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Nonequilibrium thermal resistance of interfaces between III-V compounds
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In this paper, we report a systematic study on how vibrational spectra mismatch affects the degree of phonon
nonequilibrium near an interface, how fast it is relaxed as the phonons diffuse into a lead, and the overall
interfacial thermal resistance from the nonequilibrium phonons. Our discussion is based on the solution of the
Peierls-Boltzmann transport equation with ab initio inputs for 36 interfaces between semi-infinite group-III (Al,
Ga, In) and group-V (P, As, Sb) compound semiconductor leads. The simulation reveals that the nonequilibrium
phonons cause significant interfacial thermal resistance for all 36 interfaces, making the overall interfacial
thermal resistance two to three times larger than that predicted by the Landauer formalism. We observe a
clear trend that the degree of phonon nonequilibrium near an interface and the interfacial thermal resistance
from the nonequilibrium phonons increase as the mismatch of the Debye temperature of two lead materials
increases. This contrasts with the Landauer formalism’s predictions, which show no correlation with the Debye
temperature mismatch. The relaxation length of the phonon nonequilibrium varies significantly from 50 nm to
1.5 µm depending on the combination of the materials. The relaxation length is proportional to the phonon mean
free path of the corresponding lead material but also largely depends on the material in the opposite lead. This
suggests the relaxation length cannot be considered an intrinsic property of the corresponding lead material.
These findings offer vital insights for understanding nonequilibrium effects on the interfacial thermal transport
and optimizing thermal design in devices.
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I. INTRODUCTION

The growing demand for highly integrated and miniatur-
ized devices has catapulted interfacial thermal transport to
the forefront of thermal management and energy conversion
[1–4]. As device interface density increases, the efficiency
and reliability of numerous technologies—such as microelec-
tronics, photonics, and thermoelectrics—hinge on interfacial
thermal transport [3–6]. However, understanding interfacial
thermal transport is challenging, given complexities such as
atomic structure mismatches and intricate heat carrier in-
teractions at the interfaces [3–5]. Hence, a comprehensive
theoretical understanding of interfacial thermal conductance
is critical for optimizing thermal design [7].

Landauer formalism stands as a widely used and effective
theoretical tool for assessing interfacial thermal resistance
[8]. It assumes an equilibrium Bose-Einstein distribution ( f 0)
with constant temperature in leads and a finite tempera-
ture drop at the interface to determine the interface thermal
conductance [8]. However, two main limitations exist with
this assumption: (i) the internal phonon scattering results in
nonzero temperature gradients in both leads given nonzero
heat flux, and (ii) the interface scattering induces nonequilib-
rium phonon distribution near the interface.

Regarding the first limitation, the Landauer formalism was
modified such that ( f 0) is substituted with the bulk distribu-
tion f bulk representing the phonon distribution in an infinitely
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large sample under a homogeneous temperature gradient
[9,10]. This f bulk captures the phonons that are out of equilib-
rium due to the temperature gradient. However, considerable
discrepancies exist between predictions from the modified
Landauer formalism and outcomes from both nonequilibrium
molecular dynamics (NEMD) simulations [11] and experi-
mental data [12–14]. Furthermore, this modified Landauer
formalism still neglects the nonequilibrium phonons caused
by interface-phonon scattering.

The nonequilibrium phonons near interfaces have recently
gained significant attention [15]. To clarify, when a temper-
ature gradient exists, phonons in a bulk material without an
interface exhibit an out-of-equilibrium distribution resulting
from the balance between displacement by the temperature
gradient and relaxation through scattering. Near an inter-
face, the out-of-equilibrium state is excessively larger than
that in the bulk material due to the reflection of phonons
caused by phonon-interface scattering and the discontinuity of
temperature across the interface. In this paper, the “nonequi-
librium” refers to the excessive out-of-equilibrium state due
to an interface. So far, various theoretical methods, including
the multitemperature model (MTM) [16], NEMD simulation
[17,18], and the Peierls-Boltzmann transport equation (PBE)
[12,19–23], have been employed to investigate these phonon
nonequilibrium effects. The MTM results showed that each
branch of phonons exhibits different temperatures near the
Si-Ge interface indicating local thermal nonequilibrium near
the interface [16]. However, the MTM can underestimate the
nonequilibrium effects because of its underlying assumption
that all modes in the same branch or group are in equilibrium.
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The NEMD simulations can naturally involve all phonon an-
harmonicity and consider complex interfacial lattice structure.
Previous studies utilizing modal or spectral analysis empha-
size the significant effects of anharmonicity among phonon
modes on thermal resistance [17,18]. However, for the NEMD
to capture the out-of-equilibrium nature of phonons, the do-
main size should be larger than the mean free paths (MFPs)
of phonons, which may require high computational cost. The
typical domain size of the past NEMD studies involving Si is
around 80 nm [11,17,24,25], not sufficiently large to capture
heat-carrying phonons with long mean free paths which can
be a few micrometers [26]. This often means the simulation
results can depend on the system size. The PBE can describe
much longer length scale and provide modal distribution func-
tion naturally. However, previous PBE studies do not include
quantitative analysis of the thermal resistance from phonon
nonequilibrium [20,23].

