
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APPENDIX A: BALANCE CONDITIONS AT FREE
SURFACES

Here, we derive the balance conditions for atoms and va-
cancies associated with the moving free surface in Sec. II A,
following an approach similar to Gurtin and Voorhees [51].
The total number of atoms NA in the system is

NA = Nb
A + N�

A =
∫

R
ρAdV +

∫
�

�AdA, (A1)

where Nb
A and N�

A are the total atoms in the bulk and surface
phases, respectively. Likewise, the number of vacancies in the
system NV is

NV = Nb
V + N�

V =
∫

R
ρV dV +

∫
�

�V dA, (A2)

where Nb
V and N�

V are the number of vacancies in the respec-
tive phases. By Reynolds’ theorem, the first variations in time
of Eqs. (A1) and (A2) are [41,46]

ṄA = Ṅb
A + Ṅ�

A = ∂

∂t

∫
R
ρAdV + ∂

∂t

∫
�

�AdA

=
∫

R

∂ρA

∂t
dV +

∫
�

∂�A

∂t
dA +

∫
�

ρAn̂ · v dA, (A3)

ṄV = Ṅb
V + Ṅ�

A = ∂

∂t

∫
R
ρV dV + ∂

∂t

∫
�

�V dA

=
∫

R

∂ρV

∂t
dV +

∫
�

∂�V

∂t
dA +

∫
�

ρV n̂ · v dA, (A4)

respectively. Both ∂ρA/∂t and ∂ρV /∂t are assumed to obey
Eq. (12), and ∂�A/∂t and ∂�V /∂t are assumed to obey
Eq. (13). Inserting these expressions, we obtain

ṄA =
∫

R
∇ · Jb

AdV −
∫

�

jT
A dA +

∫
�

ρAn̂ · v dA (A5)

and

ṄV =
∫

R
∇ · Jb

V dV −
∫

�

jT
V dA +

∫
�

ρV n̂ · v dA. (A6)

We now apply the divergence theorem to the bulk to obtain

ṄA =
∫

�

(
ρAn̂ · v − n̂ · Jb

A − jT
A

)
dA = 0, (A7)

ṄV =
∫

�

(
ρV n̂ · v − n̂ · Jb

V − jT
V

)
dA =

∫
�

H�
V dA, (A8)

where the second right-hand sides arise because atoms are
conserved in the absence of external sources, but vacancies
are not. Here, H�

V is a production or annihilation rate of
vacancies at the interface. Equations (A7) and (A8) may be
further split into the individual variations from the bulk and
surface phases:

Ṅb
A =

∫
�

qb
AdA =

∫
�

(
ρAn̂ · v − n̂ · Jb

A

)
dA, (A9)

Ṅ�
A =

∫
�

q�
A dA = −

∫
�

jT
A dA, (A10)

Ṅb
V =

∫
�

qb
V dA =

∫
�

(
ρV n̂ · v − n̂ · Jb

V

)
dA, (A11)

Ṅ�
V =

∫
�

q�
V dA = −

∫
�

jT
V dA, (A12)

where qb
A, q�

A , qb
V , and q�

V are fluxes that are positive when
atoms or vacancies enter the respective phase, which exist
such that Eqs. (A9)–(A12) balance. We may therefore deduce
that

qb
A + q�

A = 0, (A13)

qb
V + q�

V = H�
V (A14)

must be fulfilled to satisfy Eqs. (A7)–(A12). We obtain the
mass balance conditions for each species by localizing the
surface integrals of Eqs. (A9)–(A12), yielding

qb
A = −n̂ · Jb

A + ρAn̂ · v, (A15)

q�
A = − jT

A , (A16)

qb
V = −n̂ · Jb

V + ρV n̂ · v, (A17)

q�
V = − jT

V . (A18)

Combined, Eqs. (A15) and (A16) provide the necessary mass-
balance expressions to simplify Eq. (15). Additionally, we
have assumed that both ρ0 and �0 are fixed and that we have a
network lattice in the bulk. Therefore, q�

