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Symmetry-enforced double Weyl points, multiband quantum geometry, and singular flat bands
of doping-induced states at the Fermi level

Moritz M. Hirschmann 1,* and Johannes Mitscherling 2,*

1RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
2Department of Physics, University of California, Berkeley, California 94720, USA

(Received 22 August 2023; revised 8 November 2023; accepted 18 December 2023; published 9 January 2024)

Two common difficulties in the design of topological quantum materials are that the desired features lie too
far from the Fermi level and are spread over a too-large energy range. Doping-induced states at the Fermi level
provide a solution, where nontrivial topological properties are enforced by the doping-reduced symmetry. To
show this, we consider a regular placement of dopants in a lattice of space group (SG) 176 (P63/m), which
reduces the symmetry to SG 143 (P3). Our two- and four-band models feature double Weyl points, Chern bands,
Van Hove singularities, nontrivial multiband quantum geometry due to mixed orbital character, and singular flat
bands. We relate these features to density-functional theory (DFT) calculations for dopant and vacancy bands of
lead apatite Pb10(PO4)6O and Pb10(PO4)6(OH)2, the van der Waals ferromagnet Cr2Ge2Te6, the semiconductor
SiC, and the 2D dichalcogenide MoS2.
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I. INTRODUCTION

Two difficulties in the study of topological band theory
[1,2] are that (i) the topological features [3–5] lie too far from
the Fermi level and (ii) are spread over a too-large energy
range. Challenge (i) can be addressed by extensive material
surveys [6–8], by pushing interstitial electrons into the gap of
a molecular crystal [9], or by defect states, within a gap in
the vicinity of the Fermi level [10–13]. Difficulty (ii) can be
avoided by narrow bands, which are known to occur in hexag-
onal systems [4,14,15]. Systems with narrow and flat bands
have attracted broad interest in the last years [16–29] due to
their interplay of quantum geometry and strong correlations.
Besides the well-known Berry curvature, in particular the
quantum metric—a distance measure between Bloch states of
close-by momenta [30]—relates to a diverse set of phenomena
[31–47], which is particularly important in the context of
narrow or flat bands [42–45].

To tackle the two aforementioned difficulties in find-
ing geometric narrow bands near the Fermi level, we build
on the idea of combining doping-induced in-gap states
with symmetry-enforced topology. Our approach is inspired
by density-functional theory (DFT) calculations on pris-
tine copper-doped lead apatite Pb9Cu(PO4)6(OH)2 [48] and
Pb9Cu(PO4)6O [49–51] that assumed the regular replacement
of one of the four lead atoms on the 4f Wyckoff positions
by copper. We show that the DFT band structure [48,49]
provides precisely an example of the desired scenario with
a topological band structure that arises due to the SG 143
(P3) of the assumed copper-doped crystal structure. Whereas
this arrangement of dopants has not yet been realized experi-
mentally in copper-doped lead apatite [52], we identify doped
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Cr2Ge2Te6 [53–55], doped SiC [56–58], and sulfur vacancies
in MoS2 [59–61] as candidates of analogous doping-induced
topological bands.

To describe the above systems, we construct minimal two-
and four-band tight-binding models, for which we identify
key topological and quantum geometric features, including
double Weyl points, Chern bands, nontrivial Berry curvature,
and a nonzero quantum metric for single and combined sets of
connected bands due to orbital mixing, and singular flat bands.
The flatness occurs due to destructive interference [26,62–
70], which resembles a higher-dimensional version of the
Creutz ladder [71] and enables further studies of its unique
physics [15,31,45,72–87] in combination with the nontrivial
multiband quantum geometry.

II. MINIMAL TIGHT-BINDING MODELS

We consider the rich topology of SG 176 (P63/m), the SG
of lead apatite [88,89]. It enforces band crossings on points,
lines, and planes [90,91]. For spinful bands this centrosym-
metric group leads to three Dirac nodal lines intersecting at
the A point as a result of the off-centered mirror symmetry mz

[92]. Systems with spinless representations of P63/m exhibit
always a nodal plane at kz = π [93] and Dirac points at kz = 0
are possible [90].

With doping one site per unit cell one should expect that the
space-group symmetry is in general reduced. In the absence
of a significant structural transition, the new band structure
exhibits still the (symmorphic) site symmetry. Specifically,
substituting one copper on the 4f Wyckoff position of lead
apatite, as assumed in DFT [48–51], reduces SG 176 to SG
143 (P3) with broken inversion symmetry [94]. The complex
spinless representation of P3 provides the minimal model
for just a pair of Weyl points at the time-reversal invariant
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FIG. 1. Two-band model for SG P3. [(a),(b)] Top and side view of the trigonal lattice with nearest-neighbor hopping terms, where
symmetry-related directions are shown in the same color. (c) Brillouin zone with TRIMs (orange), high-symmetry points (purple), and k-path
(red) that is used for the band structures with parameter sets A and B in (e) and (h), respectively. The parameters are summarized in Table I.
(d) Symmetry-enforced Chern numbers on planes of constant kz. Berry curvature �

xy
2 [(f),(i)] and quantum metric gxx

2 [(g),(j)] at kz = 0
corresponding to the models to the left.

momenta (TRIMs) � and A. In contrast, the spinful represen-
tations are known to exhibit eight Kramers-Weyl points [95].