Recently, we solved the PBE with the kinetic Monte
Carlo (MC) method and quantitatively showed the significant
nonequilibrium thermal resistance at an interface shared by
semi-infinite Si and Ge leads [12]. The study found that (i)
the interface scattering leads to significant phonon nonequi-
librium near the Si-Ge interface, (ii) as phonons diffuse from
the interface, the nonequilibrium distribution is relaxed to the
bulk distribution due to internal phonon scattering, and (iii)
the entropy generation and consequent thermal resistance dur-
ing this relaxation process can be substantial, given the large
mismatch between the nonequilibrium distribution near the
interface and f bulk far away from the interface. Consequently,
the relaxation of the nonequilibrium phonon distribution
results in a higher thermal resistance than the interface scat-
tering at the Si-Ge interface. Overall, when considering both
mechanisms together—interface scattering and the relaxation
of nonequilibrium phonons—the total interfacial thermal re-
sistance of the Si-Ge interface is considerably larger than
Landauer formalism’s predictions. This observation naturally
leads to the questions of whether the significant nonequi-
librium resistance is common among many other interfaces.
Also, the major factors that determine the degree of phonon
nonequilibrium and its decay rate need to be identified.

In this study, we apply the established kinetic MC method
to solve the steady-state PBE for 36 interfaces consisting
of semi-infinite III-V leads. With the varying atomic mass

and interatomic force constants of III-V compounds, their 36
interfaces provide a systematic way of changing the phonon
properties and studying their effects on the nonequilibrium
phenomena for interfacial thermal transport. Moreover, the
III-V compounds and their interfaces are of practical impor-
tance for electronic and photonic devices [27–29]. A deeper
comprehension of their interfacial thermal transport can guide
better device-level design for superior thermal management
[29,30].

II. METHOD

We solve the PBE for interfaces shared by semi-infinite
III-V compound semiconductor leads at 300 K. We use the
variance reduced kinetic MC method to solve the PBE as
elaborated upon in prior studies [12,31]. The method only ac-
counts for the deviational energy distribution from the global
equilibrium (GEQ) distribution to reduce the variance. While
the details of MC simulation for interfacial thermal transport
can be found in our previous study [12], we will briefly discuss
the method here. The deviational energy form of the steady-
state PBE under the relaxation time approximation (RTA) can
be written as

vx,i
ded

i (x)

dx
= −ed

i (x) − ed,loc
i (x)

τi
, (1)

where vx,i and τi denote the phonon group velocity along the
x direction and the lifetime of mode i, respectively. ed

i (x) is
the deviation of energy distribution from global equilibrium,
which is h̄ωi[ fi(x) − f GEQ

i ]. Here, ωi and fi are the phonon
frequency and distribution of mode i, and h̄ is the reduced
Planck constant. The ed,loc

i is the deviation of local equilibrium
energy distribution (eloc

i ) from the global equilibrium energy
distribution (eGEQ

i ), i.e., ed,loc
i = eloc

i (x) − eGEQ
i .

Our simulation assumes an interface at x = 0, shared by
two semi-infinite leads. In practice, these semi-infinite leads
are approximated as finite-length leads with lengths of L1 and
L2. Here, 1 and 2 denote the left-side and the right-side lead,
respectively. These lengths uphold f bulk with the assigned
local temperatures TH and TC at the hot (x = −L1) and cold
boundary (x = L2), respectively. As such, the sampling parti-
cles emitted from x = −L1 and x = L2 follow the boundary
conditions:

ed
i

∣∣
x=−L1

= h̄ωi

[
f 0
i (TH ) − vx,iτi

∂ f 0
i

∂T

dT

dx
− f GEQ

i

]
for modes i with vx,i > 0, (2)

ed
j

∣∣
x=L2

= h̄ω j

[
f 0

j (TC ) − vx, jτ j

∂ f 0
j

∂T

dT

dx
− f GEQ

j

]
for modes j with vx, j < 0, (3)

where f 0
i (TH ) and f 0

j (TC ) denote the Bose-Einstein distribu-
tion at TH and TC of two materials. i and j denote phonon
modes of left lead 1 and right lead 2, respectively.

