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Excitation protocols for nonlinear phononics in bismuth and antimony
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We study the optical generation and control of coherent phonons in elemental bismuth (Bi) and antimony (Sb)
using a classical equation of motion informed by first-principles calculations of the potential energy surface and
the frequency-dependent macroscopic dielectric function along the zone-centered optical phonon coordinates.
Using this approach, we demonstrate that phonons with the largest optomechanical couplings also have the
strongest degree of anharmonicity among the zone-centered modes, a result of the broken-symmetry structural
ground state of Bi and Sb. We show how this anharmonicity, explaining the light-induced phonon softening
observed in experiments, prevents the application of standard phonon-amplification and annihilation protocols.
We introduce a simple linearization protocol that extends the use of such protocols to the case of anharmonic
phonons in broken-symmetry materials, and demonstrate its efficiency at high displacement amplitudes. Our
formalism and results provide a path for improving optical control in nonlinear phononics.
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I. INTRODUCTION

Coherent interactions between electromagnetic waves and
extended vibrational degrees of freedom in solids (phonons)
enable the stabilization of highly nonthermal states of matter
with potentially desirable properties [1]. Such interactions
have been observed using femtosecond laser pulses in a
wide variety of materials over the past 50 years, including
oxides [2], transition metal dichalcogenides [3], elemental
pnictogens [4–11], and have been leveraged for control of vi-
brational dynamics [7,10,12], nonequilibrium structural phase
transitions [2,3], and to modulate the nonlinear susceptibility
[13–15].

Microscopically, the coherent coupling between elec-
tromagnetic waves and vibrational degrees of freedom is
generally understood as a consequence of vibration-induced
changes in the dielectric susceptibility in the frequency range
of the pump laser [16]. Such changes can be the result of
processes involving Raman scattering [17], infrared phonons
[18,19], ionic Raman scattering [14,19], or infrared reso-
nant Raman scattering [15]. For opaque materials, an early
phenomenological theory was the displacive excitation of
coherent phonons (DECP) [20], later shown to be a spe-
cial case of impulsive stimulated Raman scattering [8]. The
DECP model can explain the oscillatory cosinelike depen-
dence of optical reflectivity upon excitation by impulsive
laser sources by considering the change in the electron den-
sity in the presence of a coherently excited phonon. Such
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conclusions were also verified using a density-matrix-based
model [21] in the case of antimony. In contrast to this deep
theoretical understanding of the underlying coupling mech-
anism, however, most illumination protocols leading to the
stabilization of nonequilibrium phases have been discovered
through trial-and-error approaches. A primary reason is the
lack of quantitative methods capable of treating the full, an-
harmonic, potential energy surface and the driving force on
an equal footing. To this end, first-principles approaches us-
ing Born-Oppenheimer [15] or Ehrenfest [22,23] dynamics
in conjunction with time-dependent density functional theory
(TDDFT) provide an important opportunity in the understand-
ing and control of these systems.

In this paper, using a fully first-principles-informed clas-
sical model, we study light-induced structural dynamics
in bismuth (Bi) and antimony (Sb), two broken-symmetry
elemental solids, which have been extensively studied exper-
imentally and show clear macroscopic evidence of coherent
phonons [9,11,16,24–27]. For these systems, we calculate the
potential energy surface (PES) and the frequency-dependent
dielectric function within density functional theory (DFT) and
TDDFT, respectively, along the full range of phonon ampli-
tudes Qi, for the zone-centered optical modes. With these pa-
rameters as input, we perform a classical Born-Oppenheimer
dynamics simulation with a nonlinear force term explicitly
depending on phonon coordinates and electric field magni-
tude. Using this approach, we demonstrate that the A1g phonon
mode, the mode with the largest optomechanical couplings
in Bi and Sb, also has the strongest degree of anharmonicity
among the zone-centered modes, explaining the light-induced
phonon softening observed in experiments. Such anharmonic-
ity results from the broken-symmetry structural ground state
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FIG. 1. (a) The orthorhombic unit cell of Bi and Sb with the motion of atoms associated with the A1g (top) and one of two degenerate Eg

phonon modes (bottom). In (b) and (c), we show the potential energy surface with atoms moved along pairs of normal modes, with the third
normal mode set to Q = 0. Coordinates (0,0) correspond to the ground-state configuration. Potential energy (U ) is in units of eV/unit cell (2
atoms).

and prevents the application of standard phonon-amplification
and annihilation protocols based on a period/half-period
pulse train. We introduce a simple linearization protocol
that extends the use of phonon-annihilation and amplification
protocols to the case of such phonons, and demonstrate its
efficiency at high displacement amplitudes.

