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Computational design of optimal heterostructures for β-Ga2O3
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Ga2O3 is a wide-band-gap material of interest for a wide variety of devices, many of these requiring
heterostructures, for instance, to achieve carrier confinement. A common method to create such heterostructures
is to alloy with In2O3 or Al2O3. However, the lattice constants of these materials are significantly different
from those of Ga2O3, leading to large amounts of strain in the resulting heterostructure. If the thickness of the
heterostructure is increased, this can lead to cracking. By considering alloys of In2O3 and Al2O3, the lattice
constants can be tailored to those of Ga2O3, while still keeping a sizable conduction-band offset. We use density
functional theory with hybrid functionals to investigate the structural and electronic properties of In2O3 and
Al2O3 alloys in the bixbyite, corundum, and monoclinic structures. We find that the lattice constants increase with
In incorporation. Band gaps decrease nonlinearly with increasing In concentration. We find the (In0.25Al0.75)2O3

monoclinic structure to be of particular interest, as it closely matches the Ga2O3 lattice constants while providing
an indirect/direct band gap of 5.94/5.70 eV and a conduction-band offset of 1 eV compared to Ga2O3.
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I. INTRODUCTION

As a wide-band-gap semiconductor (4.7 eV) [1,2], Ga2O3

is a promising material for solar blind photodetectors, which
have a variety of applications across different fields including
military surveillance, medical imaging, chemical and biolog-
ical analysis, flame detection, and secure communications
[3–7]. Additionally, Ga2O3 possesses a large breakdown field
(5–9 MV cm−1) [8,9], which makes it a suitable material for
high-power devices such as field-effect transistors and Schot-
tky diodes [9,10].

Fabricating such devices commonly requires creating het-
erostructures with a conduction-band offset to confine charge
carriers. One way to achieve this without changing the crystal
structure is by alloying Ga2O3 with Al2O3 [11–18].

In and Al, being in the same column in the periodic table as
Ga, are common candidates for alloying with Ga2O3 [19–25].
However, the ground state structures of Ga2O3, In2O3, and
Al2O3 are all different: Ga2O3 occurs in a monoclinic crystal
structure [referred to as β-Ga2O3, and shown in Fig. 1(a)],
with C2/m symmetry, In2O3 in a cubic bixbyite structure
with Ia3̄ symmetry [Fig. 1(b)], and Al2O3 in a corundum
structure with R3c symmetry (known as α-Al2O3) [Fig. 1(c)].
The lattice constants of these three materials are all different,
with those of In2O3 being the largest, followed by Ga2O3, and
those of Al2O3 being the smallest. This ordering of lattice
constant lengths occurs for both the ground state structures
and for the (meta) stable polymorphs [19–22].

This mismatch in lattice constants is undesirable, as it
creates strain in the resulting alloy. If the thickness of the het-
erostructure is sufficiently large, cracking can occur [26–28].
Here, we propose a solution to this strain by considering alloys
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of In2O3 with Al2O3, which we can tailor to lattice-match
monoclinic Ga2O3, to create optimal heterostructures.

We use density functional theory (DFT) at the hybrid
functional level to investigate the structural and electronic
properties of (InxAl1−x )2O3 alloys. We determine the lowest-
energy structures for each In concentration, considering the
ground state structures (bixbyite and corundum), as well as
the monoclinic structure (the desired structure as it is the
ground state structure of Ga2O3). The lowest-energy config-
urations for each of the structures are subsequently used to
find the changes in lattice constants, band gaps, and valence-
and conduction-band offsets as a function of In concentration.
As expected from Vegard’s law, the lattice constants increase
linearly with In content, as In2O3 has larger lattice constants
compared to Al2O3. In contrast, the band gap decreases non-
linearly with increasing In content, since the band gap of
In2O3 is 3.14 eV, and thus smaller than the 8.81 eV band
gap of Al2O3. We find that an alloy with 25% In and 75% Al
forms a perfect lattice match with Ga2O3, while still having
a large conduction-band offset. Considering In2O3-Al2O3 al-
loys therefore increases the design space for devices, allowing
for different band-gap and lattice constant values than those
that are possible when only looking at (AlxGa1−x )2O3 and
(InxGa1−x )2O3 alloys.