For the finite leads to represent the semi-infinite leads,
the following two conditions should be satisfied. First, the
length of the finite leads must ensure the nonequilibrium
distribution near the interface is fully relaxed to f bulk within

the finite lead. Each lead length for all cases is selected
to be 200�avg, where �avg is the mode-averaged MFP of
phonons weighted by the modal specific heat, i.e., �avg =∑

i h̄ωi(∂ f 0
i /∂T )vx,iτi/

∑
i h̄ωi(∂ f 0

i /∂T ). The �avg and lead
lengths for each III-V semiconductors are summarized in
Supplemental Material Table I [32]. The second condition is
about the temperature gradient at the boundary in Eqs. (2)
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and (3). While the temperatures at the two boundaries, TH

and TC , are assumed, the temperature gradients in Eqs. (2)
and (3) are unknown and need to be found from the MC
simulation. Thus, the PBE was solved iteratively with varying
temperature gradient at the two boundaries until the actual
temperature gradient matches with the one assumed for the
boundary conditions.

All inputs for the PBE solver, including harmonic phonon
properties and three-phonon scattering rates, are calculated
from first principles via the VASP [33–36], PHONOPY [37],
and SHENGBTE [38] packages. We employed the local den-
sity approximation (LDA) with the projector augmented wave
method (PAW) as the exchange correlation functional [39,40].
The lattice structure is relaxed with a primitive cell until
the energy change between two electronic steps is less than
10−7 eV. The second- and third-order interatomic force con-
stants (IFCs) are then obtained using finite-difference methods
with a 4 × 4 × 4 supercell. The cutoff energy is 600 eV
for both relaxation and the IFC calculation. The reciprocal
space for electrons is sampled with a 3 × 3 × 3 mesh for the
4 × 4 × 4 supercell. For the third-order IFCs, we set the inter-
action cutoff range to include up to the third nearest neighbors
following previous reports oin the literature [41]. The calcu-
lated lattice constants and thermal conductivities are listed in
Supplemental Material Table I [32]. The reciprocal space for
phonons is sampled with a 15 × 15 × 15 mesh. The phonon
transmission function across interfaces was calculated using
the diffuse mismatch model (DMM) and ab initio phonon
dispersion.

Thermophysical properties such as the local temperature
Tloc, heat flux q′′, local entropy generation rate Ṡ, and thermal
resistance R can be calculated by postprocessing the local
phonon distribution from the MC solution of PBE. Each lead
is divided into ten equal-sized control volumes that have a
spatially averaged distribution function. The Tloc of each con-
trol volume was found as Tloc = (NVuc

∑
i CV,i/τi )

−1 ∑
i ed

i /τi

[42,43], where N is the number of wave vectors in the re-
ciprocal space, Vuc is the volume of the unit cell, and CV,i

is the volumetric specific heat of mode i. q′′ is calculated as
q′′ = (NVuc)−1 ∑

i vx,ied
i . The total thermal resistance of the

computational domain is Rtot = (TH − TC )/q′′. This can be
divided into two parts based on their mechanisms: (i) intrinsic
thermal resistance Rbulk resulting from the bulk thermal resis-
tivity, and (ii) the interfacial resistance Rint that is caused by
the interface. The Rbulk is simply found as L−1

1 κ−1
1 + L−1

2 κ−1
2 ,

where κ is the thermal conductivity reflecting three-phonon
scattering in bulk materials. Rint is obtained by subtracting
Rbulk from Rtot. This resistance can be further divided into
two parts with different mechanisms: (i) the resistance due to

the relaxation of highly nonequilibrium phonon distribution
to bulk distribution by three-phonon scattering (Rneq), and
(ii) the resistance directly caused by the interface scattering
(R0

int). The resistance of the whole domain including leads 1
and 2 now becomes Rtot = Rbulk,1 + Rneq,1 + R0

int + Rneq,2 +
Rbulk,2.

In practice, Rneq can be evaluated by calculating the local
entropy generation rate due to the three-phonon scattering (Ṡ).
The Ṡ under RTA is [12,44]

Ṡ = 1

NVucT 2
loc

∑
i

(
ed

i − ed,loc
i

)2(
deloc

i /dT
)
τi

. (4)

From the above expression, the entropy generation rate and
thermal resistance can be large when the local energy distri-
bution significantly deviates from the equilibrium distribution
and the energy transfer rate to other modes through scattering
is high. These two conditions are represented by (ed

i −ed,loc
i )

and (ed
i −ed,loc

i )/τi in Eq. (4), respectively.
The rate of entropy generation in bulk material without in-

terface (Ṡbulk) can be found using ed
i = ebulk

i − eGEQ
i in Eq. (4).

