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High-refractive-index materials screening from machine learning and ab initio methods
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In this study we analyze the dielectric properties of a recently published dataset to identify high-refractive-
index and high-band-gap materials that are crucial for modern optoelectronic applications. We employ advanced
crystal graph convolutional neural networks and density functional perturbation theory calculations to accelerate
the discovery of such materials. Our analysis confirms the traditional inverse relationship between band gap
and dielectric constant, which persists even in this large dataset. However, our study reveals several promising
materials that possess competitive properties compared to current industry standards. Our findings provide
valuable insights into the field of dielectric materials and demonstrate the potential of advanced machine learning
and computational techniques for accelerating materials discovery.
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I. INTRODUCTION

Modern developments in machine learning models coupled
to the increasing size of databases enable the screening of
huge chemical composition spaces in a relatively short amount
of time. Although we cannot yet train models for every prop-
erty, either due to the lack of training data or the complicated
nature of the properties, several success stories have appeared
in recent years [1,2]. An extensive exploration of such works
is well beyond the present scope, but we can nonetheless ref-
erence the extensive exploration of the convex hull [3,4], the
identification of new super-hard materials [5,6], accelerating
discovery of superconductors [7,8], and predicting band gaps
of solids [9,10], among many others.

In this work we follow this approach and use high-
throughput techniques for the identification of high-dielectric-
constant materials. The dielectric constant is not only the
most basic measure of light-matter interaction (thanks to its
connection to the refractive index), but it is also a funda-
mental quantity in electronics (in part due to the importance
of capacitive components). Because of this, high-throughput
studies of the dielectric properties of materials can have a
high technological impact. In particular, the industry interest
resides with materials having large dielectric constants (as we
will see in the following), but the interplay of different mech-
anisms makes the meaning of “high” different in different
applications.

At the operating frequencies of optical devices, the most
relevant contribution to the dielectric function comes from the
response of the electrons to the applied field, a response which
is translated into the electronic contribution to the dielectric
tensor. This quantity bridges the electronic and optical prop-
erties, thanks to its relation to the refractive index, n [11]. Of
particular interest to optical devices are materials with high
refractive index (referred here as high-n materials), which see
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intensive use in the design of waveguides, optical interference
filters, mirrors, and antireflective coatings [12,13]. Cr2O3,
LiNbO3, TiO2, and SiO2 are prototypical materials in such
applications. High-n materials can also be good candidates for
nonlinear optics. This comes from the empirical observation
known as Miller’s rule, which states that the high-order re-
sponse functions are correlated to the linear response function
(and therefore, to some extent, to n) [14].

At the lower frequencies that characterize conventional
electronics applications, the response due to the atomic lattice
becomes particularly relevant, as often this ionic contribution
to the dielectric response is much larger than the electronic
one. Electronic applications, as optics, demand materials
with large dielectric constants (frequently called high-κ di-
electrics). SiO2 is the textbook example of such materials,
being used in the passivization of semiconductor surfaces and
gate dielectrics in conventional field-effect transistors. How-
ever, its limitations in view of the continuous miniaturization
of transistors lead to a rise in popularity of other materials
such as HfO2, ZrO2, Al2O3, and silicon oxynitrides [15–17].
Ceramics such as the SrTiO3 and BaTiO3 perovskite titanates
are also high-k dielectrics commonly used in ceramic capaci-
tors [18].

For the aforementioned applications, high-dielectric-
constants are only one part of the equation. Most optical
applications require materials that are transparent in the vis-
ible range, while for electronic applications there is the need
to suppress both undesirable leakage currents, allow larger op-
erating voltages, and reduce spurious charge generation from
thermal and photoexcitation processes. On a fundamental
level, such requirements mean that, in addition to the high-
dielectric-constant, materials of interest for these applications
must also have large band gaps. Unfortunately, the laws of
physics present a significant obstacle to achieving our goal
of maximizing both the band gap and the dielectric constant
simultaneously. Empirically, it has long been observed that
these two quantities follow a loose inverse proportionality
relationship, a fact that can be understood using, for example,
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arguments based on perturbation theory [19]. Nonetheless, the
technological importance of discovering new suitable high-
dielectric materials is a strong motivator for the community,
who plays a constant game of “minimax” in this search.
Thanks to the ever-growing size of material databases there
is still ample ground to investigate. That is precisely the focus
of the present work.

Here we search for materials with large band gaps and
high-dielectric-constant, focusing on a recently developed
dataset obtained by an exhaustive exploration of ternary com-
pounds by Schmidt et al. [3]. This database contains circa 3
million entries (circa 330 thousand within 100 meV/atom of
the convex hull), a majority of which was previously unre-
ported in the literature.

