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Vibrations and transitions across barrier of strained nanoribbons at finite temperature
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Crystalline sheets (e.g., graphene and transition metal dichalcogenides) liberated from a substrate are a
paradigm for materials at criticality, because flexural phonons can fluctuate into the third dimension. Although
studies of static critical behaviors (e.g., the scale-dependent elastic constants) are plentiful, investigations of
dynamics remain limited. Here, we use molecular dynamics to study the time dependence of the midpoint
(the height center of mass) of doubly clamped nanoribbons, as prototypical graphene resonators, under a wide
range of temperature and strain conditions. By treating the ribbon midpoint as a Brownian particle confined
to a nonlinear potential (which assumes a double-well shape beyond the buckling transition), we formulate an
effective theory describing the ribbon’s transition rate across the two wells and its oscillations inside a given well.
We find that, for nanoribbbons compressed above the Euler buckling point and thermalized above a temperature
at which the nonlinear effects due to thermal fluctuations become significant, the exponential term (the ratio
between energy barrier and temperature) depends only on the geometry but not the temperature, unlike the
usual Arrhenius behavior. Moreover, we find that the natural oscillation time for small strain shows a nontrivial
scaling τo ∼ L z

0 T −η/4, with L0 being the ribbon length, z = 2 − η/2 being the dynamic critical exponent, η = 0.8
being the scaling exponent describing scale-dependent elastic constants, and T being the temperature. These
unusual scale- and temperature-dependent dynamics thus exhibit dynamic criticality and could be exploited in
the development of graphene-based nanoactuators.
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I. INTRODUCTION

In the last decade, there has been growing interest in utiliz-
ing mechanical instabilities in thin materials to design smart
materials with desired functionalities, from grasping [1,2] and
shape morphing [3,4] to locomotion [5,6]. Using membranes,
such as thin sheets, as a building block (say an oscillator) for
soft-robotic applications is appealing because thin sheets are
flexible and can be controlled with minimal and simple actu-
ation. The buckling instability, which sets in for sufficiently
large Föppl-von Kármán number vK = YA

κ
, where Y is the 2D

Young’s modulus, A is a characteristic ribbon area, and κ the
bending rigidity, is an important mechanism for such actua-
tion. This simple principle has been successfully applied to a
wide range of materials and system sizes, ranging from meter-
sized satellites to nanoactuators [1,2,5–10]. Very recently,
there has been success in applying instability mechanisms
to control actuator movements in low-noise environment, for
example, in a centimeter-sized buckling-sheet oscillator [5,6].
It remains to be seen, however, if similar principles apply in
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a more noisy environment with, for example, strong thermal
fluctuations.

The mechanical response and energy dissipation of micro-
and nanoscale oscillators have long been studied [11,12].
Graphene and other 2D-materials-based nanoresonators, com-
monly in a double-clamped geometry, have been studied
extensively. They exhibit remarkable properties compared to
their bulk counterparts, including tunability over a wide fre-
quency range, kilo- to terahertz, and a very high quality factor
[13–21]. Exciting though these features are, precise control
of the thermal dynamics of these atomically thin materials
remains a challenge and is crucial for building, say, soft robots
[5,6]. Nevertheless, nature has shown us that micro- to nano-
sized biological robots, such as kinesins and other molecular
motors, do exist at biologically relevant temperatures.

One of the main challenges in building 2D-materials-based
robots or actuators is that height corrugations due to ther-
mal fluctuations [22–24], impurities [25–27], or quenched
disorder [28], alter the mechanics significantly at large
distances—similar to how a wrinkled paper sheet can bear its
own weight while a pristine sheet sags. Indeed, the bending
rigidity of a micron-sized graphene ribbon has been observed
experimentally to exhibit a striking ∼ 4000-fold increase
at room temperature relative to its zero-temperature value,
demonstrating the nontrivial mechanics of nanomaterials [29].
Because the mechanical properties are scale dependent, which
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may complicate dynamics, scaling up a micron-sized robot
based on graphene nanoribbons or nanotubes requires unique
design principles. Moreover, while fundamental studies of
electronic, optical, and mechanical properties of graphene and
other 2D materials are numerous [19,30–33], there is much
less work focusing on the dynamical behavior of the collective
atomic motions, e.g., membrane oscillations [34,35], and the
dynamical critical exponents that relate timescales to length
scales.

As mechanical properties play an important role in deter-
mining the dynamics, such as underdamped or overdamped
oscillations, we develop here a framework, motivated by ex-
tensive molecular dynamics (MD) simulations, to analyze
the dynamics of nanoribbons over a wide range of temper-
atures and strains. We focus specifically on doubly clamped
ribbons as one of the most common geometries for nano-
electromechanical systems. In contrast to recent work [36], in
which thermal effects are neglected while designing clamped
resonators, we propose a simple geometric tunability that ex-
ploits thermal fluctuations as a means of studying anharmonic
effects and dynamics.

We will demonstrate that the dynamics of nanoribbons
has two distinct behaviors at and above the temperature at
which the thermal renormalization of elastic constants sets
in. In Sec. II, we introduce a simple computational model of
nanoribbons mimicking 2D materials such as graphene. We
first show how the height fluctuations change with strain in
Sec. III, demonstrating the scale-dependent mechanics with
simulations. In Sec. IV, we propose an effective free energy
of the strained nanoribbon and present MD results of the
motion of nanoribbons under various strain conditions. We
then develop a phenomenological model treating the midpoint
of a ribbon as a Brownian particle with damping confined
in a nonlinear potential with both single and double wells
to understand the dynamics of nanoribbons under compres-
sion (Sec. V) and stretching (Sec. VII). In each respective
section, we present MD simulations checking our theoretical
predictions.

We find that the escape time of the midpoint, which charac-
terizes the inverse of the ribbon flipping rate, of a compressed
ribbon at sufficiently high temperatures is approximately tem-
perature independent and solely governed by the geometry,
unlike the usual Arrhenius behavior. At sufficiently high
temperatures, where renormalization becomes important, the
characteristic escape time scales with system size as τp ∼
L 4−η

0 , in the high-damping regime, and independent of system
size in the low-damping regime, with η ≈ 0.8 the exponent
controlling the scale-dependent bending rigidity and L0 the
ribbon length. For a slightly stretched or relaxed ribbon, we
find that the natural oscillation time (oscillation time inside a
minima) scales as τo ∼ L(2−η/2)

0 T −η/4, which has no analog in
standard mechanical resonators. In the language of dynamic
critical phenomena [37], we have a dynamic critical exponent
z = 2 − η/2 for relaxed ribbons, and z = 1 for ribbon under
tension, consistent with Van Hove, with no singularities in the
transport coefficients.

We conclude by discussing future prospects, including fur-
ther investigation of the connection between the dynamical
critical exponent z and the static exponent η using finite-size
scaling, as well as incorporating an attractive substrate in

the numerical simulations to capture energy losses present in
certain experiments.

II. THE MODEL

Similar to a number of previous studies [24,38–41], we
simulate ribbons discretized on a equilateral triangular lattice.
The ribbon is comprised of Nx × Ny = 100 × 25 nodes with
rest (zero-temperature) length L0 ∼ 100a and width W0 ∼
20a. To model a doubly clamped ribbon, the nodes in the
two rows at each end are held fixed. We use a standard
coarse-grained model [38] to compute the total energy of the
ribbon. Each node is connected by a harmonic spring with a
rest length of a. The bending energy is computed using the
dihedral interaction between the normals. The total energy is
given by

E = k

2

∑
〈i, j〉

||ri − r j | − a|2 + κ̂
∑
〈α,β〉

(1 − nα · nβ ), (1)

where k is the harmonic spring constant and κ̂ is the micro-
scopic bending rigidity. The first sum is over neighboring
nodes and the second sum is over neighboring triangles.
The continuum limit yields κ = √

3κ̂/2 for the bare (zero-
temperature) continuum bending rigidity and Y = √

2k/3
for the bare continuum 2D Young’s modulus [38]. Fol-
lowing [24,40], we set k = 1440κ̂/a2 so the Föppl-von
Kármán number vK = YW0L0/κ ∼ 106 is experimentally re-
alistic. This coarse-grained model has been widely used to
model atomically thin materials such as graphene and MoS2

and successfully captures mechanical and thermal response
[24,39,41–44] consistent with those found in simulations with
more sophisticated atomistic potentials [22,26,45–49].