Thus, Ṡ − Ṡbulk is the additional entropy generation rate due
to the relaxation of nonequilibrium phonons to bulk distri-
bution. The local resistivity from the relaxation process of
nonequilibrium phonons (R′

neq ) can be then calculated as
(Tloc/q′′)2(Ṡ − Ṡbulk ). The thermal resistance from nonequi-
librium phonons Rneq,X of material X is simply obtained by
spatially integrating R′

neq,X . Finally, the R0
int can be found by

subtracting Rbulk and Rneq,A+B (the sum of Rneq of material A
and B) from Rtot

We considered eight zinc-blende III-V compounds, which
are AlP, GaP, InP, AlAs, GaAs, InAs, GaSb, and InSb. We
excluded AlSb since the RTA is known to fail for this mate-
rial [41]. These eight materials can form 28 heterostructure
interfaces and eight homojunction interfaces.

III. RESULTS AND DISCUSSION

Figure 1(a) illustrates a comparison between the interfacial
thermal resistance obtained from the MC simulation and the
Landauer formalism combined with DMM, denoted as Rint

and RL, respectively. Notably, Rint values are larger than those
of RL by approximately threefold across all 36 interfaces.
Figures 1(b) and 1(c) break down Rint into R0

int and Rneq,A+B,
revealing that the considerable nonequilibrium effects con-
tribute to the difference between Rint and RL.

In Fig. 1(b), R0
int differs substantially from RL, particularly

for interfaces of X-InAs and X-InSb (pink and red points).
The RL can be expressed as

RL = lim
�T →0

�T

⎛
⎝ 1

N1Vuc,1

∑
i,vx,i>0

vx,i ed,loc
i

∣∣
x=0−ti,1→2 − 1

N2Vuc,2

∑
j,vx, j<0

vx, j ed,loc
j

∣∣
x=0+t j,2→1

⎞
⎠

−1

, (5)

where �T is the temperature difference across the interface; ti,1→2 and t j,2→1 are the transmission function of mode i from lead
1 to 2 and mode j from lead 2 to 1, respectively. Using the fact that the net heat flux is zero when two leads are at the same
temperature, Eq. (5) is usually simplified to RL = N1Vuc,1[

∑
i,vx,i>0 vx,i(de0

i /dT )ti,1→2]−1 [45]. Similar to Eq. (5), R0
int in the MC
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xx x

x xx

FIG. 1. The thermal resistances from the PBE compared to those from the Landauer formalism: (a) overall interfacial thermal resistance
(Rint), (b) resistance directly caused by interface scattering (R0

int), and (c) nonequilibrium thermal resistance in two leads (Rneq,A+B). The RL is
the resistance from the Landauer formalism. In the legend, the X signifies any III-V compound. Note that heterogeneous interfaces are shown
twice; for example, the AlP-AlAs interface is shown as X-AlP and X-AlAs. For comparison, the Si-Ge interface is represented by a purple
triangle [12].

simulation can be expressed as

R0
int = lim

�T →0
�T

⎛
⎝ 1

N1Vuc,1

∑
i,vx,i>0

vx,i ed
i

∣∣
x=0−ti,1→2 − 1

N2Vuc,2

∑
j,vx, j<0

vx, j ed
j

∣∣
x=0+t j,2→1

⎞
⎠

−1

. (6)

Equation (6) can be further simplified using ed
i = ed,loc

i + �ed
i and ed

j = ed,loc
j + �ed

j as

R0
int =

⎡
⎢⎣R−1

L + lim
�T →0

�T

⎛
⎝ 1

N1Vuc,1

∑
i,vx,i>0

vx,i�ed
i

∣∣
x=0−ti,1→2 − 1

N2Vuc,2

∑
j,vx, j<0

vx, j�ed
j

∣∣
x=0+t j,2→1

⎞
⎠

−1
⎤
⎥⎦

−1

, (7)

where �ed
i and �ed

j are the nonequilibrium portions of
the distribution functions. Equation (7) shows that R0

int
depends not only the equilibrium distribution change result-
ing from temperature drop across the interface (R−1

L ) but
also on the nonequilibrium distribution �ed

i and �ed
j at

x = 0.
The Landauer formalism ignores the latter in Eq. (7) as

it assumes the equilibrium distributions in two leads. Our
previous results of Si-Ge interface indicate a negligible dif-
ference between R0

int and RL, as plotted with a triangle in
Fig. 1(b) [12]. This suggests that, for the Si-Ge interface, the
equilibrium component primarily drives the change in phonon
distribution across the interface. However, when considering
36 interfaces of various III-V compounds in this work, most
of the interfaces exhibit significant differences between R0

int
and RL. This indicates that changes in the nonequilibrium
component across the interface can be as significant as the
equilibrium component change. Thus, R0

int depends on both
the transmission function and the on-site phonon nonequilib-
rium distribution.