To allow for such analysis, we rely on efficient machine
learning models to screen the dielectric constants, followed
by ab initio electronic structure calculations to validate and
study the best candidates we found.

II. METHODS

A. DFT ab initio calculations

Ab initio calculations were performed using density func-
tional theory [20,21] and density functional perturbation
theory [22,23] as implemented in the Vienna Ab Initio Sim-
ulation Package (VASP, version 6.3) [24,25]. This code is
integrated with the ATOMATE [26] package, which allowed us
to automate the calculation of most properties within so-called
workflows [27,28]. All calculations were performed using the
Perdew-Burke-Ernzerhof (PBE) [29,30] approximation to the
exchange-correlation functional. This functional is known to
underestimate the band gaps of materials, and although this
effect is not systematic, we can, on average, disregard the
associated spread in the error, especially when focusing on
larger gaps (PBE has a mean absolute percentage error of
46% and a mean percentage error of −41% for the band
gaps [31,32]). Furthermore, in our analysis we compare with
well-established materials which function as standard candles,
since both their PBE and experimental gaps are well estab-
lished. In the future this could be corrected by using available
machine learning models [33] or resorting to more expensive
hybrid functionals and GW calculations.

For the characterization of the dielectric response, we take
into consideration both the ionic and the electronic contribu-
tions (ε0 and ε∞, respectively) [34], such that in the static
regime we can write

εi j = ε0
i j + ε∞

i j , (1)

where i, j are indices defining a Cartesian direction. The
high-throughput calculations of optimized geometries, band
structures, and static dielectric constants were performed us-
ing the defaults of ATOMATE, with the sole exception of
increasing the kinetic energy cutoff to 600 eV [35]. For
some selected materials we repeated these calculations with
slightly tighter parameters: geometry optimizations were per-
formed with a k-point density of 6000 k points per reciprocal
atom (kppra) [36] until forces where smaller than 1 meV/Å,
followed by density functional perturbation theory (DFPT)
calculations with a density of 8000 kppra. The kinetic energy
cutoff was kept the same as before.

The directional dependency of tensors makes them un-
practical quantities for large-scale comparison and analysis.
Instead, it is common to put the discussion in terms of poly-
crystalline averages, which are bounded by [37]

3

1/λ1 + 1/λ2 + 1/λ3
< εpoly <

λ1 + λ2 + λ3

3
, (2)

where λi are the eigenvalues of εi j . Usually this translates into
a sufficiently small range so that the equality

εpoly ≡ λ1 + λ2 + λ3

3
(3)

suffices. The static refractive index is obtained from the elec-
tronic contribution to the static dielectric tensor

nii = √
ε∞

ii , (4)

and a static polycrystalline refractive index is defined as
npoly =

√
ε∞

poly . For the sake of simplicity, in the following we
drop the “poly” subscript whenever unambiguous.

For a small set of materials, we further computed the
electronic contribution to the frequency-dependent dielectric
function, within the independent particle approximation and
without considering local field effects (see, e.g., Ref. [38]),

εii(ω) = 1 − e2h̄2

ε0m2
e

1

�0

∑
νν ′k

wk
|〈νk|pi|ν ′k〉|2
(ενk − εν ′k )2

× f (εν ′k ) − f (ενk )

εν ′k − ενk + h̄(ω + iγ )
, (5)

where ενk are the eigenvalues of eigenstate |νk〉, f (ενk ) are
the corresponding occupation numbers, pi are the Cartesian
components of the momentum operator, wk is the weight of
k-point k, �0 is the unit-cell volume, and γ is the value for
the Lorentzian broadening. For these calculations we used a
constant value of 8000 k points per reciprocal atom, an energy
cutoff of 600 eV, γ = 0.10 eV, and the number of bands was
chosen as ten times the number of electrons in the unit cell
(although for some larger systems this was reduced to 400
bands). This way we avoid expensive convergence calcula-
tions while attaining good convergence for the transitions near
the band gap.