II. METHODOLOGY

All DFT calculations were performed using projector
augmented-wave (PAW) potentials [29] as implemented in
the Vienna ab initio simulation package (VASP) [30,31]. In
order to obtain the necessary accuracy for the structural and
electronic properties, the Heyd-Scuseria-Ernzerhof (HSE06)
hybrid functional with the mixing parameter set to 32%
was used [32]. To ensure consistency with previous re-
sults and to guarantee accurate energetic ordering, the In
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FIG. 1. (a) The primitive unit cell of corundum Al2O3. (b) The
primitive unit cell of bixbyite In2O3 with the distorted octahedra
shown in dark gray/purple and the regular octahedra sites shown in
light pink/purple. (c) The primitive unit cell of monoclinic Ga2O3

with the cations colored by site coordination. The octahedral sites
are shown in orange, while the tetrahedral sites are shown in green.

pseudopotential with d electrons as part of the valence was
used [19,33,34]. All calculations were performed using a
plane-wave expansion cutoff of 500 eV with all structures
relaxed until the forces were smaller than 10 meV/Å and
all stresses were smaller than 0.5 meV/Å3. A Monkhorst-
Pack 4 × 4 × 4 k-point grid was used for the corundum and
primitive monoclinic calculations, a 6 × 4 × 4 k-point grid
for the calculations using the conventional monoclinic cell,
and a 2 × 2 × 2 k-point grid for the bixbyite calculations. In
order to align the band edges of the alloys on an absolute
energy scale using the vacuum level, we also calculated oxide
surfaces, which were generated from primitive alloy cells.

TABLE I. Calculated and experimental lattice constants and
band gaps for the ground state structures of Ga2O3, Al2O3, and
In2O3.

β-Ga2O3 α-Al2O3 In2O3

Calc. Expt. Calc. Expt. Calc. Expt.

Symmetry Monoclinic Corundum Bixbyite
Space group C2/m R3c Ia3̄
a (Å) 12.25 12.21a 4.74 4.76b 10.11 10.12c

b (Å) 3.04 3.04a 4.74 4.76b – –
c (Å) 5.79 5.80a 12.94 12.99b – –
β 103.82◦ 103.83◦a – – – –
E direct

gap (eV) 4.83 4.76d 8.81 8.8e 3.14 2.9f

aReference [35]; bReference [36]; cReference [37]; dReference [38];
eReference [39]; fReference [40].

Nonpolar (110) surfaces are used, with at least 25 Å of oxide
and 25 Å of vacuum.

III. RESULTS AND DISCUSSION

We consider alloys with monoclinic, corundum, and
bixbyite structures. For the monoclinic alloys, both the 10-
atom primitive unit cell and the 20-atom conventional unit
cell are used to perform calculations. We use the 10-atom
primitive unit cell for the corundum alloys, and bixbyite cal-
culations are performed using the 40-atom primitive unit cell.
Our calculated lattice constants and band gaps are listed in
Table I with a comparison to experimental values.

A. Alloy energetics

The different ground state structures, shown in Fig. 1,
have different cation bonding environments. The corundum
and bixbyite cells only have octahedrally coordinated cations,
while the primitive monoclinic cell consists of two octahe-
drally coordinated and two tetrahedrally coordinated cation
sites. All the cation sites in the corundum cell are identical,
while there are two different types of octahedral sites in the
bixbyite structure: regular octahedra with longer bond lengths
and distorted octahedra with shorter bond lengths. To deter-
mine the lowest-energy structures for each composition, these
differences in site coordination are considered.

We use the enthalpy of formation (�H) to characterize the
relative stability of each possible alloy, which is defined as

�H[(InxAl1−x )2O3] = E [(InxAl1−x )2O3]

− (1 − x) E [Al2O3] − x E [In2O3],

(1)

where E [Al2O3] is the energy per f.u. of corundum Al2O3 and
E [In2O3] is the energy per f.u. of bixbyite In2O3.

We first determine the most favorable cation coordination
environments for the monoclinic and bixbyite cells. Starting
with monoclinic Al2O3, we replace one Al atom with an
In atom for both an octahedral and a tetrahedral site. The
enthalpy of formation is then calculated for each structure
to determine the most likely configuration. The results for
a single In atom replacement are then used to repeat the
analysis for larger concentrations of In. A similar procedure is
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FIG. 2. Enthalpy of formation per formula unit (f.u.) as function
of In content for the most favorable configurations for each crystal
structure. The colors and symbols represent each of the structures:
Blue circles represent corundum, red triangles represent bixbyite,
and green squares represent monoclinic. The lowest-energy configu-
rations are given by solid symbols and the higher-energy structures
are represented by the semitransparent symbols. The dashed lines
connect each of the lowest-energy points with straight lines and are
shown as a visual aid.

followed for the bixbyite structure, considering the distorted
and undistorted octahedral sites. In the monoclinic struc-
ture, In prefers to occupy octahedral sites. For the bixbyite
structure, single Al or In atoms prefer to occupy the regular
octahedra, but this preference is lost at higher concentrations.

