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Optimizing the spin Hall effect in Pt-based binary alloys
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We present multicode calculations for the spin Hall effect in binary Pt-based alloys, where we explore the
viability of alloying the archetype spin Hall material Pt with a large set of metals [Al, Ag, Au, Cu, Hf (hcp),
Hf (fcc), Ir, Pd] in order to optimize the charge to spin current conversion for practical applications. To capture
intrinsic and extrinsic mechanisms in material-specific calculations, we employ different first-principles codes
based on density functional theory in the framework of Green’s-function-based multiple scattering approaches.
Capturing the transport properties within the relativistic and fully quantum mechanical Kubo-Bastin formalism
as well as the semiclassical Boltzmann approach allows for a better understanding of the microscopic physics
as well as a larger set of reliable data for the key transport parameters. If available, we compare our results to
experimental data, where we generally find good agreement. As we access the full concentration range, we are
able to identify the optimal doping regime, which will depend on the binary alloy but generally falls within a
region of 60–90 at.% of Pt. When including the unavoidable experimental residual resistivities, the maximum
spin Hall angle that we identified is 13% in Al0.2Pt0.8 and Hf0.1Pt0.9, which is comparable to the best spin
Hall angles experimentally found in good metal systems. The longitudinal resistivities in this regime go beyond
70 µ� cm, which is compatible with metallic-based magnetic random access memory devices.
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I. INTRODUCTION

Spin Hall effect [1–4] (SHE)-based magnetoresistive ran-
dom access memory (MRAM) devices are posited as an
energy efficient and read/write process-resilient form of in-
formation storage [5]. Such devices would require large
transverse spin currents to be generated from a relatively small
longitudinal charge current by the SHE. Therefore, it is of
crucial interest to find metallic materials with a large spin Hall
angle (SHA), θSH , defined as the ratio of generated transverse
spin current and the corresponding longitudinal charge cur-
rent. While this parameter is often used as a figure of merit,
only a very few computational methods give access to the
equally important longitudinal charge conductivity of a given
metallic alloy. However, for practical device integration, this
parameter is of equal importance. Following this, alloying a
known effective spin Hall material in order to manipulate the
longitudinal resistance is commonly used to optimize the SHA
and improve device integration.

Theoretically, as well as experimentally, Pt is a well-
explored spin Hall material [6–8]. Naturally, there have been
a number of experimental investigations to test the viability of
Pt binary alloys as potential spin Hall materials as, for exam-
ple, CuPt [9]. Alloying Pt typically considerably reduces the
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charge conductivity, while only moderately suppressing the
spin-orbit coupling and the spin Hall conductivity, which will
effectively enhance the SHA. While there have been several
experimental studies [6–21] of a variety of these promising
alloys, there exists no comprehensive theoretical study on
these alloys, especially not across a wide composition range.
Modeling a large number of these Pt-based alloys, we identify
broader trends, enabling researchers to more readily pick and
choose the right combinations.

We have calculated the charge and spin Hall conductivity
for seven [Ag, Al, Au, Cu, Hf(fcc), Hf(hcp), Ir, Pd] differ-
ent chemically disordered binary Pt-based alloys in order to
provide the much needed theoretical data. This enables us
to systematically optimize the Pt-based alloys for specific
applications.

We start by briefly introducing the methodology in Sec. II,
after which we present the numerical results for the eight
distinct alloys in Sec. III. In all cases, the various contribu-
tions will be extracted and compared to other methods, as
well as experimental results. Following that, the focus will
be on optimizing the performances of the alloys and explor-
ing the maximum of charge to spin current conversion when
incorporating the experimentally found residual resistivity.
Any trends that are identified will be finally discussed in the
conclusions in Sec. IV.

II. METHODOLOGY

The calculations were predominantly performed within
the spin-polarized relativistic Korringa-Kohn-Rostoker (SPR-
KKR) [29] framework. As we are solving the Dirac equation,
spin-orbit coupling is included at all levels and not only
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TABLE I. Summary of the lattice parameters aX as well as the residual resistivity ρres of the constituent elements for all binary alloys. The
residual resistivities are taken from experimental results for sputtered thin-film systems at low temperatures typically used in spin transport
experiments.