The MD simulations are performed with the HOOMD-blue
package [50] within the NV T ensemble (fixed number of
particles N , volume V , and temperature T ) with an integration
time step of dt = 0.001τMD, where τMD =

√
MD2/E is the

MD unit of time and M,D, E are the fundamental units of
mass, distance, and energy. For graphene parameters, τMD ∼
1 ps. Temperature is controlled every τT = 0.2τMD via the
Nosé-Hoover thermostat [51]. For systems clamped at com-
pressive strains below critical buckling, we run a total of 107

steps and discard 50% of the data for thermal equilibration.
Above the critical buckling, the relaxation time increases sig-
nificantly, and therefore we run a total of 108 steps and discard
the first 20% of the data for thermal equilibration. Snapshots
are taken every 10 000 steps or, equivalently, 10τMD. HOOMD
scripts and analysis codes used in this paper are available
at Ref. [52] . All simulation data will be reported in natural
MD units D = M = 1, kBT in units of κ̂ , and time in τMD.
Temperature is reported as the ratio of the ribbon width W0 to

the thermal length [23] �th =
√

64π3κ2
0

3kBT Y0
, as explained below.

To study ribbon dynamics over a wide temperature range,
we vary the ratio of temperature to microscopic bending
rigidity kBT /κ̂ over a wide range, from 10−1 to 10−5, while
keeping k = 1440κ̂/a2 and the preferred bond length con-
stant at a = 1. Using graphene as a prototypical 2D material
with κ̂ ∼ 1eV, the high-temperature regime studied here is on
the order of 1000 K, which can be achieved in experiments
[53]. Alternatively, one can soften the microscopic bending
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rigidity by removing atoms (e.g., by introducing kirigami cuts
[40,47,54]) to lower the required temperature for observing
the renormalization effects. Strains ε are applied by clamping
the two ends of the ribbon at different lengths Lε . We use
nonperiodic boundary conditions in both x and y directions.
The nonclamped edges are free while the nodes at the clamped
ends (x = ±L/2) are fixed. Thermal fluctuations lead to a
reduced projected length of the unstrained ribbon, Lrelax, rel-
ative to the unstrained length at zero temperature L0. The
relaxed length Lrelax is determined by the vanishing of the
average longitudinal stress 〈σxx〉 [41]. The compressive strain
ε = (1 − Lε/Lrelax ) is measured relative to the unstrained rib-
bon with clamping at Lrelax. We performed simulations of
ribbons clamped at different lengths and plotted the strain-
strain curves to locate the zero-strain state (ε = 0).

III. HEIGHT PROFILE OF DEFORMED RIBBONS

Before discussing the dynamics of thermalized nanorib-
bons, we first probe the effects of strains on static properties.
To lowest order in the height field h(x, y), in-plane dis-
placement u(x, y) and their gradients, the elastic energy of
a membrane under a spatially uniform uniaxial compression
along the x direction, σxx, can be written in the continuum
limit as [22,23]

G[u, h] = 1

2

∫
dx dy

[
κ
(∇2h

)2 + 2μu2
i j + λu2

kk

]

−
∫

dx dy σxx(∂xux ), (2)

where ui j ≈ (∂iu j + ∂ jui )/2 + ∂ih∂ jh is the nonlinear strain
tensor, κ is the bare continuum bending rigidity, and μ and λ

are the Lamé coefficients. By tracing out the in-plane degrees
of freedom, the effective free energy can be written in terms
of out-of-plane flexural phonon deformation field h(x, y) [23],

Geff [h] =
∫

dx dy

[
κ

2

(∇2h
)2 + Y

8

(
PT

i j (∂ih)(∂ jh)
)2

]

−
∫

dx dyσxx(∂xh)2, (3)

where Y = 4μ(μ + λ)/(2μ + λ) is the bare 2D Young’s
modulus and PT

i j = δi j − ∂i∂ j/∇2 is the transverse projection
operator. Within the harmonic approximation, the spectrum
of the height-height correlation function of a tensionless sheet
is 〈|h(q)|2〉 = kBT/(A0κq4), where A0 = L0 × W0 is the un-
deformed sheet area and h(q) ≡ 1

A0

∫
dx dy e−(qx x+qy y)h(x, y)

is the Fourier transform of h(x, y). At low temperature
(kBT/κ 	 1), a perturbative calculation shows that the bend-
ing rigidity is renormalized by thermal fluctuations in the form
κ (q) = κ0 + Y0kBT

κ
I (q), where q is the wave vector and I (q) is

a momentum integral that scales as q−2 for q → 0 [55]. The
relative perturbative correction is of order one above a funda-
mental length scale �th ∼ √

κ/(Y kBT ) [55,56]. At and above
�th, thermal fluctuations lead to scale-dependent mechanical
moduli and nontrivial departures from the expected zero-
temperature mechanical behavior. Within a renormalization
group treatment, the spectrum of the height-height correlation
function of a ribbon under uniaxial compression is given by

[23]

〈|h(q)|2〉 = kBT

A0
(
κR(q)q4 − σxxq2

x

) , (4)

where σxx � YRε is the positive compressive stress. The
scale-dependent renormalized bending rigidity, κR(q), and 2D
Young’s modulus, YR(q), are given by [23,55]

κR(q) ∼
{
κ if q � qth

κ (q/qth )−η if q 	 qth,
(5)

YR(q) ∼
{

Y if q � qth

Y (q/qth )ηu if q 	 qth,
(6)

where η and ηu are scaling exponents and qth ≡ 2π/�th =√
3kBT Y0

16πκ2
0

is the wave vector below which renormalization

becomes important [56]. Theoretical estimates [56–58] of
the scaling exponents give η ≈ 0.8 − 0.85 and ηu ≈ 0.2 −
0.4, and have been confirmed by height-height correlation
measurements in Monte Carlo [22,39,45,59] and in MD sim-
ulations [24,26,60], as well as more recently by stress-strain
curve measurements [41,43].

Equation (4) indicates that height fluctuations are sup-
pressed when stretching (σxx < 0) is applied. For suffi-
ciently large stretching, |ε| � κR/(YRq2), the q−2 behavior
in 〈|h(q)|2〉 should dominate. Equivalently, for small wave
vectors, q 	 √|ε|Y (q)/κR(q), 〈|h(q)|2〉 should switch from a
q−(4−η) or q−4 dependence to a q−2 falloff. Figure 1 shows
the spectrum of the height-height correlation 〈|h(q)|2〉 ob-
tained from MD simulations as a function of wave vector q
for five different strains, both compressional ε > 0 and ex-
tensional ε < 0, ε = [−0.3%,−0.2%, 0%,+0.2%,+0.6%].
Here we show a system at a sufficiently high temperature,
kBT/κ̂ = 0.05 (W0/�th = 8.5), where thermal fluctuations are
significant. The thermalized critical Euler buckling strain for
this particular system is εc = 0.05%. In the unstrained case,
we see that 〈|h(q)|2〉 ∼ q−(4−η), with η ≈ 0.8, as expected
[23,43], for a wide range of q. For stretched ribbons, in con-
trast, 〈|h(q)|2〉 scales more like q−2. This is better seen in
the plot of q2〈|h(q)|2〉 in the inset of Fig. 1. While stretch-
ing (ε < 0) suppresses height fluctuations, sufficiently large
compression drives buckling and, consequently, 〈|h(q)|2〉 of a
compressed ribbon is elevated relative to the unstrained case.
These strain-induced modifications of static properties have
also been observed in the normal-normal correlation function
of graphene under isotropic deformation [22].