Figure 2 shows the formation enthalpies as a function of In
concentration for the three different crystal structures, with the
corundum structures represented by blue circles, the bixbyite
structures by red triangles, and the monoclinic structures by
green squares. The lowest-energy structures are shown with
solid symbols and higher-energy configurations are indicated
by semitransparent symbols. Consistent with the ground state
structures of Al2O3 and In2O3, corundum structures have
the lowest formation enthalpy for In concentrations of x =
0.25 and smaller. For larger In concentrations (x = 0.75 and
greater), bixbyite structures are energetically favored. For
concentrations around x = 0.5 the monoclinic structure is the
most energetically favored. This indicates that 50-50 InAlO3

alloys will prefer monoclinic crystal structures, and not the
crystal structures of their ground states (bixbyite or corun-
dum). The reason behind this stabilization is that for these
concentrations, ordered alloys, where all the In atoms occupy
octahedral positions and all the Al atoms occupy tetrahedral
positions, are formed. The bonding environments around Al
and In closely resemble bonding environments in their bulk
structures, lowering the energy of these structures. Note that
a similar stabilization of ordered monoclinic structures has
been observed in alloys of Ga2O3 with Al2O3 [19,23,24]
and of Ga2O3 with In2O3 [20,25]. Disordered alloys (see the
semitransparent symbols) are much higher in energy.

B. Lattice constants and lattice matching to β-Ga2O3

For each of the lowest enthalpy configurations, we plot
in Fig. 3 the pseudocubic lattice constant (the cube root of
the volume) as a function of In content (x) for each of the

FIG. 3. Pseudocubic lattice constant as a function of In content
for the lowest enthalpy corundum (blue), bixbyite (red), and mono-
clinic (green) structures given by Fig. 2. The solid lines are linear
interpolations.

crystal structures. We use the pseudocubic lattice constant to
compare between the different crystal structures, as it is a
single number that does not depend on the crystal symmetry
(as compared to the three lattice constants and angles).
Independent of the crystal structure, the pseudocubic lattice
constant increases with the In concentration, consistent with
the oxygen bond lengths in the ground state structures: The
In-O bond in bixbyite In2O3 is longer than the Al-O bond in
α-Al2O3. The increase in the pseudocubic lattice constant is
linear as In concentration increases, following Vegard’s law.
However, the monoclinic structure shows a kink at x = 0.5,
with a different linear slope before and after that concentra-
tion. The reason for this is that a different cation sublattice is
being occupied with In: For In concentrations smaller than
x = 0.5, only octahedral sites are occupied with In atoms.
Since only 50% of the sites in the monoclinic structure are
octahedral [see Fig. 1(c)], the tetrahedral sites start to be filled
after x = 0.5, giving rise to a different slope.

Of particular interest is the 25% In monoclinic struc-
ture. It has monoclinic lattice constants of a = 3.03 Å, b =
12.22 Å, c = 5.79 Å, and β = 102.88◦. These lattice con-
stants are quite close to those of monoclinic Ga2O3 (a =
3.04 Å, b = 12.25 Å, c = 5.79 Å, and β = 103.82◦). Creating
heterostructures of monoclinic Ga2O3 and (In0.25Al0.75)2O3

would therefore introduce minimal strain. Note that the mon-
oclinic structure has a slightly larger enthalpy of formation
(0.05 eV/f.u.) compared to the corundum structure. This en-
thalpy difference is sufficiently small that growth kinetics can
easily overcome it, especially when growing on a monoclinic
Ga2O3 substrate.