Element Al (fcc) Ag (fcc) Au (fcc) Cu (fcc) Hf (hcp) Ir (fcc) Pd (fcc) Pt (fcc)

aX (Å) 4.048 4.085 4.078 3.618 3.196 3.839 3.891 3.924
ρres (μ� cm) 5.9 [22] 1.2 [23] 2.1 [24] 2.9 [25] 6 [26] 0.22 [27] 7 [23] 12 [28]

as a perturbation. This formalism is based on fully rela-
tivistic density functional theory (DFT) that leverages the
coherent potential approximation (CPA) [30–32] to describe
chemically disordered binary alloys across the full compo-
sition range. In order to account for the structural change
as we explore the composition range, we used Vegard’s
rule for all of the face-centered-cubic (fcc) alloys. That is,
for an alloy M1−xPtx, the approximate lattice constant is
given by

aM1−xPtx = (1 − x)aM + xaPt , (1)

where aPt and aM are the Pt and element M lattice con-
stants, respectively. For the HfPt system, we did not use
this approach as Hf and Pt have distinct crystal structures.
Here, we performed calculations for fixed lattice constants
considering both hexagonal close-packed (hcp) and fcc crys-
tals. While we still calculated the full concentration range
for both structures, it should be noted that each system is
only of practical relevance in the dilute or moderately dirty
regime with a low concentration of Pt or Hf, respectively.
In those limits, the systems should be structurally stable as
suggested by experimental results [33]. All lattice constants
are summarized in Table I. The self-consistent calculations
were performed within the local density approximation (LDA)
for the exchange correlation functional in the parametrization
by Vosko et al. [34] and they include a self-consistent loop for
the CPA cycle.

While we fully incorporate the chemical disorder of the
alloys, we ignore any structural disorder. This is typically
a good approximation for concentrated alloys, but becomes
more challenging for comparing dilute alloys to experimen-
tal observations. In real systems, structural disorder such as
dislocations and lattice faults as well as additional impurities
will lead to considerable residual resistivities in the dilute
limit. In the ultraclean limit of disordered alloys (alloy con-
centration <2%), this typically results in a dominance of the
structural disorder over the chemical disorder in its effect on
the overall resistivity. In order to account for this, we include
the residual resistivity as a parameter ρres as derived from
experiments.

The transport calculations are based on the solution of
the Kubo-Bastin formula [35,36] accounting for the intrin-
sic and extrinsic mechanisms to the spin Hall conductivity,
evaluating the Fermi sea as well as the Fermi surface contri-
butions [35] including the full vertex corrections [37]. With
this fully quantum mechanical description of the charge and
spin transport of the system, we are able to extract the in-
trinsic as well as skew-scattering contributions in the dilute
limit of the alloy, which we will compare to a distinct ap-
proach based on the solution of the semiclassical Boltzmann
equation [38,39].

III. RESULTS

The summary for the figure of merit, the SHA, is shown
in Fig. 1 for all eight alloys in the full concentration ranges.
For all fcc-based systems, the principal behavior is very sim-
ilar, with low SHAs in the dilute limit and maxima for the
SHA in the range 0.5 � x < 0.9 Pt concentration. We have
summarized the established maxima in Table II.

This principal behavior is generally well known and
understood [40]. The dominant mechanisms for the SHE are
the intrinsic [41–43] and extrinsic [3,44–48] mechanisms,
with the extrinsic side jump mechanism [49,50] often playing
a less important role. For the spin Hall conductivity (SHC), the
extrinsic skew scattering dominates in the dilute limit [38] as
the conductivity is diverging in that regime, while the intrinsic
mechanism becomes dominant for concentrated alloys
[35,37,40]. However, as discussed above, the SHC diverges
in the dilute limit as does the longitudinal conductivity when
excluding the residual resistivity. As a result, the SHA is
suppressed in the dilute limit, but peaks in the concentrated
regime where the suppression of the SHC is counterbalanced
by the even stronger reduction of the longitudinal
conductivity [40].

While this is well understood for theoretical results when
structural disorder such as grain boundaries is ignored, it
often fails to capture the behavior in typically polycrystalline
experimental samples where the residual resistivity can be
significant. For that reason, we included this contribution
in a simple phenomenological model, where we considered
a simple serial resistor between the theoretically evaluated
longitudinal resistivity, ρtheo, arising from the chemically
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FIG. 1. Calculated spin Hall angles for all seven binary alloys
across the full concentration range.
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TABLE II. The maximal values for the SHAs, θSH , in all alloys
M1−xPtx and the corresponding Pt concentration x, excluding (second
and third columns) and including (fourth and fifth columns) the
residual resistivity.