Another reason for Rint being larger than RL is Rneq,A+B.
As shown in Fig. 1(c), the Rneq,A+B is comparable to RL for
all interfaces we studied, similar to the previously studied
Si-Ge case [12]. The data from the 36 interfaces in Fig. 1(c)
underscore the importance of the nonequilibrium effect in pre-
dicting and understanding the interfacial thermal resistance in
general. Rneq,A+B and RL have a positive correlation, indicating

that the interfaces with a larger RL exhibit a more pronounced
nonequilibrium effect.

We confirm that the nonequilibrium effects play a sig-
nificant role in interfacial thermal resistance. However,
calculating Rneq,A+B can be complex since it necessitates
solving the PBE in both real and reciprocal spaces. Thus, a
simple indicator for Rneq,A+B, if one exists, would be helpful to
roughly estimate the nonequilibrium effect. The Debye tem-
perature ratio of the constituent materials can be considered
as a viable indicator because it approximately captures the
mismatch of acoustic vibrational spectra between two mate-
rials. The Debye temperature can serve as a rough measure of
acoustic phonon properties to estimate thermal conductivity
[46] and the interfacial thermal conductance within the elastic
interfacial scattering scheme [3]. In this study, we calcu-
late the Debye temperature using elastic constants from first
principles [47,48], and the Debye temperature values for all
studied materials are available in Supplemental Material Table
I [32]. We then define the Debye temperature ratio �A/�B as
the higher Debye temperature divided by the lower one for
a given interface. This ensures that �A/�B is always greater
than or equal to 1. The subscripts A and B denote the con-
stituent materials with higher and lower Debye temperatures,
respectively.

Figure 2 shows �A/�B to be an effective indicator for
estimating Rneq,A+B, while it is not for RL and R0

int. It appears
in Figs. 2(a) and 2(b) that neither RL nor R0

int has a clear
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x x x

FIG. 2. The resistance versus the Debye temperature ratio �A/�B between two lead materials: (a) resistance predicted by Landauer
formalism with DMM model RL , (b) resistance directly induced by interface scattering R0

int , (c) nonequilibrium resistance Rneq,A+B, (d)
dimensionless nonequilibrium resistance R∗

neq,A+B representing 〈(α2
i −1)βi〉 + 〈(α2

j −1)β j〉, and (e) the degree of nonequilibrium distribution
at the interface 〈α2

i 〉 + 〈α2
j 〉.

correlation with �A/�B. This absence of correlation arises
since optical modes carry significant heat in the Landauer
formalism with DMM. For instance, the optical modes of
InSb contribute 13%–44% to the total heat flux in X-InSb
interfaces. Therefore, the Debye temperature ratio, empha-
sizing only the acoustic mode mismatch, does not clearly
correlate with resistance values derived from Landauer for-
malism. However, Fig. 2(c) shows a clear correlation between
�A/�B and Rneq,A+B, indicating that the mismatch of acoustic
vibrational spectra is closely related to the nonequilibrium
resistance. In contrast to the Landauer formalism’s case, the
optical phonons carry minimal heat, attributed to the short
mean free paths of the optical phonons when considering the
internal phonon scattering. For instance, the optical modes
of InSb contribute less than 5% to the heat flux in X-InSb
interfaces as will be shown later in Fig. 5(d).

In Fig. 2(c), the Rneq,A+B of all 36 interfaces are
clustered into two distinct groups (red/pink and other
colors). We propose a dimensionless resistance, R∗

neq,A+B,
defined as Rneq,A/Rb,A + Rneq,B/Rb,B. Here, Rb,X represents
the ballistic resistance of material X, expressed as Rb,X =
NVuc[

∑
i |vx,i|(de0

i /dT )]−1, to eliminate the effects of dif-
ferent group velocity and specific heat of lead materials.
Figure 2(d) compares the R∗

neq,A+B with the Debye temperature
ratio. In contrast to Rneq,A+B, the dimensionless nonequi-
librium resistance does not exhibit two distinct groupings;
instead, all 36 interfaces cluster into one group, demonstrat-

ing a clear positive correlation with the Debye temperature
ratio.