IV. MEAN-FIELD APPROXIMATION TO RIBBON
MIDPOINT ENERGETICS

We turn now to a simplified model of the dynamics of the
ribbon center of mass, which is related to the fundamental
mode of a doubly clamped ribbon. We simplify by coarse-
graining over the short-scale fluctuations along the x and
y directions. Specifically, we assume that the height profile
is constant along the y direction in Fig. 2(b). For a ribbon
of width W0, this approach effectively treats the ribbon as
a one-dimensional object but with modified W0-dependent
elastic constants. By integrating out the in-plane phonons, the
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FIG. 1. The height fluctuations 〈|h(q)|2〉 as a function of
wave vector q for a ribbon clamped at different strains,
both extensional (ε < 0) and compressional (ε > 0),
ε = [−0.3%, −0.2%, 0%, +0.2%, +0.6%]. h(q) is obtained
from the Fourier transform h(q) = 1

A0

∫
ei(qx x+qy y)h(x, y) dx dy,

where qx, qy are wave vectors and A0 = W0 × L0 is the area of
the unstrained (rest) ribbon at zero temperature. We use a finite
number of q modes ranging from |qmin| = π/L to |qmax| = 2π/a,
with an increment of �q = π/L, and set qy = 0. Temperature is
set at kBT = 0.05κ̂ , which corresponds to W0/�th = 8.5, so thermal
renormalizations are strong. For stretched ribbons (ε < 0), 〈|h(q)|2〉
is proportional to q−2 for a wide range of q. For unstrained (ε = 0)
and compressed ribbons (ε > εc, above the thermalized Euler
buckling threshold), 〈|h(q)|2〉 scales like q−(4−η) with η ≈ 0.8. The
black dashed line and the black dotted-dashed line show q−(4−η) and
q−2 scaling, respectively. The inset shows q2〈|h(q)|2〉 versus q to
more clearly bring out the q−2 dependence of stretched ribbons.

effective Gibbs free energy becomes [41]

Geff [h] = κW0

2

∫ Lε/2

−Lε/2
dx

(
d2h

dx2

)2

+ YW0

2Lε

[∫ Lε/2

−Lε/2
dx

1

2

(
dh

dx

)2
]2

− F

2

∫ Lε/2

−Lε/2
dx

(
dh

dx

)2

dx + Gpre[�L],

(7)

where Lε is the projected ribbon length corresponding to the
strain ε and Gpre is the total prestress elastic energy stored
during compression before buckling. Gpre is independent of
the ribbon height profile and can be dropped. Within the
mean-field approximation, the ribbon height is assumed to
be smooth over scales larger than the thermal length �th and
double-clamped boundary condition is implemented. These
two conditions can be approximated by a profile h(x) =
hM
2 [1 + cos( 2πx

Lε
)]. Upon using this height as an ansatz, we

obtain the effective Gibbs free energy from Eq. (7) [41],

Geff [hM] = π2YW0

4Lε

(εc − ε)h2
M + π4YW0

32L3
ε

h4
M, (8)

FIG. 2. (a) Schematics of the mean-field Gibbs free energy Geff

as a function of height center of mass, hCM, for a ribbon under
stretched, unstrained, and buckled conditions. In each well, the center

of mass oscillates with a period of τo = 2π

√
M

keff , where M is the

ribbon mass, keff = d2Geff
dh2

CM
|hCM=h∗

CM
is the effective spring constant,

and h∗
CM is the hCM, where Geff is at a minimum. (b) Representative

configurations of a ribbon corresponding to three different com-
pressive strains: ε = −0.4% (stretched), ε = 0% (unstrained), and
ε = +0.6% (buckled). Recall that the critical strain for compressive
buckling under these conditions is quite small, εc = 0.05%. The
color represents the z position of a node scaled to the range −2a
to +2a. Positions are visualized using OVITO software [61].

where εc = 4π2κ
Y L2

εc
is the critical strain for Euler buckling

and Lεc the associated projected length. Although this en-
ergy resembles the Landau theory of a critical point, note
that εc (the analog of a critical temperature) depends on
the system size. For ε > εc, there are two stable minima

at hM = ± 2Lεc
π

√
ε − 4κπ2

Y L2
εc

and one unstable point at hM = 0,

whereas for ε � εc there is one stable minimum at hM = 0
[see Fig. 2(a)]. To relate this result to simulations, we use the
center-of-mass midpoint hCM = 1

N

∑
i zi as a measure of the

aggregate collective motion of all nodes. This simplification
effectively treats the ribbon as a Brownian particle confined
to a nonlinear potential. Henceforth, we will write Eq. (8)
and other derived quantities in terms of hCM using h2

CM ≡
( 1

Lε

∫ Lε/2
−Lε/2 h dx)2 = 1

4 h2
M [41].

Equation (8) reveals that when ε 	 εc, the nonlinearity can
be neglected, and for small height deflections, hCM is expected
to oscillate in a harmonic potential with a period τo = 2π/ωo,
where we expect ωo is related to the total ribbon mass M
by ωo =

√
keff/M and keff = d2Geff

dh2
CM

|hCM=h∗
CM

, where h∗
CM is the

minimum shown on the right side of Fig. 2(a). From MD sim-
ulations, we indeed find that the hCM of a ribbon stretched at
ε = [−0.2%,−0.3%] oscillates with a sinusoidallike function
around zero, as shown in Fig. 3(a). For the unstrained case,
shown in Fig. 3(b), the oscillation appears to have a larger
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FIG. 3. Midpoint trajectory hCM(t ) of a ribbon under
(a) stretched ε = [−0.3%,−0.2%], (b) unstrained ε = 0%,
and (c) buckled ε = [+0.2%,+0.6%] conditions at a fixed
W0/�th = 8.5 (kBT = 0.05κ̂). The time t is in units of the MD time
unit τMD. For clarity, the time domain is chosen differently in (c).
For stretched ribbons (a), hCM oscillates rapidly about the zero plane
with small amplitude. For unstrained ribbons (b), the oscillation
period increases and is irregular. Well beyond the thermalized
Euler buckling point, ribbons stay buckled either above or below
the zero plane for many oscillations before switching to the other
local minimum (up to down state and vice versa). In (c), we see a
dramatic increase in residence time with increasing compressive
strain. In a local minimum, hCM fluctuates with a shorter period
and with a smaller amplitude relative to the transition (fluctuation
over a barrier) dynamics, indicating that hCM oscillates inside the
local minimum for many periods before escaping over the potential
barrier.

amplitude with a longer and irregular period compared to that
of the stretched case.

For large compressions, ε = [+0.2%,+0.6%], well above
the critical buckling threshold εc = 0.05% of this particular
system, the ribbon buckles out of plane with an amplitude
much larger than the unstrained and stretched cases [see
Fig. 2(b)]. It can be seen from Fig. 3(c) that hCM(t ) of a
buckled ribbon behaves like a two level system, and stays
buckled either above or below the plane of zero-height with
an amplitude much larger than the stretched/unstrained case
for a long period of time before it flips to the opposite side
(moves to the other minima of a double-well potential). Sim-
ilar thermally assisted barrier crossings are also observed in
single-clamped ribbons [62]. This characteristic time, which

we will call the escape time (or residence time) τe, in-
creases with increasing compression [see Fig. 3(c)]. Note also
that when the ribbon stays within a local minimum, it oscil-
lates with a much shorter timescale τo than the escape time τe,
and with a smaller fluctuation amplitude (∼0.5a) relative to
the buckling amplitude (∼2a).