Excl. ρres Incl. ρres

Material x θSH x θSH

AgPt 0.6 0.100 0.6 0.112
AlPt 0.8 0.116 0.8 0.133
AuPt 0.6 0.066 0.6 0.080
CuPt 0.7 0.091 0.7 0.106
HfPt (fcc) 0.85 0.107 0.90 0.125
HfPt (hcp) 0.9 0.130 0.90 0.148
IrPt 0.7 0.037 0.8 0.056
PdPt 0.5 0.024 0.55 0.042

disordered binary alloy and the experimentally observed
residual resistivity, ρres, due to structural disorder. In this
model, the total resistivity is given by

ρ tot
M1−xPtx = ρ theo

M1−xPtx + (1 − x)ρM
res + xρPt

res,

where the considered residual resistivities ρM
res are summarized

in Table I.
The resulting curves are summarized in Fig. 2 and show

a couple of marked differences to Fig. 1. First, depending on
the residual resistivities, we will find the already discussed
suppression of the SHAs in the dilute limit or an enhancement
of the SHA as for AlPt and CuPt. The enhancement arises for
cases where the residual resistivities are large in comparison
to the resistivities induced by the chemical disorder in the
dilute limit, i.e., weak scattering from the chemical disorder.
This effect will be difficult to observe experimentally. Second,
we can observe a shift in the maxima of the SHA for some
of the alloys depending on the relative sizes of the residual
resistivities for the distinct metallic limits. We summarized
all considered residual resistivities in Table I and all SHA
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FIG. 2. Calculated spin Hall angles for all seven binary alloys
across the full concentration range, including the experimentally
observed residual resistivities as summarized in Table I.
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FIG. 3. Experimental spin Hall angles for Cu1−xPtx [9,12],
Au1−xPtx [10], and Pd1−xPtx [11,20].

maxima with and without the inclusion of the residual
resistivity in Table II.

When comparing these results to the available experimen-
tal data for CuPt [9,12], AuPt [10], and PdPt [11] in the full
concentration range (see Fig. 3), most trends are reasonably
well reproduced. In all cases, the maximum for the SHA is
above x = 0.5 for the Pt concentration x. However, there are
also noticeable differences, namely, larger SHAs observed in
experiment in contrast to theory, as well as a peak for the SHA
in the PdPt alloy far into the Pt-rich region. At the same time,
two very distinct SHA results have been found experimentally
for the CuPt alloy [9,12], giving an indication of the reliability
of the quantitative results for any given alloy.

In order to give a better microscopic insight into the above
discussion, Fig. 4 shows an example for the typical behavior
of the theoretically calculated SHC. Here, we show Al1−xPtx,
but the principal features are the same for all alloy systems.
The black crosses show the total SHC including all Fermi
sea and Fermi surface contributions [35,40], as well as the
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vertex corrections are compared.
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defines the extrinsic spin Hall angles in these limits derived from the
skew-scattering contribution.

vertex corrections. The vertex corrections account for the
scattering process and are equivalent to the scattering-in term
in the semiclassical Boltzmann equation in the dilute limit
[37]. Comparing both, the main differences are visible for
the dilute limit only, where the vertex corrections give diverg-
ing contributions when approaching the ultraclean limit. In a
semiclassical picture, this clean limit corresponds to vanishing
scattering and a divergence of the mean free path which scales
inversely with the impurity concentration in the ultraclean
limit [37,38].

Interestingly, these contributions are positive in the limit
of Al(Pt), the dilute limit of Pt impurities in Al, and become
negative in the limit of Pt(Al), the dilute limit of Al impurities
in Pt. While this opposing behavior can often be observed for
binary alloys [40,51], there is no strict rule and the actual
result will depend on the detailed electronic structure of the
specific alloy system. As pointed out before, the divergence
of the conductivity in the clean limit equally appears for the
longitudinal conductivity, thus resulting in a linear scaling
between both conductivities. It is this scaling which enables us
to extract the skew-scattering contributions to the SHA [37].