II. RESULTS

Briefly, the set of phonon coordinates Qi(t ) (where i
is the mode index) at an instant t are evolved on the
Born-Oppenheimer energy surface, using the following in-
stantaneous forces F(Qi, t ),

F(Qi, t ) = − dU

dQ

∣
∣
∣
∣
Q=Qi (t )

+ E∗(ω, t )
dχQ(ω)

dQ

∣
∣
∣
∣
Q=Qi (t )

E(ω, t ),

(1)

where U is the total energy without illumination, E(ω, t ) =
A(t )eiωt � A(t ) is the electric field of the light approximated
by its slowly varying (when compared to 1/ω) amplitude A(t ),
and χQ(ω) is the macroscopic polarizability tensor of the sys-
tem at coordinates Q. Both U and χQ are obtained from DFT
and TDDFT calculations on a dense grid of configurations
[28–31], and interpolated using a radial basis interpolation on
that grid following the procedure detailed in the Supplemental
Material [32,33].

Both Bi and Sb form crystals with an orthorhombic unit
cell consisting of two atoms with a threefold symmetry around
the body diagonal (see Fig. 1). Thus, there are two point group
symmetries associated with the three optical phonon modes
of interest in this work: the fully symmetric A1g mode,
corresponding to an out-of-phase displacement of the two

atoms along their bond, and two doubly degenerate Eg modes,
corresponding to displacements normal to that bond. As
shown in Ref. [16], only the Raman tensor of A1g is diagonal
(symmetric under all orthorhombic point group operations), in
contrast with the off-diagonal Raman tensor of the Eg modes,
suggesting the latter can only be excited via second-order
effects.

Figure 1 presents the PES as a function of atomic motion
along the A1g and Eg optical zone-centered phonon modes of
Bi and Sb. Both materials have a characteristic double-well
potential along their A1g direction with both minima being
structurally equivalent. This energy profile is a consequence
of the broken-symmetry ground state due to a Peierls-like dis-
tortion from a high-symmetry configuration (at QA1g � 0.3 Å),
where no Bi-Bi and Sb-Sb bond is elongated. The predicted
dimerization energy (energy difference between a minimum
and the high-symmetry configuration per 2-atom unit cell) for
Sb (∼100 meV) is lower than that for Bi (∼140 meV), indi-
cating that Bi has a stronger tendency towards dimerization,
and, accordingly, that the A1g modes in Sb near the energy
minima are more anharmonic. In contrast, Eg modes retain
a near-harmonic character for displacements QEg � ±0.2 Å
with the trigonal deviation caused by the threefold symmetry
of the lattice. In the limit of small displacements, we predict
the phonon frequencies for the A1g and Eg modes to be, respec-
tively (3.06, 2.47) THz for Bi and (4.31, 2.77) THz for Sb, in
good agreement with the experimental values of (2.9, 2.2) and
(4.5, 3.5) THz [5].

A simple quantification of the mode anharmonicity can
be obtained by fitting the energy versus displacement curve
for a single phonon coordinate (the two others being fixed
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TABLE I. Third-order (Q3) and fourth-order (Q4) fit coefficients
of the potential energy surface with displacements along the three
phonon normal modes for both Bi and Sb.