To summarize, the ribbon oscillates around a single mini-
mum under stretched and unstrained conditions. Beyond the
buckling point, however, the ribbon switches between two
minima with an escape time τe much larger than the oscillation
period inside the wells. By building on these observations
and on our mean-field Gibbs free energy Eq. (8), we will
now develop a framework that treats the ribbon midpoint as
a Brownian particle confined in a double-well potential of
which the strength of the quadratic term is controlled by the
external strain (schematically shown in Fig. 2). In the next
two sections, we develop a phenomenological theory of the
dynamics in the limit of large compression and large stretch-
ing energy to explain these observations.

V. COMPRESSED RIBBON DYNAMICS

In this section, we focus on the dynamics of ribbons under
compression above the Euler buckling point. We model the
transition from the buckled up state to the down state as a rare
event of a transition process over some energy barrier Ebarrier.
We begin by discussing the thermally activated transition pro-
cess of a system in a double-well potential. We then compare
the MD results with the theoretical predictions [63,64].

A. Escape time estimated from transition state theory

The problem of escaping a barrier in a noisy environment,
such as a thermal bath, has been studied extensively since
the late 1800s, when the well-known Arrhenius form for the
escape rate was first formulated based on experimental data
[65],

R = ν0e−Ea/kBT , (9)

where ν0 is a prefactor related to an escape frequency and
Ea denotes the activation energy. Soon after, several theories,
summarized in Ref. [64], were developed, including Kramers’
seminal work [66] on incorporating coupling of particles to
the heath bath (frictional force), which is missing in the
Arrhenius formula. Kramers used a microscopic model of,
say, a particle in a nonlinear double-well potential governed
by Langevin equations, to formulate the transition rate. The
transition rate in the intermediate-to-high damping regime is
given by [63,66]

R =
[(

γ 2

4M2
+ ω2

b

)1/2

− γ

2M

]
ωo

2πωb
exp

[
−Ebarrier

kBT

]
,

(10)
where Ebarrier is the energy barrier, γ is the damping coeffi-
cient, ωo ≡ (U ′′(xmin)/M )1/2 is the angular frequency in the
metastable minimum, ωb ≡ (|U ′′(xb)|/M )1/2 is the angular
frequency at the transition (unstable local maximum), M is
the particle mass, and U ′′(x) is the second derivative of a
conservative potential U (x). Given that the dynamics of the
collective motion, characterized by hCM(t ), of the buckled
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ribbon and the effective free energy, with both harmonic and
quartic terms, is similar to escape over a barrier, we will first
calculate the energy barrier and then discuss the behavior in
different temperature regimes.

Since we work with relatively small strains, we assume
a compressible stress σxx � Y ε. We define a reduced ad-
ditional compressive strain relative to critical buckling as
δ ≡ ε−εc

εc
. In our previous work, we found that the Gibbs

free energy can be used to predict thermalized Euler buck-
ling provided that we use the thermally renormalized elastic
constants YR = Y (W0/�th )−ηu and κR = κ (W0/�th )η when-
ever W0/�th � 1 [41]. Following the same approach, we
use renormalized elastic constants to calculate Ebarrier, the
temperature-dependent critical buckling εc = 4π2κR/(YRL2

εc
),

and the maximum height hM = 2Lεc
π

√
δ × εc. By inserting

these renormalized values into Eq. (10), we obtain the escape
time τe ≡ R−1:

τe = τp exp

[
8π4W0κ

2
Rδ2

YRL3
εc

kBT

]
. (11)

Here we introduce a prefactor timescale τp = {[( γ 2

4M2 +
ω2

b )1/2 − γ

2M ] ωo
2πωb

}−1, which is the inverse of the prefac-
tor in Eq. (10). Note that to ensure infrequent transitions,
Ebarrier/kBT � 1 must be satisfied so we obtain a separation
of timescale condition τe ∝ exp[Ebarrier/kBT ] � τo, τb, with
τo ≡ 2π/ωo and τb ≡ 2π/ωb, being the characteristic times
at the bottom of the well and at the saddle point, respectively.
On using the energy functional with the renormalized elastic
parameters [Eqs. (5), (6), and (8)] we can directly calculate
the renormalized τo and τb, in terms of the areal mass density
ρ, the ribbon length and the renormalized bending rigidity κR,

τR
o = L2

0

√
ρ

4π2κRδ
, τR

b = L2
0

√
ρ

2π2κRδ
. (12)

Note that both these times diverge as δ → 0. Here we use
Lε ≈ L0, as we are working with systems with large Föppl-
von Kármán number vK number, and M = ρW0L0. Our
numerical simulations confirm that Lεc is approximately L0

and weakly dependent on T as long as L0 is smaller than
the persistence length �p = 2κW0

kBT (see Appendix B). Note that
when �p 	 L0, the ribbon will behave like a 1D polymer [23].
In the low-temperature regime κR � κ , we recover the L2

0
dependence of the oscillation period τo, a well-known result
for doubly clamped beams [67,68].

Upon inserting κR = κ (W0/�th )η into Eq. (12) to de-
scribe the important intermediate temperature regime, we find
τR

o , τR
b ∝ Lz

0 with z = 2 − η/2. To the best of our knowledge,
these deviations in the exponent away from the classical re-
sult have not been systematically investigated in experiments,
τo ∝ L2

0 scaling in Ref. [13] and τo ∝ L0 in Ref. [15]—
conclusions which bracket our result z = 2 − η/2 � 1.6,
presumably due to relatively larger error bars–nor in numer-
ical simulations. We shall investigate the exponent z and the
power-law scaling with T numerically in Sec. VII.

B. Escape time in different temperature regimes

We first focus on the exponential term, which dominates
the behavior for large δ. For convenience in our analysis, we

write the term involving κ2/Y in terms of �2
th. In the classical

low-temperature regime �th � W0, we use the bare elastic
constants to obtain

τe = τp exp

[
3πδ2

8

(
W0

Lεc

)3(
�th

W0

)2
]
. (13)

In this regime, the ratio between the energy barrier and the
thermal energy depends on the cube of the aspect ratio W0/Lεc

and the square of �th/W0, yielding the usual Arrhenius-like
behavior τe ∝ exp[Ebarrier/kBT ].

In the high-temperature regime, however, we use the renor-
malized elastic constants κ = κ (W0/�th)η, Y = Y (W0/�th)−ηu ,
as well as the scaling relation 2η + ηu = 2 [57], to obtain the
escape time:

τe = τp exp

[
3πδ2

8

(
W0

Lεc

)3
]
. (14)

Remarkably, and unlike the usual Arrhenius behavior, the
exponential term in this case does not depend on temperature
but instead depends solely on the geometry, specifically as the
cube of the aspect ratio.

Now, according to Eq. (10), the prefactor time τp depends
on the temperature and strain: τp ≈ 2πγ

Mωoωb
for γ /M � ωb and

τp ≈ M
γ

kBT
Ebarrier

for γ /M 	 ωb. (Note that one cannot simply
take the limit γ /M 	 ωb in Eq. (10) to get the very low
damping regime result. Kramers used a different formulation
for this very low damping case [63,64,66].)

Turning now to the scaling with system size, temperature,
and relative compression, we find that in the high-damping
regime ( γ

M � ωb), the prefactor scales as

τp ∝
{

L 4
0 δ−1 if W0/�th 	 1

L 4−η

0 δ−1T −η/2 ∼ L 3.2
0 δ−1T −0.4 if W0/�th � 1.