For the AlPt alloy, this is shown in Fig. 5, including the fits
in the dilute limit, where the slope defines the skew-scattering
contribution to the SHA. We extracted that parameter for all
seven alloys, as shown in Table III, and compared it to the
direct evaluation of the skew-scattering contribution using a
solver of the Boltzmann equation [38]. Evidently, the agree-
ment is very good, validating both methods. The only notable
difference is visible for the Pt-rich Ir1−xPtx system, where the
order of magnitude is in good agreement, but the sign is op-
posite between the two methods. However, this is an extreme
example where the skew-scattering contribution is essentially
vanishing as Ir introduces only very weak scattering in the
Pt system. For that reason, the numerical error as well as the
error in the linear fit become comparable to the actual value.
The good agreement between the two methods is visually
emphasized in Fig. 6, where we present the skew-scattering

TABLE III. Comparison of the skew-scattering spin Hall angles
derived from the scaling relation in the dilute limit for the Kubo-
Bastin transport calculations [35] and the explicit calculation within
a semiclassical Boltzmann approach [38,39].

Skew-scattering Skew-scattering
spin Hall angle spin Hall angle

Material (Kubo-Bastin) (Boltzmann)

Pt(Al) −0.0060 −0.005
Al(Pt) 0.0170 0.017
Pt(Cu) −0.0027 −0.0025
Cu(Pt) 0.0103 0.0135
Pt(Ag) −0.0015 −0.0015
Ag(Pt) 0.0055 0.0085
Pt(Au) −0.0005 −0.0005
Au(Pt) 0.0035 0.005
Pt(Pd) −0.0001 −0.0009
Pd(Pt) −0.0012 −0.0002
Ir(Pt) −2.00 ×10−4 −1 × 10−4

Pt(Ir) 1.46×10−4 −6.8×10−5

Pt(Hf) - fcc 0.0039 0.0035
Hf(Pt) - hcp −0.0025 −0.0023

SHA derived from both methods in a scatter plot. Only for
Cu(Pt), Ag(Pt), and Au(Pt) do we find a slightly more relevant
deviation between the Kubo-Bastin- and Boltzmann-based
approaches, where the Boltzmann approach appears to show
consistently higher results. With this basic understanding of
the microscopic processes, we aim to model the principal
functional form of the spin Hall conductivity as a function
of the Pt concentration x. As discussed, the four key contri-
butions are the distinct skew-scattering contributions in the
dilute limits as well as the two intrinsic contributions arising
from the clean crystals, which are dominant in the dirty limit.
Adding all four contributions in a parallel resistor model, we
find, for the spin Hall conductivity,

σSH = a

x
+ b

1 − x
+ xσ intr

SH (Pt ) + (1 − x)σ intr
SH (M ), (2)
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where a and b represent the skew-scattering contribu-
tions from dilute alloy M(Pt) and Pt(M), respectively, and
σ intr

SH (Pt ) [σ intr
SH (M )] is the intrinsic conductivity from the clean

Pt (M) system.
In Fig. 7, we present an example for such a fit for the

Cu1−xPtx as well as the Al1−xPtx. Whereas the Cu1−xPtx alloy
shows very good agreement between the simplified model fit
to the full calculation including all different contributions, the
agreement for the Al1−xPtx is slightly less perfect. With such
an interpretation, the SHC in the full concentration is reduced
to only four parameters. Similarly, the longitudinal charge
conductivity can be modeled via

σ theo
M1−xPtx = σPt

x
+ σM

1 − x
, (3)

which enables us to define the skew-scattering Hall angles as

θsk (Pt ) = a

σPt
and θsk (M ) = b

σM
, (4)

respectively. Initially, it might seem appealing to use these
model equations to make simple predictions for the optimiza-
tion of the maxima in the SHA as they contain only six
often readily available parameters. While these equations are
sufficient to describe the calculated functional form, they are
unfortunately rather complicated when trying to predict the
size and the position of the maxima as a function of the Pt
concentration.