A. Two-band model

To construct an effective model for the doping-induced
states in a lattice of SG P63/m, we assume that the relevant
states form a lattice with SG P3. Without loss of generality,
they occupy the 1a Wyckoff position of the trigonal unit cell.
We introduce all symmetry-allowed nearest-neighbor hopping
terms, see Figs. 1(a) and 1(b). To capture the band topol-
ogy in a symmetry-enforced fashion, we use the complex
representation of the threefold rotation C3, created by the
operators {d̂†

1 , d̂†
2 } corresponding to the rotation eigenvalues

e2π i/3 and e−2π i/3, respectively. This can capture any band
pair comprising dxz-, dyz-, dx2−y2 -, and dxy-orbital weights, see
Appendix A 1. We find the Hamiltonian

Hd (k) =
(

H11(k) H12(k)

H∗
12(k) H22(k)

)
(1)

with
H11(k) = − μd + t d

z+ cos(k · a3) + t d
z− sin(k · a3)

+t d
xy+[cos(k · a1)+ cos(k · (a1+a2)) + cos(k · a2)]

+ t d
xy−[sin(k · a1) − sin(k · (a1 + a2))

+ sin(k · a2)], (2)

TABLE I. Summary of the used parameters to capture approxi-
mately the key features of the DFT results in Refs. [48–51]. All units
are meV.

2-band A 2-band B 4-band C 4-band D

μd 10 0 250 20

t d
z+ –30 –8 –20 –10

t d
z− 5 2 –3 –2.5

t d
xy+ –5 –4 –20 –5

t d
xy− 30 5 –14 20

t̃ d
xy 15 6 14 10

μp 250 500

t p
z+ –70 –200

t p
z− 8 10

t p
xy+ 1 10

t p
xy− –20 80

t̃ p
xy –14 70

t d p
xy 70 50

t̃ d p
xy 100 10

t d p
xyz 14 10

t̃ d p
xyz 14 10
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FIG. 2. Four-band model for SG P3. [(a),(b)] Top and side view of the trigonal lattice with nearest- and next-nearest-neighbor hopping
terms, where symmetry-related directions are shown in the same color. [(e),(g)] Resulting band structures with the corresponding (orbital-
resolved) density of states (DOS) for parameter sets C and D, see Table I. [(c),(d)] Quantum metric gxx for band 2 and bands (12) with
parameter set C. [(f),(h)] Berry curvature �xy for bands 2 and (12) with parameter set C.

H22(k) = H11(−k), (3)

H12(k) = t̃ d
xy

[
cos(k · a1) + ei 2π

3 cos(k · (a1 + a2))

+ e−i 2π
3 cos(k · a2)

]
, (4)

where we use the lattice vectors a1 = a(1/2,−√
3/2, 0), a2 =

a(1/2,
√

3/2, 0), and a3 = c(0, 0, 1), setting a = c = 1. The
model has six parameters, the a1-a2-plane hoppings t d

xy± and
t̃ d
xy, the out-of-plane hoppings t d

z±, and the chemical poten-
tial μd . The subscripts denote the real-space directions and
whether the hopping is inversion symmetric (+) or anti-
symmetric (−). We provide longer-range hoppings and the
Hamiltonian in real space in the Appendixes A 2 and A 3. Two
band structures along the path sketched in Fig. 1(c) are shown
in Figs. 1(e) and 1(h) for different parameter sets, see Table I.

The band gap vanishes at � and A independent of param-
eters, as enforced by time-reversal symmetry. The gaps at M
and L (K and H) are identical and scale with |t̃ d

xy| (|t d
xy−|). The

splitting on �-A is proportional to |t d
z−|. The comparison of

the band curvatures at the band touching points � and A give
insight into the sign of t d

xy+ and its relative size compared to
|t̃ d

xy|, see Appendix A 4.