Bi Sb

Q3 (eV/Å3) Q4 (eV/Å4) Q3 (eV/Å3) Q4 (eV/Å4)

A1g −4.3 −8.6 8.6 −21.6
Eg1 0.6 2.8 2.2 7.1
Eg2 −2.1 1.9 0.9 8.0

to Q = 0, neglecting intermode coupling) by a higher-order
polynomial: For A1g, Eg1, and Eg2, respectively, we obtain the
following third-order and fourth-order coefficients for Bi and
Sb as shown in Table I. The magnitude of these coefficients is
associated with two main effects: First, as the force depends
on the distance from the equilibrium position, the phonon
frequency becomes amplitude dependent, an effect observed
experimentally for the A1g mode [10] in Bi. Second, as the
third- and fourth-order force constants correspond to three-
and four-phonon interactions, these coefficients are related
to the onset of higher harmonics at integer multiples of the
original frequencies. Beyond these two effects, our approach
also contains cross-phonon terms (e.g., QA1gQ

2
Eg

) that transfer
energy across the different branches, which enable selective
excitation of originally degenerate phonon modes (though
observing this effect can be complicated by the large decay
rates of these modes [7]).

To analyze the effect of the mode anharmonicity on the
light-induced dynamics, we conduct transient spectroscopy
experiments on bismuth at various pump laser intensities.
All experimental details are indicated in the Supplemental
Material [32]. We then extract the frequency domain response
from the pump-probe traces, showing the pump-intensity-
dependent shift of the frequency of the A1g phonon response.
At low fluence, the coherent phonon frequency is in good
agreement [5] with the one measured through Raman spec-
troscopy. However, and as shown in Fig. 2(a), higher laser
fluences lead to a softening of the A1g phonon frequency, in
agreement with prior measurements [10,11,34]. As discussed
above, such behavior can be explained by the larger displace-
ment at higher fluences, giving rise to larger anharmonicity.
We also note the appearance of second harmonics for a laser
power of 0.2 mW (see Supplemental Material [32]), while
the Eg modes are predicted and observed to be negligibly
excited for nonpolarized light. We note that for our system,
the phonon frequencies are well separated and so we do not
expect multiple peaks in the reflectivity spectrum. [35]

As we will now show, the phonon softening has important
consequences for phonon excitation protocols. We illustrate
this point by simulating the light-induced dynamics caused by
a simple, two-pulse protocol, shown in Fig. 2(b), where the
two pulses are separated by a delay expressed as multiples
of the phonon time period. For purely harmonic potentials,
pulses sent at integer phonon time periods lead to con-
structive interference between the two coherent excitations,

FIG. 2. (a) Comparison of experiment (bottom) and theory (top) in the extracted frequency of the coherent phonon within Bi via the Fourier
transform of the reflectivity trace at two different laser fluences/simulated amplitude. The theoretical displacement is chosen to reproduce the
frequency shift observed in experiment. (b) Schematic of a two-pulse experiment and a resulting oscillatory trace. (c)–(f) show the two-pulse
dynamics with a second pulse placed a half-integer time period away in order to fully destructively interfere with the first pulse within
the harmonic approximation. (c) and (d) show waterfall plots of the trajectories simulated for low pulse powers in Bi and Sb. Q is the amplitude
along the A1g coordinate, and the plots are shifted by a different constant for the different trajectories. Different trajectories are labeled by the
time delay in units of the harmonic phonon time period (4.0–5.0 T). (e) and (f) show the same trajectories generated by a high pulse powers as
defined in the text. A phenomenological damping rate of 0.1 THz was added to the simulations.
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i.e., phonon amplification, while pulses sent at half-integer
periods lead to destructive interference, i.e., phonon anni-
hilation [7,10,36]. Accordingly, and as shown in Figs. 2(c)
and 2(d), excitations at weak electric field amplitude (4.2
and 2.1 MV/m for Bi and Sb, respectively, corresponding
to a peak laser power of 2.9 and 1.5 kW, respectively; see
Supplemental Material [32]) result in low-amplitude phonon
oscillations, and such phonons can be amplified and annihi-
lated at times based on their integer/half-integer oscillation
periods.