B. ML prediction

In order to screen the dataset, we use crystal graph con-
volutional neural networks (CGCNN) [39], which have been
shown to perform well across multiple datasets [40] and have
the benefit of only using the crystal structure as an input.
The dataset for training was generated from the entries of
Materials Project [41]. From all the entries containing di-
electric properties, we selected only materials with band gaps
larger than 0.3 eV, fewer than 20 atoms in the unit cell, and re-
fractive index larger than 1 (as to minimize possible spurious
entries). This culminated in a set of 5035 structures and cor-
responding dielectric tensors out of 7178 entries in Materials
Project (at the date of writing). This set was randomly divided
into training, test, and validation sets, with 60% /20% /20%
size ratios. The training process was allowed to run through
400 epochs but was stopped when the loss function reached
a minimum value, Lmin, and remained in the interval [Lmin -
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FIG. 1. Scatter plot of the predicted (npred) vs the calculated (nreal)
refractive indices, trained on n.

0.001, Lmin + 0.001] after 20 epochs. We used the stochastic
gradient descent (SGD) optimizer [42] with an initial learning
rate of 0.02, which was decreased by a factor of 10 every 100
epochs.

C. Target dataset

Our target dataset comes from Ref. [3] and was gener-
ated using crystal-graph attention networks to comb through
several thousand crystal prototypes in order to study a wide
composition space. The dataset is primarily comprised of
binaries and ternaries, along with a smaller number of quar-
ternary compounds, and provides an homogeneous sampling
of the periodic table [3].

III. RESULTS AND DISCUSSION

A. Refractive index

The first step of the work is the training of the CGCNN.
For this we followed two approaches, one by training the
model directly on n and another by training on log10(n),
which should reduce problems due to the dispersion of larger
values. As it turns out, both training procedures delivered very
similar metrics, with the model trained on log(n) somewhat
outperforming the other one. However, given the residual
gains, we opted for the simplest option and trained the model
directly on n.

The dispersion plot of the results is presented in Fig. 1
for the values in the training, test, and validation sets. A
more detailed analysis of the model’s performance (includ-
ing mean errors, Kendall’s rank correlation [43,44], quantile
analysis, etc.) is given in Sec. S2 of the Supplemental Material
(SM) [45].

As can be seen, a good agreement between the calculated
and predicted values was achieved. The mean absolute error
(mean absolute percentage error) in both validation and test
sets is 0.15 (around 6%), which is reasonable given the range
of values n takes. The entries with largest absolute errors
are MnIn2O4 (n = 8.5, 
 = −6.2), Sr2SnHg (n = 8.3, 
 =
−3.7), Ge (n = 6.3, 
 = −2.3), Ca2AsAu (n = 6.2, 
 =
−2.2), ThNiSn (n = 5.7, 
 = −2.0), and Na2TlSb (n = 5.9,

 = −2.0). These outliers tend to be materials with very
small gap/very high refractive index, and given the distri-
bution of errors, constitute a small percentage of the entire
dataset.

Using the trained model, we predicted the static refractive
index for the dataset of Ref. [3]. Due to the sheer size of the set
and given the goals of this work, we restricted the entries of
interest to those that have nonmagnetic ground states, contain
no noble gases, have gaps above 0.4 eV, and distances to the
hull below 100 meV/atom. This amounts to approximately
55 000 entries.

Before going into a deeper analysis of the results, we
should note that two sources of error are present in these plots.
First, the values of the band gap in the screened dataset were
obtained from self-consistent calculations on relatively loose
k-point meshes, with 1000 k kppra. The indicated values are
thus upper bounds for the real ones (this being the main reason
for the chosen band-gap cutoff), and some metals might be
wrongly included in the set, in spite of the precautions taken in
their preparation. The second source of error comes from the
uncertainty associated with the model used for the prediction,
although from the previous analysis this should not bias the
distribution too much. It will be seen that these factors do not
compromise the end results.

As a point of comparison, we also plot the distribution of
values from Naccarato et al. [46], which was the subject of
a very thorough analysis by its authors and is representative
of the general distribution. Although this dataset contains
fewer entries than the one used to train the CGCNN model,
it does contain information on the direct band gaps of the
materials. This information is not available for every entry on
the Materials Project, and it will be relevant for the selection
of materials.

The resulting distribution of predicted refractive indices is
presented in Fig. 2(a). As expected, no material with simul-
taneously large refractive index and direct gap is observed,
and instead the Pareto front for (n, Ed

g ) follows a loose re-
lation of inverse proportionality. Comparing with the dataset
of Ref. [46], the most notable difference is the high-density
region seen below 2 eV and up to almost n = 6. A thin stripe
of materials above the known distribution is also visible. In
order to perform a more detailed analysis of these results, we
selected a subset of materials close to the Pareto front. To do
so we resorted to the relationship between n and the direct
band gap, Ed

g , described in Ref. [46]:

n2
s = 1 +

(
ωeff

Ed
g + α + β/Ed

g

)3

, (6)

which allows us to parametrize different regions of the
diagram as a function of the parameter ωeff. Using this equa-
tion, we selected the value ωeff = 16 eV for this purpose (see
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FIG. 2. Left: Dispersion plots of predicted (green) and calculated (from Ref. [46], orange) refractive indices as a function of direct band
gap. Right: Dispersion plots of calculated n and Ed

g , selected from the predicted dataset (DFPT). Also indicated are some values for reference
materials with corresponding data obtained from Materials Project (MP). In both plots the dashed curve corresponds to Eq. (6) with ωeff =
16 eV, i.e., the guideline used to separate materials of interest.