A + q�
V = 0 such that

∂�0/∂t = 0, and

H�
V = ρ0n̂ · v (A19)

must be satisfied. Thus, the mass balance conditions dictate
that the interface can move only by creating or destroying
vacancies.
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APPENDIX B: DERIVATION OF GENERALIZED
TRANSPORT LAW

Here, we present the particular derivation of the gen-
eralized transport law for the system in Sec. II B. These
expressions are necessary to obtain both the dissipation rate
of the total Helmholtz free energy and the global mass bal-
ance conditions. The derivation is generally parallel to that
presented by Slattery et al. [46] with modifications for the
present model’s assumptions and notation. We consider the
total amount of a quantity in the system �, which has contri-
butions from volumetric densities in Rα and Rβ , ψα and ψβ ,
as well as an excess area density on �, ψ� . The total amount
is

� =
∫

Rα

ψαdV +
∫

Rβ

ψβdV +
∫

�

ψ�dA (B1)

and the time derivative of � is subsequently

d�

dt
= d

dt

∫
Rα

ψαdV + d

dt

∫
Rβ

ψβdV + d

dt

∫
�

ψ�dA.

(B2)
We apply Reynolds’ theorem to the first two integrals in
Eq. (B2):

d

dt

∫
Rα

ψαdV =
∫

Rα

∂ψα

∂t
dV +

∫
�

ψαnαβ · v dA

+
∫

Sα

ψαnα · uαdA, (B3)

d

dt

∫
Rβ

ψβdV =
∫

Rβ

∂ψβ

∂t
dV +

∫
�

ψβnβα · v dA

+
∫

Sβ

ψβnβ · uβdA, (B4)

where uα and uβ are the velocities of Sα and Sβ , respectively,
and v is the velocity of �. By the divergence theorem, we
additionally have the identities∫

Rα

∇ · (uαψα )dV =
∫

�

ψαnαβ · uαdA +
∫

Sα

ψαnα · uαdA,

(B5)∫
Rβ

∇ · (uβψβ )dV =
∫

�

ψβnβα · uβdA +
∫

Sβ

ψβnβ · uβdA.

(B6)

Note that, due to the absence of elastic deformation and the
inclusion of rigid-body motion, ∇ · uα ≡ 0 and ∇ · uβ ≡ 0.
Combining Eqs. (B3)–(B6), we obtain

d

dt

∫
Rα

ψαdV =
∫

Rα

Dψα

Dt
dV +

∫
�

ψαnαβ · (v − uα )dA,

(B7)
d

dt

∫
Rβ

ψβdV =
∫

Rβ

Dψβ

Dt
dV +

∫
�

ψβnβα · (v − uβ )dA,

(B8)

where Dψα/Dt = ∂ψα/∂t + uα · ∇ψα and Dψβ/Dt =
∂ψβ/∂t + uβ · ∇ψβ are the material derivatives of ψα and
ψβ in the moving reference of the corresponding grain. As
we have assumed that � is both uniform and planar,

d

dt

∫
�

ψ�dA =
∫

�

∂ψ�

∂t
dA. (B9)

Inserting Eqs. (B7)–(B9) into (B2), we obtain

d�

dt
=

∫
Rα

Dψα

Dt
dV +

∫
Rβ

Dψβ

Dt
dV +

∫
�

∂ψ�

∂t
dA

+
∫

�

nαβ · �ψ (v − u)�dA. (B10)

This previous equation may be further simplified, yielding the
final overall transport law for �:

d�

dt
=

∫
Rα

Dψα

Dt
dV +

∫
Rβ

Dψβ

Dt
dV +

∫
�

∂ψ�

∂t
dA

+
∫

�

�ψ�nαβ · (v − 〈u〉)dA −
∫

�

〈ψ〉nαβ · �u�dA.