B. Four-band model

Inspired by the hybridization between the copper Cu and
extra oxygen O or (OH)2 orbitals, as seen in DFT [48–51],
we introduce a second site to our lattice on the 1b Wyck-
off position of space group P3. The resulting second band
pair exhibits the complex representation of P3, referred to
as { p̂†

1, p̂†
2}. This can capture any band pair comprising

px- and py-orbital weights. Our four-band model takes the
form

H4×4(k) =
(

Hd (k) Hd p(k)

H†
d p(k) Hp(k)

)
. (5)

The hopping terms, see Figs. 2(a) and 2(b), within each
sublattice take the same form as in the two-band model.
Thus, we keep Hd (k) for the d sublattice and define Hp(k)
for the p sublattice by replacing d → p in all indices of
Hd (k) in Eq. (1). We give the exact form of the inter-
sublattice hopping Hd p(k) in Appendix B 1, the symmetries
and basis convention in Appendix B 2, and the real space
description in Appendix B 3. Two band structures are shown
in Figs. 2(e) and 2(g) for different parameter sets, see
Table I.
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III. RESULTS

A. Topology and quantum geometry

In a multiband system, not only the band dispersion
but also the quantum states generically exhibit a nontriv-
ial momentum dependence, which is described by quantum
geometry locally and topology globally. We introduce the pro-
jector formalism for multiband quantum geometry and apply
it to the two- and four-band models.

1. Projector formalism for multiband quantum geometry

We use the convenient mathematical description in terms
of band projectors Pn(k) = |un(k)〉〈un(k)| [39–41] with the
defining property Pn(k)Pm(k) = δnmPn(k). The projectors are
unaffected by the U (1) gauge ambiguity of the cell-periodic
Bloch wave function |un(k)〉 of each band n. Single-band
projectors are not well defined at the momenta of band touch-
ing. Thus, in addition to the projectors of each band, we
construct the projector on two bands isolated from the rest,
i.e., P(12)(k) = P1(k) + P2(k). This projector on the subsys-
tem is gauge invariant under U (2) gauge transformations [40].
Even if there are band crossings between the two bands, the
projector P(12) will be well defined for all momenta.

A projector Pj (k) on a single band or larger subspace
defines the corresponding quantum metric gαβ

j (k) and Berry

curvature �
αβ
j (k) via

gαβ
j (k) = 1

2 Tr[∂αPj (k) ∂βPj (k)], (6)

�
αβ
j (k) = Tr[Pj (k)∂αPj (k)∂βPj (k)] − (α ↔ β ), (7)

with trace Tr and momentum derivative ∂α = ∂kα
in direction

α. Note that the quantum metric is in general nonadditive,
that is gαβ

(12) = gαβ

1 + gαβ

2 + Tr[∂αP1∂βP2] when P(12) = P1 +
P2, where the last cross term involves the projector of both
bands 1 and 2 [40].

A two-band Hamiltonian in the Bloch basis can be writ-
ten in the form H (k) = d0(k) + dx(k)σx + dy(k)σy + dz(k)σz

with Pauli matrices σx, σy, and σz and momentum-dependent
functions d0(k), dx(k), dy(k), and dz(k). We do not write
the identity matrix explicitly. It is useful to define d (k) =√

dx(k)2 + dy(k)2 + dz(k)2. The projectors onto the two
bands take the form P±(k) = 1

2 (1 ± n(k) · σ ), where n(k) =
(dx(k), dy(k), dz(k))/d (k) and σ = (σx, σy, σz ) leading to the
commonly used expressions gαβ

± (k) = 1
2∂αn(k) · ∂βn(k) and

�
αβ
± (k) = ∓ 1

2 n(k) · (∂αn(k) × ∂βn(k)). Note that the quan-
tum metrics of both bands are identical and the Berry
curvatures have opposite signs.

The numerical evaluation of the quantum metric and Berry
curvature in the projector formalism is straightforward. For
a fixed momentum, we obtain the complex vector |un(k)〉 by
diagonalizing H (k) numerically and construct the respective
projector matrix. The gauge invariance enables the use of dis-
crete derivatives of the projectors, i.e., ∂xPj (k) ≈ 1

2δ
[Pj (kx +

δ, ky, kz ) − Pj (kx − δ, ky, kz )] for sufficiently small δ > 0. Nu-
merical accuracy can be checked by projector identities such
as (∂xPn(k))Pm(k) + Pn(k)(∂xPm(k)) = 0 for n 
= m.

2. Application to the two- and four-band models

As expected for spinless representations [96,97], we find
double Weyl points with Chern number ν = −2 and ν = +2
at � and A, respectively, as shown in Fig. 1(d) [98]. We
show the Berry curvature �

xy
2 in Figs. 1(f) and 1(i) and the

quantum metric gxx
2 in Figs. 1(g) and 1(j) for kz = 0 and band

2, where the Weyl points lead to divergences. Depending on
the gap size on �-A, see Appendix A 4, the Berry curvature in
Fig. 1(f) is larger compared to Fig. 1(i). Whereas the quantum
metric is only large around � in Fig. 1(j), it has extended
regions with larger contributions in Fig. 1(g). To illustrate that
the dependence on the �-A gap is a generic feature, we discuss
the plane kz = π/2 in Appendix A 5. More than two bands are
required to see nontrivial effects of multiband geometry since
the geometry of the combined bands vanishes for a two-band
model, gxx

(12) = �
xy
(12) = 0.