Fig. 2), but it should be noted this was done on the basis
of visual inspection and considering available computational
resources. To avoid redundancy we further focused primarily
in materials for which no corresponding entry was found in
other databases [41,47,48].

Using the aforementioned criteria, we calculated the ionic
and electronic contributions to the dielectric constant using
DFPT, as described in the Methods section. As anticipated,
several metals had erroneously been identified as semicon-
ductors due to the original k-point sampling, which lead to
spurious values of n. In addition, we found that some mate-
rials containing Lu lead to strange results and were therefore
removed from the analysis. Further neglecting runs that failed
to converge, we were left with 1991 entries in the set.

Compared with the original dataset used to train this
model, this amounts to an increase of circa 40% in the size.
Therefore we decided to do a second round of training includ-
ing these additional entries. We see a small improvement in
the error description (e.g., the MAE in validation and test was
reduced to 0.13 and 0.14, respectively), but no large qualita-
tive difference is seen in the distribution. After this retraining,
we repeated the previous selection procedure, resulting in a
total of 2431 new entries, which we now subject to a more
detailed analysis. The resulting distribution is presented in
Fig. 2(b).

The error associated with the prediction of the machine
learning model, as well as the inaccuracy on the screened band
gaps, means that the actual distribution is not exactly as the
predicted one. Specifically, a spreading of the data points in
the distribution that brings some of the materials below the
ωeff = 16 eV curve is observed. Nonetheless, the calculated
distribution correlates well with the predicted one, and the two
most prominent features (the hyperbole and the cluster above
n = 4) remain.

To try and gain more insight on this distribution, we plotted
the n vs Ed

g distribution for the subsets of materials containing
at least one lanthanide, at least one actinide, at least one alkali,
etc., in each material (see Fig. S3 of the SM). Most of the
classes present similar looking distributions, which in turn

reflect the global one. The exception are the materials with an
alkali and a halogen, for which the cluster is less represented.
Although this is not completely unexpected, as materials with
these elements tend to have larger band gaps, it is hard to
extract detailed information from this observation.

Taking a look at the elemental distribution in Fig. 3 (and
Table SV of the SM), some trends become more appar-
ent. As can be seen, oxygen is significantly over-represented
(although only present in 664 entries), followed by Te (347),
Li (341), S (294), and Se (225). The frequency distribution
falls relatively fast, with only 24 elements having more than
100 entries.

Besides O, Te, and Li, either every element is more or less
distributed without significative clustering or is not present in
a statistically representative number. As such, we will simply
focus on the top three most common elements in the dataset.
This is not to say that we assign special meaning to these
elements as the source of the corresponding combination of
n and Ed

g (which likely arises due to a combination of many
effects) but rather as a simple categorization tool.

FIG. 3. Scatter plot of n vs Ed
g for materials containing the three

most frequent elements of the dataset: O, Li, and Te.
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Oxygen-containing materials are primarily located in the
neighborhood of the ωs curve in the direct gap range of
3–5 eV. As shown in Table SVI of the SM, the elements most
associated with O in this set are rare earths (Tb, Pr, Dy, Nd,
Er, etc.), meaning that this cluster is mostly comprised of rare-
earth oxides. Due to their f -shell nature, these tend to be nu-
merically complicated to deal with, but their relation between
n and Ed

g is in line with previous observations [46]. Although
the electronic structure of lanthanide oxides can present a
large variety of behaviors [49], in general these tend to be
wide gap systems. In addition, due to the localized nature of
oxygen’s p orbitals, these compounds tend to have flat valence
bands (i.e., high hole effective masses) [50,51] and the asso-
ciated high density of states contributes to a large number of
transitions for the refractive index. The combination of these
two factors mostly justifies the location of this group of ma-
terials, with the large chemical variety of the (mostly ternary;
see Fig. S6 of the SM) systems generating a large spread.