However, at the stronger electric field amplitude of ∼67
and ∼54 MV/m for Bi and Sb, respectively (corresponding
to a peak laser power of 748 and 486 kW, respectively), the
amplitude of the oscillation (∼0.1–0.2 Å) leads to significant
anharmonic effects: As shown in Figs. 2(e) and 2(f), the cor-
responding oscillation period becomes longer, with four full
oscillations taking ∼4.1 harmonic oscillation periods. Con-
sider the frequency ω at any intensity to take the form

ω = ω0 + δω[A(t )], (2)

where ω0 is the low-amplitude phonon frequency, respec-
tively, and δω is the change in frequency due to anharmonicity,
with δω[A(t )] � 0.2 THz at �0.2 Å.

We note that an analytical solution to Eq. (2) is possible
provided a known analytical form of the PES. For exam-
ple, Ref. [37] introduced an expression for δω[A(t )] for the
case of hexagonal boron nitride, where the potential energy
surface along the infrared-active phonon coordinates can be
accurately described by a fourth-order polynomial.

Instead, we now propose a simple correction to stan-
dard protocols that enable their extension to the anharmonic
regime. We use an approximation inspired by the amplitude-
dependent harmonic approximation as described in Ref. [38].
Here, we approximate the PES by a harmonic potential de-
pendent on the amplitude, i.e., E (Q) = 1/2 dU

dQ |Q|Q|2. Under
this assumption, the amplitude-dependent force constant is an
instantaneously linear approximation to the restoring forces
that the oscillator feels over its trajectory. We refer to this pro-
tocol as the optimal linear approximation of forces (OLAF).
Importantly, by enabling dU

dQ |Q �= dU
dQ |−Q, OLAF can in princi-

ple reproduce the large and amplitude-dependent asymmetry
of the PES along the A1g coordinate. Along a given coordi-
nate, we obtain the amplitude-dependent restoring force by
minimization of

FOLAF(A) = min[||F − Ftruth(|Q| < A)||2], (3)

for Q in [0,+A] at positive Q and Q in [−A, 0] at negative Q,
with A being the instantaneous amplitude. Importantly and as
shown in the Supplemental Material (Fig. S2 [32]), these val-
ues can also be approximated by independently fitting the half
period at positive and negative amplitude. Equation (3) can
be understood as an approximating the full potential energy
surface defined by Ftruth by a series of amplitude-dependent
harmonic potentials FOLAF(A) extracted from each half period
of oscillation.

We note that this approach has key differences when
compared with temperature-dependent effective potentials
(TDEPs). TDEP studies have generally focused on the study
of acoustic modes, which have a different behavior than

optical modes that we study here. Additionally, it is important
to note that while we neglect thermal expansion, we expand
the potential energy surface at higher orders than the harmonic
approximation, which TDEP approximates.

Figure 3(a) presents the difference between the harmonic
approximation and the OLAF approach along the A1g coor-
dinate, with the amplitude varied in the ± regime as was
found to agree well with experiment. For OLAF, we plot
the second-order polynomial fits to the PES for Q within
±20 pm, and contrast it to the ground truth, a harmonic fit
obtained analytically as a second derivative at Q = 0, and
the OLAF protocol under the constraint of dU

dQ |Q = dU
dQ |−Q

(labeled as symmetric OLAF). As expected, the harmonic
approximation deviates from the ground truth as the am-
plitude approaches the high-symmetry configuration. While
a symmetrized amplitude-dependent effective harmonic po-
tential can extend the domain of validity of the harmonic
approximation, this is accomplished by shifting the energy
minimum away from equilibrium towards more positive am-
plitudes for larger displacement. In contrast, OLAF conserves
the correct position of the energy minimum and accounts for
the asymmetry between positive and negative amplitudes. We
note, however, that OLAF can only indirectly reproduce the
concavity of the PES at positive amplitudes through a set of
rapidly decaying force constants.

Importantly, our amplitude-dependent harmonic approxi-
mation leads to a trajectory with a smaller deviation from
the true trajectory over a longer period of time as shown in
Fig. 3(b). We note that the softening of the phonon mode
can be seen through the change in oscillation time period
in the truth as well as the OLAF trajectory, but is missing
from the harmonic approximation. Another important conse-
quence of the energy profile along the A1g coordinate is the
shorter half period for the negative amplitudes as compared to
the positive amplitudes, as well as their inverse behaviors at
large amplitudes: As shown in Fig. S2, the negative-amplitude
half periods are slightly shortened at high amplitude, while
the positive-amplitude half periods are increased. This phe-
nomenon is captured quantitatively by the asymmetric fit,
and can also be derived by measuring the lengths of the
half periods through the zero crossings of the experimental
spectroscopic traces.