The dimensionless nonequilibrium resistance contains two
important parameters that decide the Rneq,X : the degree of
nonequilibrium distribution at the interface and its duration in
space as phonons diffuse into a lead. Using the right lead as an
example, the local nonequilibrium resistivity at the interface
can be written as

R′
neq

∣∣
x=0+ =

(
Tloc

q′′

)2 kB

NVuc

×
∑

i

(
fi − f 0

i

)2 − (
f bulk
i − f 0

i

)2

f 0
i

(
f 0
i + 1

)
τi

∣∣∣∣∣
x=0+

. (8)

By introducing a function αi, defined as ( fi− f 0
i )2|x=0+ =

α2
i ( f bulk

i − f 0
i )2|x=0+ , we can simplify Eq. (8) to

R′
neq

∣∣
x=0+ =

(
Tloc

q′′

)2 kB

NVuc

∑
i

(
α2

i − 1
)(

f bulk
i − f 0

i

)2

f 0
i

(
f 0
i + 1

)
τi

∣∣∣∣∣
x=0+

.

(9)

αi represents the degree of nonequilibrium distribution at
the interface x = 0+. We then assume exponential decay of
the nonequilibrium resistivity in space with a decay parameter
βi. The local nonequilibrium resistivity at any position x can
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x x

FIG. 3. (a) The nonequilibrium resistance ratio Rneq,A/Rneq,B versus the Debye temperature ratio �A/�B. The thermal resistivity R′ for
(b) the AlAs-InSb interface and (c) the InAs-InSb interface. In (b,c), the black solid circles represent PBE data, black lines indicate their
exponential fits, and the red line denotes the thermal resistivity of bulk materials.

be written as

R′
neq

∣∣
x =

(
Tloc

q′′

)2 kB

NVuc

∑
i

(
α2

i − 1
)(

f bulk
i − f 0

i

)2

f 0
i

(
f 0
i + 1

)
τi

∣∣∣∣∣
x=0+

× exp

(
− x

βi|vx,i|τi

)
. (10)

The parameter βi signifies the decay rate of a specific
modal nonequilibrium resistivity R′

neq,i|x=0+ in space relative
to its mean free path |vx,i|τi. The assumption of exponential
decay is well justified by the MC simulation results of Si-Ge
interfaces in our previous work [12] and current work for III-V
interfaces shown in Figs. 3(b) and 3(c). The nonequilibrium
resistance of the right lead is written as

Rneq =
∫ ∞

0
R′

neq

∣∣
xdx =

∑
i

R′
neq,i

∣∣
x=0+βi|vx,i|τi. (11)

We replace the heat flux q′′|x=0+ with the heat flux of
bulk distribution q′′|x→∞ = (NVuc)−1 ∑

i h̄ωiv
2
x,iτi(df 0

i /dT )
(−dT /dx). Then, after normalizing Rneq with Rb as aforemen-
tioned, the dimensionless nonequilibrium resistance R∗

neq can
be written as

R∗
neq =

∑
i

(
α2

i − 1
)
βi h̄ωiv

2
x,i|vx,i|τ 2

i

(
df 0

i /dT
)

[∑
i h̄ωiv

2
x,iτi

(
df 0

i /dT
)]2[∑

i h̄ωi|vx,i|
(
df 0

i /dT
)]−1 .

(12)

Thus, the dimensionless nonequilibrium resistance is the
mode average of (α2

i −1)βi. Thus, R∗
neq,A+B can be written as

〈(α2
i −1)βi〉 + 〈(α2

j −1)β j〉 where the angle bracket denotes
mode average. Figure 2(d) clearly shows that the combined
average of α and β, represented by R∗

neq,A+B increases as the
two leads have more significant mismatch of the acoustic
vibrational spectra.

We further focus on the degree of nonequilibrium at
the interface, 〈α2〉, which can be estimated by normaliz-
ing the nonequilibrium resistivity at the interface by the
bulk resistivity of the lead. Using Eq. (9) and R′

bulk =
NVuc[

∑
i h̄ωiv

2
x,iτi(df 0

i /dT )]−1, the dimensionless resistivity

at x = 0+ is written as

R′
neq

∣∣
x=0+

R′
bulk

=
∑

i

(
α2

i − 1
)
h̄ωiv

2
x,iτi

(
df 0

i /dT
)

∑
i h̄ωiv

2
x,iτi

(
df 0

i /dT
) , (13)

which represents the mode average of α2
i −1. Thus, α2

i − 1 can
be calculated as R′

neq|x=0+/R′
bulk + 1. In this work, R′

neq|x=0+
or R′

neq|x=0− is calculated by fitting R′
neq of control volumes

with an exponential function.
Figure 2(e) plots the degree of nonequilibrium distribution

at the interface 〈α2
i 〉 + 〈α2

j 〉 versus the Debye temperature
ratio. We observe a strong positive correlation between 〈α2

i 〉 +
〈α2

j 〉 and �A/�B, suggesting that the acoustic vibrational
mismatch is a deterministic factor for the phonon nonequilib-
rium at an interface. Figure 2(e) also reveals that the phonon
distribution at the interface is highly nonequilibrium in all
interfaces. The values of 〈α2

i 〉 + 〈α2
j 〉 range from 2.5 to 4,

meaning that the deviation of phonon distribution from equi-
librium at the interface is up to twice as large as the deviation
in bulk case.