Materials containing the second most represented element,
tellurium, are also localized around the ωs curve but at a
lower range of energies, specifically, for Ed

g from 1 to 2 eV.
By contrast with oxygen, the elements most associated with
tellurium are post-transition elements (Bi, Tl, Pb, As, Sn), as
well as Na and Ba.

The third most common element in the set is lithium, as-
sociated with which we find mostly group-IV elements (Si,
Ge, Sn) but also some transition metals (Ni, Pt, Pd, Rh,
etc.). Materials containing this element can be found both
amid the O and Te regions and located above the ωs curve.
The predominant distribution is in fact the latter, located in
the range of Ed

g from 1 to 2 eV and n above 4 (177 out of the
274 entries with Li lie above the n = 4 line). As it turns out,
this region is populated almost in its entirety by members
of the quarternary Heusler prototype, with chemical formula
LiXYZ . This peculiar set of materials has already been exten-
sively studied in Ref. [52], where it was observed that under
some conditions the inclusion of lithium in the half-filled
sublattice of the corresponding metallic half-Heusler leads
to a filled valence band (thus inducing a band gap in the
material) and large ε∞, making them stand out in the (Ed

g , n)
distribution.

B. Specific entries

In the following we will be focusing on some of the en-
tries that lie in the neighborhood of known high-dielectric
materials of interest. A nonexhaustive list of such materials
includes LiNbO3 (mp-3731), rutile TiO2 (mp-2657), anatase
TiO2 (mp-390), and HfO2 (mp-352), which we take as refer-
ence in Fig. 2(b). As expected, they lie close to the boundary
previously defined using Eq. (6). From this we selected a small
set of materials (presented in Table I) for which the frequency-
dependent dielectric tensor (within the independent particle
approximation) was computed. For each entry we searched
the literature to avoid going into details of compounds already
studied but not in the databases.

1. CaMgTe2

CaMgTe2 belongs to the trigonal R3̄m space group, crys-
tallizing in the same Caswell silverite of NaCrS2. In essence,

FIG. 4. Frequency-dependent imaginary part of the dielectric
function (top) and refractive index (bottom) of CaMgTe2.

the structure can be represented as a simple cubic lattice
which, when viewed from the (001) direction, has alternating
rows (Te-Ca-Te-Mg) along the square diagonals. Due to the
different sizes of Ca and Mg, the bonds with Te are distorted
accordingly, creating a pattern of pincushion/barrel distor-
tions throughout the solid.

On the electronic side, this material’s valence band is
characterized by an almost parabolic peak at  and made
up of p-orbitals of Te. The conduction band is more ridged,
with several minima of comparable energy appearing and
predominant contributions of Ca d and Mg s orbitals. Given
this electronic landscape, the fundamental gap is indirect (due
to a  − F transition), with a PBE value of 1.63 eV. On
the other hand, the direct  −  gap is substantially larger,
at 2.25 eV. Taking the optical gap at face value, n = 2.7
and Ed

g = 2.25 eV makes CaMgTe2 a direct competitor with
anatase TiO2 (which for comparison has slightly lower n at
2.6 and slightly larger Ed

g at 2.35 eV). On the other hand, for
cases where the fundamental gap is more relevant, the direct
competition would be with the rutile TiO2 phase, which, being
a direct gap material with n = 2.8 and Ed

g = 2.35 eV, is the
superior option. The imaginary part of the dielectric function
of CaMgT2 (see Fig. 4) is dominated by the peak at 4–5 eV,
proceeding from the transitions from the valence (at around
24 eV another peak appears due to transitions from deep p
states of Ca). This behavior makes the refractive index cover
the range of 3 to around 4 within the frequency range of the
visible spectra.

As a final comment, the MgTe chalcogenide has already
been pointed to as a material with large refractive index [53],
but nonetheless, it is more often found as an end component on
studies of ternary alloys. One such use case is CdxMg1−xTe in
monolithically stacked CdTe-based solar cells [54,55], while
ZnxMg1−xTe can be used in the production of waveguides
[56,57]. Although we could not find reports on the use of
CaxMg1−xTe, its optical properties suggest it could find use
in similar areas as these two examples.
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TABLE I. Chemical formula, space group number (Spg.), polycrystalline-averaged static ionic and electronic contributions to the dielectric
constant (ε∞ and ε0), polycrystalline-averaged static refractive index (n), fundamental and direct band gap (Eg and Ed

g , in eV) and their
difference (
), and distance to the convex hull (Ehull, in meV/atom) for some materials calculated with the tighter convergence criteria.
HfZrO4 is marked with a † symbol, because in the two different optimizations performed it converged to slightly distorted structures with
significantly different ε∞, as discussed in the main text.