(15)

Here we use η ≈ 0.8 and assume some fixed aspect ratio
W0/L0, with W0 � L0, and a fixed ribbon density. With the
same assumptions, we can obtain the prefactor timescale τp ≈
M
γ

kBT
Ebarrier

at very low damping:

τp ∝
{

L 2
0 δ−2T if W0/�th 	 1

δ −2 if W0/�th � 1.
(16)

Thus, apart from the case of low damping and weak (sub-
dominant) renormalization, τp shows either weak or no
temperature-dependent behavior.

Note that we expect Kramers result to be valid when the
energy barrier is larger than the thermal energy kBT . By taking
the log of the escape time τe [either Eq. (14) or Eq. (13)],
we see that the δ2 term (from the energy barrier) dominates
the log δ term (from τp) for large δ. In the next section, we
assume that τp is independent of δ for fitting the extracted
escape time τe to either the high temperature result Eq. (14)
or the low-temperature result Eq. (13). Since the exponential
term dominates for large δ and τp is weakly dependent on T
for the set of parameters used in our simulations, our analysis
suggests that the rather intriguing result that the escape time
is controlled only by the geometry when W0/�th � 1. In the
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low-temperature regime, however, we recover the usual Ar-
rhenius behavior with geometry-dependent energy barrier.

VI. MOLECULAR DYNAMICS RESULTS
OF COMPRESSED RIBBONS

We now turn to MD data to test our thermally renormalized
stochastic model of a double well potential, beyond the buck-
ling transition. We will use relaxation times extracted from
the autocorrelation function τAC to approximate the escape
time τe. Specifically, we calculate the discrete autocorrelation
function of the average ribbon height hCM to quantify ribbon
dynamics,

AhCM (t j ) = 1

(n − j)σ 2

n− j∑
i=1

[hCM(ti + t j ) − μ][hCM(ti ) − μ],

(17)
where n is the number of observations in a single simulation
run. The time offset is t j = j × �t and the sum is over a set
of times ti = i × �t with i = 1, n − j. Here μ and σ 2 are the
mean and variance of hCM, respectively. In our simulation, we
choose �t = 10τMD. Given that successive jumps between the
up and down states occur at random intervals [see Fig. 3(c)],
we expect AhCM (t ) to decay exponentially in time for suffi-
ciently long time t ,

AhCM (t ) ∝ exp[−t/τAC], (18)

where τAC is the autocorrelation time. We average AhCM (t )
over ten independent runs and fit the data to an exponential
function to extract τAC. While in practice τAC may capture
more than escape-over-a-barrier dynamics (the longest relax-
ation time), we expect τAC will be dominated by the escape
time τe, provided we run our simulations long enough to
capture at least several rare flipping events; otherwise τAC will
be on the order of the short-scale relaxation time inside the
well. In Appendix C, we use a different phenomenological
theory to extract τe by filtering the up and down states; we
still conclude that τe robustly increases with compression and
temperature following Eqs. (13) and (14), at low and high
temperatures, respectively.

Figure 4(a) shows the rapid increase in τe with increas-
ing compression at a set of temperatures with W0/�th =
[24, 17, 12, 8.5, 0.3, 0.2]. At high temperatures (W0/�th > 5)
and sufficiently large δ2, we see that the slopes, the coeffi-
cients in the exponent, are close to 3π2

8 (W0
L0

)3. Remarkably,
this high-temperature result indeed indicates the temperature-
independent ratio of the activation energy to the thermal
energy discussed in the previous section. The slopes in the
low-temperature regime (W0/�th � 0.5), in contrast, increase
systematically as the temperature drops. These two very dif-
ferent behaviors are consistent with our earlier analyses based
on a thermally renormalized double-well potential for the
ribbon height. To further test our theoretical predictions, we
fit the high-temperature data (W0/�th > 5) to Eq. (14) and the
low-temperature data (W0/�th < 0.5) to Eq. (13) using only τp

as an adjustable fitting parameter. As discussed in the previous
section, here we assume that τp is independent of δ as the
exponential of δ2 dominates for large δ. By rescaling τe with
τp and δ2 with the appropriate temperature and geometrical

FIG. 4. (a) Semilog plot of average escape time, τe, in units of the

bare oscillation period at zero strain τo = L2
0

√
ρ

2π2κ
, as a function of

the square of the relative compression, δ2 ≡ ( ε−εc
εc

)2, at different tem-
peratures such that W0/�th = [24, 17, 12, 8.5, 0.3, 0.2]. Error bars
were calculated using the jackknife method [69]. For large enough
compression (δ2 � 50), so Ebarrier � kBT , and W0/�th > 5, we see
similar slopes approaching 3π

8 ( W0
L0

)3, shown as a black dashed line.
For small values of W0/�th < 0.5, in contrast, the slopes are higher.
(b) Rescaled escape time, ln(τe/τp), where τp is a fitted prefactor

time (inverse attempt frequency), as a function of 3πδ2

8 ( W0
Lεc

)3�[T ],

where we use �[T ] = 1 for W0/�th > 5 and �[T ] = (�th/W0 )2 for
W0/�th < 0.5. The black dashed-dotted line shows the y = x line, in-
dicating that the data, after appropriate rescaling, agree well with the
theoretical prediction. Note that in plot (b), τp is the only adjustable
fitting parameter. Inset shows a log-log plot of τp as a function
W0/�th.

terms, we are able to collapse all data onto a single curve, as
shown in Fig. 4(b).

The inset to Fig. 4(b) shows a log-log plot of the fitted
prefactor time τp as a function of W0/�th. We see that, apart
from the lowest temperatures, τp depends weakly on W0/�th.
Fitting only the four high temperature data points (W0/�th >

5) we find τp = constant × T 0.03. This suggests that our data
are better described by the low-damping case [see Eqs. (15)
and (16)]. Kalmykov and coworkers provided an exact so-
lution of the correlation time of a Brownian particle in a
double-well potential involving special functions [63,70]. The
approximate prefactor of Refs. [63,70], however, still scales as
1/Ebarrier ∝ δ−2, which is still the same as the Kramers’ very
low damping regime result. Our data in the small δ regime,
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however, do not show such behavior and we do not expect
our phenomenological model based on Kramers result would
work for Ebarrier 	 kBT . Although a more refined theoretical
treatment for the prefactor of the escape time of the center-of-
mass motion of a double-clamped ribbon is beyond the scope
of our current paper, we hope to investigate the geometrical
and temperature dependencies of this prefactor in the future.

VII. STRETCHED AND UNSTRAINED RIBBON

We now turn to the dynamics of a ribbon in the regime
away from the threshold compressive force needed to pro-
duce the Euler buckling transition, which includes both the
stretched and the unstrained cases. Again, we approximate the
center-of-mass dynamics of the ribbon as a Brownian particle
confined in a potential. We first discuss some key results,
such as the analytical solution to the positional autocorrelation
function within the Brownian particle approximation. The
complete derivations of the solution of a Brownian particle
in a harmonic potential can be found in Refs. [63,71], and for
completeness we provide key results in Appendix A.