Due to the difficulty of predicting the peak of the SHA
within this model, we aim to simplify the model to pre-
dict the concentration position at which the maximum value
of the SHA occurs in binary Pt-based alloys. First, to simplify
the problem, the residual resistivity may be neglected. In this
case, the maximum of the SHA is slightly reduced, but the
overall functional form of the SHA dependence on the Pt con-
centration remains unaltered. As the calculated SHA peaks lie
within the concentrated regimes for the binary alloys, a further
simplification of Eq. (2) is to neglect the skew scattering in the
relevant region,

σSH = xσ intr
SH (Pt ) + (1 − x)σ intr

SH (M ). (5)
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Equation (5) models the SHC as linearly increasing be-
tween the intrinsic M value and the intrinsic Pt value as a
function of alloy concentration. This is a poor fit to the cal-
culated data for the SHC in the dilute regions, but a decent
fit for the concentrated alloy, which is the region of concern.
Within this further approximation, the position of the SHA
is determined by the peaks in longitudinal resistivity. The
relationship between the concentration at which the peaks
in longitudinal resistivity occur compared to the position of
the peak of SHA is tested in Fig. 8. For almost all systems,
the scaling works well apart from AlPt, which deviates
from the overall trend already indicated by the difficulties in
fitting the SHC, as shown in Fig. 7.

In order to further explore what is causing the scaling
of the peak for the SHA with the peak in resistivity, let us
consider that the SHC is assumed to be linear in Eq. (5). This
implies that the only free parameter in the SHC changing
between systems is the intrinsic SHC of the second element
M, σ intr

SH (M ). This parameter determines the gradient of the
linear approximation to SHC. Therefore, even though the peak
in the SHA is caused by the longitudinal resistivity, it is shifted
by σ intr

SH (M ), which makes it the most important parameter in
predicting the position of that peak, as shown in Fig. 9. For
elements with an intrinsic SHC comparable to Pt, such as Pd,
the alloy system will have peaks that are centered around the
50% alloy position. In contrast, for those with wildly deviating
intrinsic spin Hall conductivities, such as Hf which has a
negative intrinsic spin Hall conductivity, the SHA peaks at
higher concentrations.

Although the intrinsic spin Hall conductivity of element
M is a good indicator of where the SHA will peak for binary
Pt-based alloys, it is not useful as an indicator of how large the
SHA will be at its maximum. The parameter that is the best
indicator for the size of the SHA is the size of the longitudinal
resistivity at the maximum for the alloy. Figure 10 shows
that for five of the seven systems that are investigated, the
value of the longitudinal resistivity at the maximum is a near
perfect indicator for the maximum SHA. However, there are
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exceptions in AlPt and HfPt. For these two systems, Eq. (5)
is less applicable and a linear fit in the concentrated regime is
far from perfect. This is due to these systems having partner
elements that are very different from that of Pt, whereas the
other five are much closer in terms of atomic structure. Still,
even for those two systems, the maximum longitudinal resis-
tivity being large is a good indicator that the maximum spin
Hall angle will be too.

IV. CONCLUSIONS

In this work, we have used multiple first-principles KKR-
based approaches to calculate the full spin Hall conductivity
(intrinsic and skew scattering), longitudinal conductivity, and
spin Hall angle for several different Pt-based, chemically
disordered binary alloys. When including the experimental
residual resistivities, the maximum spin Hall angle that we
identified is 13% in Al0.2Pt0.8 and Hf0.1Pt0.9, which is compa-
rable to the best spin Hall angles experimentally found in good
metal systems. The spin Hall conductivity and longitudinal
conductivity for these alloys can be fit using two equations and
six parameters. However, an analytical expression for the
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FIG. 10. Maximum value of spin Hall angles vs the maximum of
the longitudinal resistivity for binary Pt-based alloys M1−xPtx .

concentration for the maximum spin Hall angle is not suitable
for practical calculations. We find that the high intrinsic spin
Hall conductivity observed in Pt is fairly robust to alloying for
Pt concentrations greater than 60%. The concentration where
the maximum spin Hall angle occurs is linearly dependent on
the difference in spin Hall conductivity between Pt and the
alloying element M. For elements such as Pd with spin Hall
conductivity close to Pt, the spin Hall angle peaks near 50%
Pt. For alloying elements with spin Hall conductivity drasti-
cally different from Pt, the spin Hall angle maximum occurs
at high Pt concentrations. Our calculations also indicate, for
many alloys, that the maximum of the longitudinal resistivity
is a good predictor of the maximum spin Hall angle for that
alloy. The trends identified in this broad study of Pt-based
alloys should aid in experimental efforts to optimize Pt-based
materials for spin-orbit torque applications.
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