Formula Spg. ε0 ε∞ n Eg Ed
g 
 Ehull

KTe2As 166 40.3 15.7 4.0 1.1 1.4 0.3 52
LiTiCoGe 216 15.7 22.2 4.7 1.2 1.6 0.4 0
Ca(AlAs)2 166 5.7 11.4 3.4 0.9 1.7 0.8 27
TiGePt 216 5.0 19.8 4.5 0.9 1.7 0.8 0
LiTaSiOs 216 15.7 20.8 4.6 0.5 1.7 1.2 0
LiBeAs 186 5.3 10.8 3.3 1.4 1.7 0.4 25
ZrHN 216 47.1 12.1 3.5 1.6 1.7 0.1 48
LiHfInPt 216 7.8 17.7 4.2 1.0 1.8 0.8 0
NdWN3 160 215.7 13.0 3.6 0.6 1.8 1.2 54
AsIrSe 29 4.4 17.4 4.2 1.2 1.8 0.6 0
HfSnPt 216 4.0 16.4 4.1 0.9 1.8 0.9 0
LiZrGeIr 216 11.4 17.8 4.2 1.5 2.0 0.5 0
BiSF 62 65.4 8.1 2.8 2.0 2.1 0.1 20
Ba2NbTlO6 225 62.7 5.7 2.4 2.1 2.2 0.1 6
CaMgTe2 166 10.0 7.5 2.7 1.6 2.3 0.6 48
HfHN 216 28.3 10.0 3.2 2.0 2.3 0.2 0
CaTe2Pb 166 20.7 10.5 3.2 2.2 2.3 0.1 22
LiHfSiIr 216 11.2 15.9 4.0 1.7 2.3 0.6 16
PIrS 29 3.1 14.4 3.8 1.7 2.4 0.7 0
Na4HfTe4 121 2.5 4.0 2.0 2.2 2.4 0.2 59
ZrZnN2 122 6.6 7.4 2.7 2.1 2.4 0.3 65
ScTaO4 14 73.0 5.3 2.3 2.6 2.6 0.0 21
NaTaO3 161 124.4 5.2 2.3 2.7 2.7 0.0 1
Na3TeH 221 8.6 4.8 2.2 2.6 2.8 0.2 0
LiAlC 216 5.6 7.4 2.7 0.8 3.3 2.5 26
TaBiO4 30 31.7 5.9 2.4 3.3 3.3 0.0 43
BeZnS2 33 2.9 5.6 2.4 3.4 3.4 0.0 16
KTaO3 227 63.9 4.4 2.1 3.3 3.5 0.3 23
Li3TeH 221 11.6 6.3 2.5 2.9 3.7 0.8 12
HfZrO4

† 50 146.6 5.3 2.3 3.7 3.8 0.1 67
NaBO2 122 5.9 2.8 1.7 6.1 6.3 0.2 96
Be2P2O7 15 3.5 2.7 1.7 6.3 6.3 0.0 32

2. ZrZnN2

ZrZnN2 is a ternary nitride that presents several poly-
morphs [58–60], although at the present is very underrepre-
sented in the Materials Project. Most of these compounds are
metastable, but due to an interplay of effects such as disorder
entropy, some can be synthesized by thin-film sputtering [60].
Given that some of these present large piezoelectric constants
[59], there is presently some incentive towards researching
them.

The present polymorph is a chalcopyrite (space group
I 4̄2d), a family of compounds perhaps best known due
to CIGS [61], and at 65 meV/atom from the hull it is
also metastable. Although it presents a fundamental in-
direct gap of 2.09 eV, the valence band is rather flat,
making the direct transition only slightly larger at 2.42 eV.
While the valency shows major contributions from N’s p
orbitals (and to some extent Zn’s d), the lower conduc-
tion bands show predominantly contributions from Zr’s d
orbitals.

The imaginary part of the dielectric function (see Fig. 5)
rises slowly owing to the low density of states of the lower
valency and is dominated by a peak at 4–5 eV. This feature
is associated with a peak in the refractive index, which brings
n from its static value of 2.73 to above 4 in this region (de-
pending on the polarization direction). Overall, these values
put ZrZnN2 in the neighborhood of interest of anatase TiO2.