In the limit of small deflection amplitude, and especially
in the large-stretching limit (so the curvature at the parabolic
minimum as a function of hCM is large), we can neglect the
fourth-order term in the potential, retaining only the harmonic
term. With this simplification, the equations of motions for the
ribbon midpoint become linear,

dhCM

dt
= v,

dv

dt
= − γ

M
v − ω2

ohCM + 1

M
ξ (t ), (19)

where ωo = (keff/M )1/2 is the natural frequency, keff =
2π2YRW0|ε−εc|

Lε
is the effective spring constant, M is the mass,

and γ is the damping coefficient. The random force ξ (t ) is a
Gaussian process with zero mean and δ-function concentrated
correlation function. One can solve the Langevin equations in
frequency space and obtain the autocorrelation function of
hCM by inverse Fourier transforming the spectral density of
the midpoint dynamics ShCM ∝ |hCM(ω)|2. The time autocor-
relation function of hCM for the model of Eq. (19) is given
by

AhCM (t ) = 〈hCM(t ′)hCM(t ′ + t )〉

= kBT

Mω2
o

e− γ

2M t

[
cos ωDt + γ

2MωD
sin ωDt

]
, (20)

where the natural frequency is renormalized by damping is
defined as ωD = √

ω2
o − γ 2/(4M2). Thus AhCM (t ) is an os-

cillating function with an exponential decay envelope. The
damping time τdamp ≡ 2M

γ
that appears in the exponential pref-

actor provides a phenomenological description of dissipation
in the system.

A. Molecular dynamics results

We now present measurements of time autocorrelation
function AhCM (t ) of hCM(t ) from the simulations of a dou-
bly clamped ribbon. Figure 5 shows the average AhCM after
thermodynamic equilibrium is reached as a function of time

FIG. 5. Autocorrelation of the midpoint AhCM as a function of
time t for (a) stretched, ε = −2%, (b) unstrained, ε = 0%, and
(c) compressed ribbon, ε = +2%. The last strain is above the buck-
ling threshold, εc = 0.05% for our parameter choices. Here the
system is thermalized at W0/�th = 8.5, so thermal renormalization
of the elastic parameters is important. The circles represent MD data
and the black line represents the fitted line. For the stretched and
unstrained cases, AhCM show oscillatory plus exponentially decaying
behavior, following Eq. (20). For the buckled case, in contrast, AhCM

shows only exponential decay.

t for stretched, unstrained, and compressed ribbons at one
representative temperature W0

�th
= 8.5 such that thermal fluc-

tuations renormalize the bending rigidity; similar results are
found for other parameter choices. For the stretched case AhCM

oscillates rapidly but decays rather slowly, whereas for the
unstrained case AhCM oscillates at a lower frequency but decays
much faster. When the ribbon is compressed well above the
critical buckling threshold, on the other hand, AhCM displays a
purely exponential decay. These findings are consistent with
the dynamics of hCM(t ) itself, shown earlier in Fig. 3.

We next calculate the ribbon resonant frequency ωo from
the parameters ωD and τdamp extracted by fitting the data
to Eq. (20). Figure 6(a) shows ωo/ωo as a function of the

relative compression δ = ε−εc
εc

, where ωo ≡ 1
L2

0

√
8π4κ

ρ
is the

bare natural frequency of the unstrained ribbon without ther-
mal fluctuations (T = 0, δ = −1). The increase of ωo with
increasing tension is consistent with experiments in graphene
resonators [13,15]. Note that, as expected, ωo/ωo � 1 for
the two lowest temperatures (W0/�th < 0.5). In contrast, at
high temperatures (W0/�th > 5), ωo increases relative to its
zero-temperature value, indicating a stiffening of the bending
rigidity. Based on the earlier analysis, we can use the predicted
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FIG. 6. (a) The average angular frequency ωo obtained from MD
simulations, normalized by its zero-temperature theoretical value

at zero strain ωo ≡ 1
L2

0

√
8π4κ

ρ
, as a function of δ = ε−εc

εc
. In the

low-temperature regime W0/�th < 0.5 and at zero strain (δ = −1),
ωo/ωo � 1. In contrast, in the high-temperature regime W0/�th >

5, ωo at zero strain appears to increase relative to its bare value.
(b) Renormalizing ωo with its thermally renormalized value ωR

o at
zero strain produces a better collapse, suggesting that the stiffening
in bending rigidity is reflected in the dynamics. Log of damping time
τdamp/τo (c) and quality factor Q = τdampωo/2 (d) as a function δ.
Both τdamp and Q grow with further stretching.

renormalized natural frequency at zero strain ωR
o � 1

L2
0

√
8π4κR

ρ

to rescale the data. Rescaling ωo with its renormalized value
ωR

o yields a better data collapse for not too large |δ|, as shown
in Fig. 6(b). This strategy provides an oscillation measure-
ment route to measuring the stiffening of bending rigidity, a
complementary approach to critical buckling measurements
[41,43].

Because τdamp also increases with increasing tension, the
quality factor of the oscillating ribbon Q = τdampωo/2 in-
creases with increasing tension. Our simulation data suggest
that energy dissipation is reduced for a stretched ribbon, con-
sistent with experimental results for double-clamped graphene
[13,15].

We also note that we employ the NVT ensemble with
Nosé-Hoover thermostat [51,72], which does not have a fixed
damping like Langevin dynamics simulations [73]. In the
NVT ensemble, a dynamical term, physically interpreted as
a friction, is changing during the approach to thermal equi-
libration. Once thermal equilibrium at a target temperature

is reached, the dynamical friction goes to a finite value and
its rate of change vanishes. Given our MD simulations setup,
the Brownian particle, embodied in our mean-field description
of a thermalized ribbon, is effectively coupled to a thermal
bath (thermostat). Consistent with theoretical and numerical
investigations of a beam coupled to Nosé-Hoover thermostat
by Louhghalam et al. [74] (see Appendix D), we anticipate
an effective damping to occur due to coupling between the
doubly clamped ribbon and the thermal bath. This predic-
tion of energy loss, associated with the damping term, is
consistent with our MD simulation results. We note that our
current investigation uses a fixed value of damping term fol-
lowing well-studied coarse-grained simulations of graphene
[26,40,41] that match well the typical 2D experiments. The
applicability of our theoretical model in a much different
damping regime would require further investigation.

VIII. CONCLUSIONS

MD simulations of the dynamics of an ultrathin doubly
clamped nanoribbon oscillator reveal rich dynamical behav-
ior. Unlike cantilever geometries, in which stresses relax
automatically to produce relatively simple scale-dependent
elastic behaviors [29], isometrical constraints [75] embodied
in double-clamping can lead to an effective tension, a buckling
transition, and other intriguing phenomena. Thermal fluctu-
ations render the long-wavelength bending rigidity and 2D
Young’s modulus temperature scale dependent with impor-
tant implications for the motion of the center-of-mass height
and the two-state nature of the ribbon. The escape time of a
ribbon clamped beyond the onset of thermalized Euler buck-
ling grows with increasing compression, as the system must
sample two degenerate minima separated by an increasing
barrier height. At high temperatures, where thermal fluctua-
tions are significant, the energy barrier for bistable buckled
ribbons increases linearly with temperature, thus leading to
an approximately temperature-independent Boltzmann factor
governing the transition rate. This compensation in the barrier
crossing process leads to a transition time in this two-level
system that depends only on geometry, in sharp distinction to
the low-temperature regime where the escape time increases
with the usual Arrhenius-like behavior, τe ∝ eEbarrier/kBT .