C. Electronic properties and band alignment

Next, we investigate how the band gap changes with in-
creasing In concentration, as shown in Fig. 4. For each of
the crystal structures, the band gap decreases as In content
increases, which is commensurate with In2O3 possessing a
smaller band gap than Al2O3. This decrease is not linear,
which we can characterize using the bowing parameter b,
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FIG. 4. Direct band gap at � as a function of In content in each
of the crystal structures considered. The corundum structures are
represented by the blue circles, the bixbyite structures by the red
triangles, and the monoclinic structures by the green squares. The
solid lines are parabolic fits to Eq. (2) with b = 4.27 eV or corundum,
b = 4.9 eV for bixbyite, and b = 2.22 eV for monoclinic.

obtained by fitting our data to

Eg(x) = (1−x)Eg[Al2O3] + xEg[In2O3] − bx(1−x), (2)

where Eg[Al2O3] and Eg[In2O3] are the band gaps of the 100%
Al structure and the 100% In structure, respectively. From
Eq. (2), the bowing parameter for each of the crystal structures
is calculated as b = 2.22 eV for monoclinic, b = 4.27 eV for
corundum, and b = 4.9 eV for bixbyite. This indicates that
the band gaps of the monoclinic structures exhibit less bowing
(so are more linear) compared to the bixbyite and corundum
structures. The fitted curves are also shown in Fig. 4.

While the values shown by Fig. 4 are for the direct band
gap at �, many of the structures have an indirect band gap.
For the monoclinic structures, the band gap is indirect for
all concentrations of In, with monoclinic In2O3 possessing an
indirect gap of 3.04 eV (0.02 eV smaller than the direct gap)
and monoclinic Al2O3 an indirect gap of 7.21 eV (0.31 eV dif-
ference). The band gap is direct for the corundum In2O3 and
Al2O3 endpoints, but becomes indirect for the intermediate
concentrations. Fitting Eq. (2) to the indirect band gaps gives
slightly different values for the bowing, with b = 1.96 eV for
monoclinic, b = 4.91 eV for corundum, and b = 5.6 eV for
bixbyite.

For the 25% In alloy of interest, the direct band gap is
5.94 eV and the indirect band gap is 5.70 eV. This is larger
than the band gap of Ga2O3, indicating that confinement of
carriers in Ga2O3 might be possible.

To ascertain whether the difference in band gaps leads to
a beneficial conduction-band offset, we calculated the align-
ment of the valence- and conduction-band edges by relating
them to the vacuum level (which forms a common reference
energy). To do so, we constructed different slabs, with at least
25 Å of oxide and 25 Å of vacuum. We then use the planar-
averaged electrostatic potential in the direction perpendicular
to the surface [41] to obtain the alignment. The results are
shown in Fig. 5, with all energies relative to the valence-band
maximum (VBM) of monoclinic Al2O3, which is set to zero
energy.

FIG. 5. The absolute energies of the valence- and conduction-
band edges (in eV, relative to vacuum), as determined with slab
calculations for alloys of corundum (blue dashed line) and mono-
clinic (green dotted line) (In1−xAlx )2O3.

We find that most of the band-gap change in the
(In0.25Al0.75)2O3 alloy is reflected in the conduction band,
which steadily decreases as a function of indium content.
At 50% alloy content, the band positions are quite similar
to those of monoclinic Ga2O3. We also note that the band
alignment between monoclinic and corundum Al2O3 is within
0.1 eV of prior studies [19]. Most importantly, we find that
the (In0.25Al0.75)2O3 monoclinic alloy has a conduction-band
offset of 1 eV, so that any charge carriers in a heterostruc-
ture with Ga2O3 should localize in the conduction band
of Ga2O3. Combined with the lattice matching, this makes
(In0.25Al0.75)2O3 the ideal alloy to use in device applications.

IV. CONCLUSION

In summary, we used hybrid density functional theory to
design a monoclinic alloy that lattice matches monoclinic
Ga2O3, while providing a large conduction-band offset. To do
so, we investigated the structural and electronic properties of
(InxAl1−x )2O3 alloys. We considered bixbyite, corundum, and
monoclinic crystal structures. Lattice constants change lin-
early as a function of In concentration, except for monoclinic,
which exhibits a change in slope at the 50% In alloy. Band
gaps vary nonlinearly with In concentration with bixbyite and
corundum structures exhibiting more nonlinearity (bowing
parameters b of 4.9 and 4.27 eV) compared to monoclinic
alloys (b = 2.22 eV). The 25% In-content monoclinic al-
loy (In0.25Al0.75)2O3 is a perfect lattice match to monoclinic
Ga2O3 and also has a 1 eV conduction-band offset, making it
the ideal alloy to use for heterostructures with Ga2O3.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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