The consequences of these approximations in determining
two-pulse protocols are shown in Fig. 3(c), for a stan-
dard phonon-annihilation protocol shining a second pulse
2.75 periods after an amplitude maximum efficient at small
amplitude: Over the course of those 15 pm oscillations, the
phase accumulated in the harmonic approximation consider-
ably reduces the effectiveness of the protocol. In contrast, the
2.75 periods predicted by OLAF closely match the numeri-
cally optimized result. We note that the asymmetry between
the positive and negative amplitudes is enough to significantly
lower the efficiency of the symmetrized OLAF protocol at
those amplitudes, indicating that our asymmetric protocol is
particularly suited to broken-symmetry materials.

We define the figure of merit corresponding to the destruc-
tive interference as

F = 1 − A2p

A0
, (4)
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FIG. 3. (a) The calculated PES along the A1g coordinate compared with the harmonic approximation of the PES, the symmetric (s), and
asymmetric (a) effective harmonic approximation (OLAF) introduced in the text. For aOLAF, we plot nine lines with differing amplitudes
uniformly spaced by 2.5 pm and ranging from 0 to 20 pm, shaded such that the darker the colors correspond to larger amplitudes. (b) Phonon
trajectories initialized with an amplitude of 10 pm, corresponding to the ground truth PES, harmonic, and two OLAF approximations.
(c) Coherent phonon annihilation via two-pulse excitation within the three approximations for an initial amplitude of 15 pm. (d) The proportion
of the oscillation amplitude that is removed after the second pulse.

where A2p is the time-averaged norm of the oscillations after
the second pulse and A0 is the same quantity without the
second pulse. In the case of the full PES, the annihilation effi-
ciency would be 1. However, for the harmonic approximation
the efficiency decays from 0.9 at 5 pm to <0.7 at 10 pm.
The OLAF effective harmonic approximation improves the
validity, extending the range of annihilation up to 10 pm. In
contrast, the asymmetric OLAF protocol enables full annihi-
lation efficiency across this range of amplitudes.

Modeling oscillations with amplitude-dependent frequen-
cies and the approximate generalization to damped oscil-
lations provides a compromise between fully anharmonic
dynamics which have no closed form, and harmonics dy-
namics using Taylor-expanded potential energies, which have
a closed form but a limited range of accurate validity: As
shown in Fig. S1, the PES computed in Fig. 1 and fourth-order
polynomial fit of the PES proposed by Ref. [37] result in
accurate frequency shifts as a function of amplitude for large
amplitudes (see SM Sec. III). In contrast, aOLAF deviates
from the exact solution by only 0.02 THz at a 10 pm am-
plitude yet by ∼0.15 THz at a 20 pm amplitude. In general,
the parametrization of the aOLAF protocol through the half
periods of the oscillations will be efficient as long as there
are no more than one zero-derivative point in the PES crossed
over the course of the trajectory, i.e., as long as the energy of
the oscillator is smaller than the energy barrier.

III. CONCLUSION

In conclusion, we have quantified the role of anharmonic
effects in the lattice response of bismuth and antimony, and
proposed a protocol for controlling them. We developed a
DFT-informed model of the light-induced lattice dynamics,
using an interpolated potential energy surface along the three
optical phonon modes. With this model, we investigated
the low- and high-amplitude frequencies of light-induced
phonons in these materials using a field-dependent, Born-
Oppenheimer description of the potential energy surface.
We introduced a framework that accurately captures the
amplitude-dependent frequency and accumulated phase of the
coherent phonon via linearization of the amplitude-dependent
frequency of the coherent phonon. The formalism and results
presented provide a way to accelerate the calibration of two-
pulse experiments and improve the description of protocols
for nonlinear phononics.
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