For a stretched ribbon, we find that the natural angular fre-
quency ωo and the quality factor Q increases with increasing
tension, consistent with experiments [13–15]. Our theoretical
work indicates that in the high-temperature regime the oscil-
lation period scales with ribbon size L0 and temperature T
as τR

o ∝ 1
ωR

o
∼ L(2−η/2)

0 T −η/4. This scaling with ribbon size L0

suggests that thermalized nanoribbons close to the buckling
transition, so the ribbons are relaxed, behave as a system
with a dynamical critical exponent of z = 2 − η/2 = 1.6,
assuming that the static critical exponent η is 0.8. Several
experiments on doubly clamped graphene ribbons have shown
either L2

0 [13] or L0 [15] scaling of the inverse of the natural
frequency. These experimental results, of limited precision,
bracket the exponent z = 1.6 found here. This scaling be-
havior could be tested by computational and experimental
work that systematically varies the system size while ensuring
vanishing tension.
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In this context, we mention recent theoretical investiga-
tions of the dynamics of graphene with free and pinned
boundaries [35,76], which is also motivated by experimental
investigations [34]. Granato et al. argued that the time behav-
ior of the mean-square displacement of height fluctuations,
〈�h(t )2〉, at long and intermediate times, should not depend
on the microscopic length [76]. This argument, together with

the scaling of elastic membranes, leads to 〈�h(t )2〉 ∼ t
ζ

1+ζ

with ζ = (1 − η/2) being the roughening critical exponent,
a static equilibrium quantity. Further dimensional analysis by
Granato et al. suggests that the subdiffusive timescale of the
mean-square displacement has the form τ ∼ L2(1+ζ )

0 ∼ L4−η

0 .
In a follow-up theoretical study of compressed graphene with
pinned boundaries [76], Granato et al. found similar mirror
buckling fluctuations to those found in molecular studies of
graphene with an atomistic potential [34]. Our work concerns
the dynamical exponent of different physical quantities: (i) the
characteristic oscillation time of the midpoint inside a minima
τo ∼ L2−η/2

0 and (ii) the characteristic prefactor timescale of
the escape time with τp ∼ L 4−η

0 in the high-damping regime,
with τp being independent of system size in the low-damping
regime.

Our simulation results confirm that ωo increases with in-
creasing temperature due to stiffening in bending rigidity,
which is consistent with our theoretical model. Several ex-
periments have shown that the natural angular frequency ωo

and the quality factor Q of graphene resonators indeed in-
creases with decreasing temperature [14,15]. In contrast, other
experiments on graphene resonators showed that the natu-
ral frequency increases with increasing temperature [53,77].
Both sets of experiments conclude that frozen strains due to
cooling/heating cycles could play an important role in altering
the resonant frequency. The strain, however, is not directly
controlled in those experiments. Our simulations, in contrast,
allow us to examine the temperature dependence of ωo while
keeping the relative compression constant across different
temperatures. We show that, for a fixed reduced stretching
strain, ωo increases with temperature according to ωo ∼ T η/4,
due to bending stiffening above the temperature at which
thermal renormalization effects take place. Another challenge
requiring further study is the temperature-dependence of Q
and ωo, where the energy loss due to boundary effects, such
as imperfect clamping and different thermal expansions across
different materials which present in physical experiments
[78,79], is taken into account. Future investigations might
include simulating a ribbon adhered to a substrate via an
attractive microscopic potential as opposed to the perfect
clamping condition imposed in our current work.

In summary, we have investigated the dynamics of the
midpoint of doubly clamped nanoribbons at a wide range of
temperatures. This paper suggests that dynamical measure-
ments may be used as an alternative way to study the unusual
thermal renormalization of the underlying elastic constants.
We hope that our paper will encourage theoretical and exper-
imental investigations of the nontrivial dynamical exponents
of atomically thin ribbons of, e.g., graphene and MoS2. From
a practical standpoint, our findings are important for predict-
ing the response of nanoactuators and nonlinear mechanical
nanoresonators operating at wide range of temperature and
strain conditions.
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APPENDIX

In these Appendixes, we provide detailed derivations, sup-
plemental MD data, and a complementary phenomenological
theory describing the dynamics that are not included in the
main text.

APPENDIX A: BROWNIAN PARTICLE
IN 1D HARMONIC POTENTIAL

We consider a Brownian particle of mass m allowed to
move in the x direction and confined in a harmonic potential
V (x) = kx2/2. This model is used to approximate the center
of mass hCM of an unbuckled ribbon well below the threshold
for the Euler buckling transition, although the fourth order
quartic term will lead to some corrections to the results in this
Appendix (see our our coarse-grained Gibbs free energy). The
equations of motions are given by

dx

dt
= v, (A1)

dv

dt
= − γ

m
v − ω2

0x + 1

m
ξ (t ), (A2)

where ω2
0 = k/m defines the oscillator frequency associated

with the harmonic potential at x = hCM = 0 for the ribbon.
The random force ξ (t ) is a Gaussian process with zero mean
and correlation function proportional to the δ function:

〈ξ (t )〉 = 0, 〈ξ (t )ξ (t ′)〉 = 2γ kBT δ(t − t ′). (A3)

Upon Fourier transforming the Langevin equations [Eqs. (A1)
and (A2)] to the frequency domain,

− iωx(ω) = v(ω), (A4)

− iωv(ω) = − γ

m
v(ω) − ω2

0x(ω) + 1

m
ξ (ω), (A5)

and upon solving the equations above, we obtain

x(ω) = 1

m

ξ (ω)

ω2
0 − ω2 − i γ

m ω
. (A6)
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FIG. 7. (a) Normalized spectral density ShCM (ω)/〈x2
0〉 as a func-

tion of frequency ω and (b) correlation of position Cx (t ) as a function
of time t for different values of γ /m.

It is useful to study the amplitude of x(t ) in frequency space
to understand the dynamics. A closely related and com-
monly measured quantity in signal processing and studies of
Brownian motion is the spectral density Sx(ω) ∝ |x(ω)|2:

Sx(ω) = 1

m

〈|ξ (ω)|2〉∣∣ω2
0 − ω2 − γ

m iω
∣∣2 (A7)

= 2γ kBT

m2
[(

ω2
0 − ω2

)2 + γ 2

m2 ω2
] .

From the equipartition theorem, we expect ω2
0〈x2

0〉/2 =
kBT/2. We can normalize Sx(ω) by inserting 〈x2

0〉 =
kBT/(mω2

0 ). We plot Sx

kBT/(mω2
0 )

[Eq. (A8)] as a function of ω for
a fixed ω0 = 1 and different values of γ /m, kBT in Fig. 7(a).
Similarly, by inverting the Fourier transform, we can calculate
the position autocorrelation function

Cx(t ) = 1

2π

∫ ∞

−∞
dωe−iωt Sx(ω) (A8)

= γ kBT

πm2

∫ ∞

−∞
dωe−iωt 1[

(ω2
0 − ω2) + γ 2

m2 ω2
] (A9)

= kBT

mω2
0

e− γ

2m t

[
cos ω1t + γ

2mω1
sin ω1t

]
, (A10)

where ω1 =
√

ω2
0 − γ 2/(4m2) is the damped natural fre-

quency. Cx(t ) is an oscillating function with exponential
decay. The solution for the x-autocorrelation functions Cx(t )
for different values of γ /m are plotted in Fig. 7(b).

APPENDIX B: TEMPERATURE BEHAVIOR OF CRITICAL
BUCKLING LENGTH

For a large vK number, the critical buckling strain εc ∝
κ/Y L2

0 is generally very small. Hence, the projected critical
buckling length should be close to the undeformed zero-
temperature (rest) length L0. From MD simulations, we indeed
find that Lεc weakly depends on T as long as the ribbon length
is smaller than the persistence length �p = 2κW0

kBT , as shown in
Fig. 8.

FIG. 8. The projected length Lεc at the critical buckling strain as
a function of W0/�th. Lεc is weakly dependent on temperature when
L < �p.