(B11)

APPENDIX C: BALANCE CONDITIONS AT SOLID-SOLID
INTERFACES

Here, we derive the balance conditions associated with the
moving boundary between two grains in Sec. II B, following
an approach similar to Gurtin and Voorhees [51] and consis-
tent with Appendixes A and B. The total number of atoms NA

in the system is

NA = Nα
A + Nβ

A + N�
A =

∫
Rα

ρα
A dV +

∫
Rβ

ρ
β
A dV +

∫
�

�AdA,

(C1)

where Nα
A , Nβ

A , and N�
A are the total atoms in the α grain,

β grain, and interface, respectively. Likewise, the number of
vacancies in the system NV is

NV = Nα
V + Nβ

V + N�
V =

∫
Rα

ρα
V dV +

∫
Rβ

ρ
β
V dV +

∫
�

�V dA,

(C2)

where Nα
V , Nβ

V , and N�
V are the total vacancies in the α grain,

β grain, and interface, respectively. Starting with atoms, the
variation in time of Eq. (C1) according to Eq. (B11) is

ṄA =
∫

Rα

Dρα
A

Dt
dV +

∫
Rβ

Dρ
β
A

Dt
dV +

∫
�

∂�A

∂t
dA

+
∫

�

�ρA�nαβ · (v − 〈u〉)dA −
∫

�

〈ρA〉nαβ · �u�dA.

(C3)

Inserting the continuity equations (12) and (13), and applying
the divergence theorem, the above expression becomes

ṄA = −
∫

�

nαβ · �Jb
A�dA −

∫
�

jT
A dA

+
∫

�

�ρA�nαβ · (v − 〈u〉)dA −
∫

�

〈ρA〉nαβ · �u�dA.

(C4)

Defining qα
A, qβ

A , and q�
A as the adsorptive fluxes that add atoms

to each region, we additionally have the conditions

Ṅα
A =

∫
�

qα
AdA =

∫
�

[−nαβ · Jα
A + ρα

A nαβ · (v − uα )
]
dA,

(C5)
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Ṅβ
A =

∫
�

qβ
AdA =

∫
�

[
nαβ · Jβ

A − ρ
β
A nαβ · (v − uβ )

]
dA,

(C6)

ṄGB
A =

∫
�

q�
A dA = −

∫
�

jT
A dA, (C7)

where the expressions after the second equality arise from ap-
plying Eqs. (B7)–(B9) to Nα

A , Nβ
A , and N�

A , and then inserting
the associated continuity equations and employing the diver-
gence theorem. If we localize the integrals to the interface,
we obtain the one-sided interface conditions for atoms in each
region:

qα
A = −nαβ · Jα

A + ρα
A nαβ · (v − uα ), (C8)

qβ
A = nαβ · Jβ

A − ρ
β
A nαβ · (v − uβ ), (C9)

q�
A = − jT

A . (C10)

The system is assumed to be closed and isolated, and therefore
the atoms are again conserved such that

0 = qα
A+ qβ

A + q�
A = −nαβ · �Jb

A� − jT
A + �ρA�nαβ · (v− 〈u〉)

− 〈ρA〉nαβ · �u� (C11)

are the overall conditions dictating the mass balance of atoms.

The derivation of the interface conditions for vacancies is
largely identical to the interface conditions for atoms. There-
fore, we eventually obtain the one-sided interface conditions

qα
V = −nαβ · Jα

V + ρα
V nαβ · (v − uα ), (C12)

qβ
V = nαβ · Jβ

V − ρ
β
V nαβ · (v − uβ ), (C13)

q�
V = − jT

V , (C14)

where qα
V , qβ

V , and q�
V are the scalar interfacial fluxes of vacan-

cies in each region. As before, vacancies are not necessarily
conserved, leading to the overall balance conditions

H�
V = qα

V + qβ
V + q�

V = −nαβ · �
Jb

V

� − jT
V

+ �ρV �nαβ · (v − 〈u〉)

− 〈ρV 〉nαβ · �u�, (C15)

where H�
V is the production rate of vacancies in the vicinity of

the interface, which is positive when vacancies are generated
and negative when vacancies are annihilated. Again, we have
assumed fixed ρ0 and �0 with a network lattice in each grain,
such that q�

A + q�
V = 0, and the combination of Eqs. (C11)

and (C15) yields

H�
V = �ρ0�nαβ · (v − 〈u〉) − 〈ρ0〉nαβ · �u� (C16)

must be satisfied. Thus, as at the free surface, H�
V is related to

motion in the system: at a grain boundary, the rate at which the
system dilates or contracts can only be nonzero if vacancies
are produced or destroyed.
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