Comparing Rneq,A and Rneq,B across interfaces, we observe
that Rneq is always more pronounced in the constituent ma-
terial B with the lower Debye temperature. In Fig. 3(a), the
ratios of the nonequilibrium resistances, Rneq,A/Rneq,B, are
plotted against �A/�B. Rneq,A/Rneq,B is less than 1 for all
interfaces, indicating that material A with the higher Debye
temperature has a lower nonequilibrium resistance. Moreover,
Rneq,A/Rneq,B has a negative correlation with �A/�B. The
relationship can be understood by the two different ways the
group velocity affects the nonequilibrium resistance. First,
the lead with a lower group velocity exhibits a larger degree
of nonequilibrium near the interface. This is because of the
energy conservation, which dictates the same spectral heat
flux across the interface with the assumption of elastic inter-
face scattering, i.e.,

∑
i vx,ied

i δ(ωi−ω) = ∑
j vx, jed

j δ(ω j−ω)
for any frequency ω [12]. Material B with a lower vx re-
quires a larger deviational distribution ed at the interface to
maintain the same spectral heat flux, thereby generating more
substantial entropy based on Eq. (6). On the other hand, the
lower vx shortens the relaxation length of the nonequilibrium
distribution, which can reduce the overall Rneq. However, the
degree of nonequilibrium near the interface is a bigger con-
tributor to the overall Rneq compared to the relaxation length.
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FIG. 4. The relaxation lengths of nonequilibrium resistivity in
the right lead compared to the mode-averaged mean free paths of
the corresponding lead materials.

We briefly show this using a gray model in the Sec. 2 of
Supplemental Material. Figures 3(b) and 3(c) showcase the
resistivity R′ (black dots) and its exponential fit (black line)
across the AlAs-InSb and InAs-InSb interfaces. The area be-
tween the black and red horizontal lines represents Rneq. In

both heterostructures, Rneq,InSb is significantly larger than both
Rneq,AlAs and Rneq,InAs since the degree of nonequilibrium near
the interface, represented by R′

neq at x = 0, is significantly
larger in InSb than in AlAs and InAs.

We now turn our attention to the decay length of the
nonequilibrium resistivity. R′

neq can be fitted well with an
exponential function, R′

neq,i|x=0+ exp(−x/λ), as depicted in
Figs. 3(b) and 3(c). Here we define the fitting coefficient λ

as a relaxation length. Figure 4 plots λ versus �avg of the
lead. The error bar shows the 95% confidence bounds of the
fitting coefficient λ. Generally, λ is proportional to the �avg of
the corresponding lead material. It is worth noting that λ also
depends on the material in the opposite lead. For example, λ

in AlP of X-AlP varies by a factor of 10 depending on the
material X in the opposite lead. For all interfacial structures,
λ varies by a factor of at least 2–3. Therefore, the relaxation
length λ in a lead is not an intrinsic property of the corre-
sponding lead material, but rather depends on the combination
of the two materials that constitute the interface.

Like the degree of nonequilibrium distribution represented
by 〈α2

i 〉, the relaxation length λ is also influenced by the De-
bye temperature ratio. Figure 5 details the relaxation lengths
of InSb (λInSb) for all X-InSb interfaces. We chose InSb as
the lead of interest since it has the lowest Debye temperature
among the III-V compounds we studied and thus is expected

x x

lengthlength

(a
rb

. u
ni

ts
)

(a
rb

. u
ni

ts
)

FIG. 5. Effects of lead material X on the nonequilibrium resistivity and its decay in X-InSb interfaces. [(a), (b)] Spatial decay of
nonequilibrium resistivity in the InSb lead. The horizontal dashed line in (b) represents y = 1/e to indicate the relaxation length. (c) The
nonequilibrium resistivity at the interface (red open squares) and relaxation length (blue solid circles) in InSb with respect to the Debye
temperature ratio for different X-InSb interfaces. (d) Heat flux contribution from five frequency bins sampled at the control volume of InSb
closest to the interface. The dashed lines represent the spectral heat flux contribution at the boundary of the InSb lead which is far from the
interface and exhibits the bulk phonon distribution. [(e), (f)] Overlap of phonon density of states in GaSb-InSb (�GaSb/�InSb = 1.26) and
AlP-InSb (�AlP/�InSb = 2.6) interfaces. The vertical dashed lines are the boundaries of the five frequency bins used in (d).
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to exhibit the largest nonequilibrium effects as observed
in Fig. 3. Figure 5(a) shows the exponential fitting of the
nonequilibrium resistivity R′