3. BeZnS2

BeZnS2 is an ordered alloy of wurtzite-BeS and wurtzite-
ZnS. ZnS is probably best known for its cubic phase structure,
a wide gap material used in optical windows, among other
proposed applications. The high-temperature wurtzite phase is
rarer, but it can be synthesized and is both predicted [62] and
observed [63,64] to have a slightly larger band gap than its
cubic counterpart. It also has a rather large excitonic binding
energy of around 40 meV [64]. Within the PBE approxima-
tion, wurtzite-ZnS (mp-560588) has a band gap of 2.08 eV
and a static refractive index of 2.4 [41]. As for BeS, we could
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FIG. 5. Frequency-dependent imaginary part of the dielectric
function (top) and refractive index (bottom) of ZrZnN2.

find little information on the material itself, much less on
practical uses, apparently being outshined by its chalcogen
cousin BeO. Wurtzite BeS is predicted to have a PBE band gap
of 3.70 eV and static refractive index of 2.3 [3]. The BeZnS2

entry in our dataset presents a PBE band gap of 3.38 eV
(higher than would be expected from Vegard’s law) and a
static refractive index of 2.4 (essentially the same value as
its end components), very close to those of LiNbO3. BeZnS2

starts absorbing very close to the band gap, and we do not see
a strong effect due to the anisotropy in the bonding directions
(see Fig. 6). These results place wurtzite ZnxBe1−xS as a
material of interest, suggesting that one could tune the band
gap of the alloy while keeping the refractive index in a small

FIG. 6. Frequency-dependent imaginary part of the dielectric
function (top) and refractive index (bottom) of BeZnS2. As a point of
reference, for the unit cell employed here, the x, y, and z directions
correspond to the out-of-plane, armchair, and zigzag directions as
viewed from the (0001) direction in the wurtzite cell.

FIG. 7. Frequency-dependent imaginary part of the dielectric
function (top) and refractive index (bottom) of HfZrO4.

range of values. However, we need to face this with some
skepticism. A quick look at the B-Zn-S ternary phase diagram
suggests that the alloying of these two materials is not ener-
getically favorable, and therefore no ordered phase of wurtzite
ZnxBe1−xS is expected to exist in reality. In short, although
wurtzite ZnxBe1−x raises interest, any practical consideration
on this material must be done from an alloy perspective,
including the effect of disorder.

4. HfZrO4

HfO2 and ZrO2 are by now well-known materials, not only
due to their large dielectric constant and refractive index,
but also due to the discovery of ferroelectricity in HfO2 thin
films (which is now a intense point of research. see, e.g.,
Refs. [65–69]). Both materials present a complicated land-
scape of phases [69,70], some of which with quite different
dielectric constants [71].

With this in mind, finding a HfZrO4 composition is
not surprising—it can rather be seen as validation of the
workflow. The present phase is derived from HfO2 by
replacing alternating rows of Hf with Zr, crystallizing in the
Pban space group. As expected from oxides, the valence is
quite flat and dominated by oxygen’s p orbitals, while the
lowest conduction band is made up from a bundle of Zr and
Hf d states. Because of the dispersive bands, the fundamental
gap of 3.7 eV is almost equal to the direct one of 3.8 eV. With
a static refractive index of n = 2.3 (see Fig. 7), this material
lies in the neighborhood of LiTaO3 and compares favorably to
both HfO2 and ZrO2.

5. Be2P2O7

We could not find much information on the Be-P-O ternary.
The only material of this family that seems to have been stud-
ied is the BeO2P6 beryllium polyphosphate, and even then,
mostly for its structural properties (e.g., [72]). As such it is a
bit hard to place Be2P2O7 in a general landscape.

Be2P2O7 belongs to the C2/c space group, and its Be and
P atoms are arranged in tetrahedra with oxygen atoms at the
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FIG. 8. Frequency-dependent imaginary part of the dielectric
function (top) and refractive index (bottom) of Be2P2O7.

vertices. Apart from this, the overall distribution of atoms
is hard to convey, as the tetrahedra are arranged in different
orientations, creating moderately sized gaps in the material.

This is the material with the largest band gap from our
selection, at 6.3 eV. The valence band is very flat due to
p-orbital contributions from O, but the valence has an almost
parabolic minimum, comprised of s and p oxygen orbitals as
well as p sulfur orbitals. The imaginary part of ε(ω) grows
slowly (see Fig. 8), although different polarization directions
seem to contribute differently for this onset, and it does not
attain a well-defined peak. Coupled to its large band gap, this
translates into a rather flat variation of the refractive index,
which has a static value of 1.65.