APPENDIX C: THREE-STATE MODEL AND RESIDENCE
TIME ESTIMATION

In the main text, we use Kramers result to describe the
escape time. Here, we develop a three-state model as a com-
plementary theory to describe the ribbon dynamics above
the critical buckling. Suppose that we only have three pos-
sible states (up, down, and flat) with energies E [±|hCM|] =
−Ebarrier and E [0] = 0. The probability of being in a given
state is proportional to the Boltzmann factor and the probabil-
ity of being in the up state is given by

P(+hCM) = exp[Ebarrier/kBT ]

1 + 2 exp[Ebarrier/kBT ]
. (C1)

In simulations, we can relate this probability to time as∑
P(E ) = 1 and

∑
τ (E )/T = 1 in the limit T → ∞. We

can then estimate the ratio between the total time in the up
and down states and the time in the flat state to be

Rτ =
∑

τup + τdown∑
τflat

∝ 2 exp[Ebarrier/kBT ], (C2)

where Ebarrier is given in the main text.
In two different temperature regimes separated by thermal

length �th, the time ratio Rτ is given by

Rτ ∝
⎧⎨
⎩

exp
[

3πδ2

8
W0�

2
th

L3
εc

]
if W0 	 �th

exp
[

3πδ2

8
W 3

0
L3

εc

]
if W0 � �th.

(C3)

We first test this relation for systems with W0 > �th (semi-
flexible regime). We expect log( τup+τdown

τflat
) = slope × δ2 + c,

where the slope is obtained from theory: ( W0
Lεc

)3 3π
8 ∼ 0.01. To

extract τ , we use a height threshold hc = hmax/3 and define
an up- or down-state whenever |hCM| > hc. Figure 9 shows the
midpoint hCM as a function of time for a ribbon well above the
buckling transition and close to the buckling transition. Well
above the buckling transition, the ribbon spends most of its
time in either the up or down state. Close to the buckling tran-
sition, in contrast, the ribbon switches from the up to the down
state more frequently, and so the ribbon spends its time in the
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FIG. 9. Midpoint hCM as a function of time in units of 10τMD at
a strain (a) above the buckling transition with δ = 6.8 and (b) above
but closer to the buckling transition with δ = 2.6. Well above the
buckling transition, the ribbon spends most of its time in either the
up or down state. In contrast, close to the buckling point the ribbon
transitions from the up to the down state more frequently, and so
spends its time in the up, down, and flat states more equally. The
system shown here is thermalized at W0/�th ∼ 8.5.

up, down, and flat states more equally. Figure 10 shows the
time ratio Rτ =

∑
τup+τdown∑

τflat
as a function of 3πδ2/8(W0/�th)3.

Close to the buckling transition, τup+τdown

τflat
∼ 2, which suggests

that all three states are equally probable. Since Ebarrier = 0
at the transition, all three states are equally probable. From
simulations, we find that the slope is close to the analytical
prediction. Note we could model the buckling problem as two
states only (up and down). One can compute the cumulative
probability distribution of the residence times and calculate
the integrated survival time as a measure of the escape time.
As shown in Ref. [80], the integrated survival time τsurv is
proportional to the autocorrelation time (τAC ∼ 0.5τsurv), as
the autocorrelation time is related to the slowest mode of inter-
est. This three-state model is used as a complementary theory
showing how the activation energy becomes renormalized for
W0/�th � 1, with the advantage that no prefactor is needed.

APPENDIX D: NOSÉ-HOOVER BEAM THEORY

In the main text, we developed a mean-field model that
treats the many connecting nodes of a ribbon as a one-
dimensional problem. This problem is equivalent to beam

FIG. 10. The time ratio Rτ as a function 3πδ2/8(W0/�th )3. The
slope is close to one, consistent with the theoretical prediction.

theory, however, with renormalized elastic constants. Our
MD simulations were carried in a canonical (NVT) ensemble
where number of particles N , volume V , and temperature T
are fixed. Within this ensemble, we used the Nosé-Hoover
thermostat [51,72] implemented in HOOMD-blue [50]. Thus,
we need to add a thermal bath to our mean-field model to
explain the observed quantities, such as height oscillations.
In this Appendix, we provide derivations of the equation of
motion for a beam coupled to a thermal bath, first derived in
Ref. [74]. Note that here we followed the notation in Ref. [74].

In a microcanonical (NVE) ensemble number of particles
N , volume V , and energy are conserved. The Lagrangian, the
difference between the kinetic and the potential energy, of a
beam in the absence of an external force is given by

Lbeam =
∫ [

1

2
ρAḣ2 − 1

2
EI (h′′)2

]
dx, (D1)

where ρ is the density, h(x) is the height deflection, A is the
beam cross section, EI is the bending stiffness, h′ = ∂h/∂x,
and ḣ = ∂h/∂t . Note that the quartic term is not included,
unlike our mean-field model for a clamped ribbon. Using the
Euler-Lagrange equation resulting from Eq. (D1), we obtain
the equation for undamped motion of a beam in the NVE
ensemble:

− ∂

∂t

(
∂Lbeam

∂ ḣ

)
+ ∂2

∂x2

(Lbeam

∂h′′

)
= 0 (D2)

⇒ ρAḧ + ∂2

∂x2
EIh′′ = 0. (D3)

In a canonical ensemble, the system, which in this case is the
beam, is in contact with a thermal bath with a reference tem-
perature Tref . The extended Lagrangian is L = Lbeam + Lbath.
In the Nosé-Hoover thermostat, a fictitious mass Q > 0 of
dimension ML2 and its velocity ζ of dimension time−1 are
introduced [51,72]. The bath potential energy is RTref ln(s),
with s being the generalized coordinate and R the product
of the Boltzmann constant and the number of degrees of
freedom. The generalized coordinate s and the velocity ζ are

016001-12



VIBRATIONS AND TRANSITIONS ACROSS BARRIER OF … PHYSICAL REVIEW MATERIALS 8, 016001 (2024)

related by

ζ = ds

dτ
s = dτ

dt
, (D4)

where ζ determines the heat exchange between the beam and
the bath and s is the stretch in time between the time of the
beam, t , and the time of the bath τ . The bath Lagrangian is

Lbath = Q

2
ζ 2 − RTref ln(s). (D5)

Before moving further, we first relate the time derivatives:

∂s

∂t
= ζ s, (D6)

ḣ = s
∂h

∂τ
, (D7)

ḧ = s
∂

∂τ

(
s
∂h

∂τ

)
= s2 ∂2h

∂τ 2
+ sζ

∂h

∂τ
. (D8)

By change of variables, we can write the extended Lagrangian
in the extended timescale s:

L =
∫ L

0

[
ρAs2

2

(
∂h

∂τ

)2

− EI

2

(
∂2h

∂x2

)2
]

dx

+ Qζ 2

2
− RTref ln(s). (D9)

As earlier, we obtain the equation of motion by using Euler-
Lagrange equation:

− ∂

∂τ

(
∂L

∂ (∂h/dτ )

)
+ ∂2

∂x2

( L
∂h′′

)
= 0 (D10)

⇒ ρA

(
s2 ∂2h

∂τ 2
+ 2ζ s

∂h

∂τ

)
+ ∂2

∂x2
EIh′′ = 0. (D11)

We can use Eqs. (D6)–(D8) to rewrite the equation of motion
in the real time (t):

ρAḧ + ρAζ ḣ + ∂2

∂x2
EIh′′ = 0. (D12)

Notice that this is similar to the undamped case Eq. (D3) but
now we have a new damping term ∝ ζ ḣ, which is similar
to the friction term in Langevin dynamics. Using the Euler-
Lagrange equation, we obtain the equation for the evolution
of ζ :

ζ̇ = d

dt

(
∂ ln(s)

∂t

)
= RTref

Q

(
T (t )

Tref
− 1

)
. (D13)

As T/Tref → 1, the friction term ζ tends to a constant, indi-
cating equilibrium.

In summary, we have shown that coupling a beam to a ther-
mal bath results in an effective damping. The consequences of
the mean-field theory with coupling to the bath is consistent
with our simulation, given that we use the Nosé-Hoover ther-
mostat for the NVT MD simulations. This damping (energy
loss) is observed in our simulation data, which is characterized
by a decaying oscillation of the positional correlation function
in the stretched ribbon case and in a purely decaying behavior
of the positional correlation function for the buckled case.
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