neq,InSb in all X-InSb interfaces.
The nonequilibrium resistivity at the interface, R′

neq|x=0+ , has
the largest value in the AlP-InSb heterostructure, gradually
decreases as the Debye temperature difference between X and
InSb decreases, and has the lowest value in the InSb-InSb
interface. In Fig. 5(b), we normalize R′

neq,InSb by R′
neq|x=0+

to compare λInSb. λInSb has the opposite trend as R′
neq|x=0+ ;

it is largest in the InSb-InSb and smallest in the AlP-InSb.
Figure 5(c) summarizes both R′

neq|x=0+ and λInSb shown in
Figs. 5(a) and 5(b) as functions of �X /�InSb. R′

neq|x=0+
increases with �X /�InSb, indicating that a larger acoustic
mismatch results in a more out-of-equilibrium phonon dis-
tribution at the interface. λInSb decreases with �X /�InSb in
X-InSb interface structures.

The dependence of relaxation length on the Debye
temperature can be understood by measuring the spectral con-
tribution to the thermal transport. The phonon mean free path
varies significantly with the phonon frequency in a material.
Consequently, the relaxation length of phonon nonequilib-
rium can vary based on the spectral heat flux distribution
near the interface. Figure 5(d) showcases the spectral heat
flux in the control volume centered at x = 0.12 µm which is
adjacent to the interface (x = 0−0.24 µm) in the InSb lead.
We divide the entire phonon spectrum of InSb into five fre-
quency bins and plot the contribution from each bin to the
heat flux. The spectral heat flux in Fig. 5(d) is similar to
the bulk case when �X /�InSb is close to 1. However, with
an increase in �X /�InSb, contributions from low frequen-
cies diminish, while those from high frequencies grow. This
is because the Debye temperature ratio greatly influences
the spectral overlap of phonon density of states (DOS). In
turn, this overlap dictates the spectral transmission function
in DMM.

Comparison of GaSb-InSb and AlP-InSb in Figs. 5(e) and
5(f) further clarifies the vibrational spectra mismatch and its
effects on the spectral heat flux distribution and the relaxation
length of phonon nonequilibrium. The GaSb-InSb interface
has a considerable overlap of phonon DOS in the low fre-
quency range while the overlap in the AlP-InSb interface
mostly occurs in a much higher frequency range. This leads
to the different spectral heat flux distributions in GaSb-InSb
and AlP-InSb in Fig. 5(d); the low frequency phonons with
long mean free paths carry more heat in GaSb-InSb than
in AlP-InSb. As a result, the relaxation length is larger in
GaSb-InSb than in AlP-InSb, as shown in Fig. 5(c).

IV. CONCLUSION

In this work, we comprehensively analyzed the ther-
mal resistance across 36 III-V interfaces by solving the
Peierls-Boltzmann transport equation with ab initio phonon
dispersion and three-phonon scattering rates. The DMM is
assumed for the phonon transmission across the interface.
Our simulations revealed significant nonequilibrium effects
for the interfacial thermal resistance. For all 36 interfaces, the
overall interfacial thermal resistance considering nonequilib-
rium phonons is two to three times larger than the interfacial
thermal resistance by the Landauer formalism which as-
sumes equilibrium distribution of phonons. We also found the
nonequilibrium effect is always pronounced in a lead with
lower Debye temperature between two leads constituting the
interface. Using the dimensionless form of nonequilibrium
resistance, we estimated the degree of phonon nonequilibrium
near the interface. All 36 interfaces show a clear correlation
between the degree of phonon nonequilibrium near the in-
terface and the Debye temperature mismatch; this indicates
that the acoustic vibrational spectra mismatch is the main
factor that determines the nonequilibrium phonons and hence
interfacial thermal resistance. This contrasts with the Lan-
dauer formalism from which interfacial resistance shows no
correlation with the Debye temperature mismatch. The relax-
ation lengths of the nonequilibrium phonons are discussed to
identify the extent of space where the nonequilibrium effect is
significant. Depending on the interface, the relaxation length
varies between 50 nm and 1.5 μm. In general, while the re-
laxation length is proportional to the phonon mean free paths
of the corresponding lead material, it also heavily depends
on the material in the opposite lead. A mismatch of acoustic
vibrational spectra alters the spectral distribution of the heat
flux. Given the strong function of the phonon mean free path
with respect to the phonon frequency, this results in the largely
varying relaxation length of nonequilibrium phonons depend-
ing on the combination of lead materials.
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