IV. IONIC CONTRIBUTION

As mentioned in the Introduction, the ionic part of the di-
electric constant is crucial for electronics but is more complex
to study than its electronic counterpart. Due to the more com-
plex nature of this quantity, extremely dense k-point grids are
necessary to converge ε∞ [73], and doing a high-throughput
analysis with such accuracy would be beyond our present
capacity. We opted to focus on materials within the previous
set that were shown to have large ε0 and to be converged
within the chosen calculation parameters. From this set, some
interesting compounds appear.

The NaTaO3 ceramic presents an extensive literature, most
of it relating to its use as a photocatalytic for water splitting
[74–77]. The present trigonal (R3c) phase is so far unreported
in the databases, but it contains similar structural elements
to those of other perovskitelike phases: Ta atoms form octa-
hedra with O atoms at the vertices, and each Na is bonded
to nine O atoms. With ε∞ = 124, it fits somewhere between
its cubic (ε∞ = 47, mp-4170) and orthorhombic polymorphs
(ε∞ = 341, mp-3858), having a comparable direct band gap
of 2.7 eV. Lying a mere 1.3 meV/atom from the convex hull,
this polymorph could be relevant for higher temperature dy-
namics of NaTaO3, something that will require further study.

With a similar composition, we find KTaO3, a stoichiom-
etry well known in the community thanks to the properties
of the stable perovskite phase [78–81]. The present Fd 3̄m
polymorph is considerably different, composed of two types
of tetrahedron, with either Ta or K atoms at the vertices and O
atoms in the middle of the edges. These structures are tilted
in a way that O atoms are either connected to two Ta and
one K or vice versa. Energetically, it is metastable, although
it lies a mere 23 meV/atom from the convex hull. With a
band gap of 3.3 eV and a total dielectric constant of 68, this
phase is more suitable for electronic applications than its more
stable polymorph (Eg = 2.1 eV, Ed

g = 6.0 eV, ε0 = 3.3, ε∞ =
5.5 [41]).

NdWN3 crystallizes in the R3c space group and is a dis-
torted perovskite nitride, where the Nd atoms lie in the center
of the cube, while the N and W lie at the vertices and edges,
respectively. This family of compounds has been studied in
the scope of hard magnets. Although the present phase has
a total dielectric constant close to 228, it also has a rather
small indirect band gap of 0.6 eV (even though Ed

g = 1.9 eV).
Production of nitride perovskites is generally considered chal-
lenging, but recently other members of this family have been
synthesized [82].

Before concluding we briefly mention HfZrO4. From the
composition point of view, this is a mixture of the well-
established HfO2 and ZrO2, as previously mentioned. These
materials have several polymorphs with only slight structural
differences, for which ε∞ can significantly vary. This was ob-
served in our study, as the geometry optimization process with
different input criteria lead to two structures with different
space groups.

Conclusions

Using the available data for the static refractive index
of semiconductors, we trained a crystal graph convolutional
neural network for the screening of a large-scale dataset of
new semiconductors. This model, which requires simply the
crystal structure as an input for its prediction, was shown
to attain sufficiently good accuracy for the efficient catego-
rization of the static refractive index in a wide variety of
compositions and structures. With this tool we were able to
screen a recent large-scale dataset in the search for outstand-
ing materials, reducing the target space to a size manageable
for high-throughput density functional perturbation theory
calculations. Specifically, we used this model to screen 55 000
previously unstudied candidate semiconductors obtained from
the database of Schmidt et al. [3]. Subsequently, we conducted
DFPT calculations on the most promising subset, resulting in
the identification of 2431 materials. In the end we found sev-
eral metastable materials that could be considered promising
when compared to current large-refractive-index compounds.
In our analysis the typical inverse proportionality relation be-
tween gap and refractive index is observed, but the behavior of
several quaternary compounds hints at possible performance
gains at the cost of stoichiometric complexity. Lastly, as men-
tioned in the Introduction, studying the ionic contribution to
the dielectric function, which typically becomes more impor-
tant than ε∞ in electronics and circuitry, is also of interest.
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From here, more detailed studies of the materials of interest
are to be expected. Using more advanced methods such as GW
or hybrid functionals will allow for a better description of the
materials’ electronic structure; analysis of alloying will con-
clude whether the presented phases are suitable for synthesis;
studying the topology of defects will allow a better under-
standing of the practical behavior of the material; etc. It must
be noted that the chemical similarity of some of the elements
in these materials may in practice lead to disordered alloys.
Whether this disorder is avoidable [83] or if it significantly
affects the performance of the material requires analysis with
dedicated tools [84–86]. In addition, a more focused approach

to the study of the more complex ionic contribution on the
present dataset is reserved for future work.
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