In Figs. 2(c), 2(d), 2(f), and 2(h), we show the Berry curva-
ture �xy and quantum metric gxx at kz = π for the four-band
model C, cf. Appendix B and Table I, with band structure and
density of states shown in Fig. 2(e). Here, both d and p sites
have the same chemical potential μd = μp, which requires a
strong d-p coupling Hd p in order to obtain the shown band gap.
This implies a large orbital mixing between bands. Indeed,
the quantum metric gxx

2 of band 2 shows additional features
at H, see Fig. 2(c), which are not present in the two-band
model. As shown in Fig. 2(d), these features are present in
the quantum metric gxx

(12) of the combined bands 1 and 2.
This metric shows no singularity, as expected, because the
singularities are compensated by the additional cross-term
[40]. In Figs. 2(f) and 2(h) we show the Berry curvature �

xy
2

and �
xy
(12), respectively. Similarly to the quantum metric, we

observe no divergence and find additional contributions at H
due to the band gap minimum between band 2 and 3. The
four-band model D, see Table I, has only weak d-p coupling
and does not show significant additional features compared to
the two-band model.

The quantum geometry of an isolated subspace of bands is
an interesting property connected to new geometric effects in
narrow or flat bands, where the interaction strength exceeds
the subspace band width [31,45,76,77]. A key quantity is the
integrated quantum metric ḡ(12) ≡ ∫

d3k
V tr g(12)(k) with V =

16π3/
√

3, which can be interpreted as the gauge-invariant
part of the Wannier function spread in real space [99]. We find
ḡ(12) = 0.26 and ḡ(12) = 0.03 for model C and D, respectively.
Geometric contributions to observables are, thus, expected to
be significantly larger for model C than D.

B. Singular flat bands

Systems with flat bands are promising candidates for phe-
nomena that rely dominantly on quantum geometry. As seen
in Fig. 1(h) the two-band model appears to exhibit a flat-band
limit with nonvanishing hopping terms, which we identify in
the following as a singular flat band.

1. Flat-band conditions for general two-band models

The upper and lower band of a generic two-band Hamil-
tonian take the form E±(k) = d0(k) ± d (k). Using this
particular form of the eigenvalues, we obtain a flat band for
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one of the two bands when the condition

d (k)2 = d2
x (k) + d2

y (k) + d2
z (k) = (d0(k) + c0)2 (8)

is fulfilled for a momentum constant c0. In this case, we
have (i) E+(k) = 2d0(k) + c0 and E−(k) = −c0 for d0(k) +
c0 > 0, and (ii) E+(k) = −c0 and E−(k) = 2d0(k) + c0 for
d0(k) + c0 < 0. Thus, we obtain conditions on the parameters
in the Hamiltonian by enforcing

f (k) = d2
x (k) + d2

y (k) + d2
z (k) − (d0(k) + c0)2 = 0 (9)

for all relevant momenta k, for which the band should be
flat. If we assume that f (k) is an analytic function, which is
fulfilled for tight-binding Hamiltonians, we can alternatively
Taylor expand f (k) around a specific momentum with finite
band gap and solve the (generically infinite) set of equa-
tions enforcing the expansion coefficients to vanish. Applying
this strategy to the two-band model in Eq. (1), we find a flat
band at kz = 0, π for 2t d

xy+ = ±|t̃ d
xy| and 2t d

xy− = ±√
3|t̃ d

xy|.
The band remains flat for all kz if t d

z− = 0. If t d
z− 
= 0 the flat

band gets dispersive for kz 
= 0 as expected due to the finite
Chern number.

2. Compact localized state (CLS)

Without loss of generality, let us assume that the lower
band is flat. Using the condition in Eq. (9), the flat-band eigen-
vector fulfilling H (k)vflat(k) = −c0 vflat(k) takes the form

vflat(k) = 1

αk

(
dz(k) − d0(k) − c0

dx(k) + idy(k)

)
(10)

with αk = √
2
√

(d0(k) + c0)(d0(k) + dz(k) + c0), see
Appendix C. Following J.-W. Rhim and B.-J. Yang [100], the
corresponding CLS is given by

|χR〉 =
∑

R′
w1

R,R′ |R′, d1〉 +
∑

R′
w2

R,R′ |R′, d2〉 (11)

with

wR,R′ = cχ√
Nc

∑
k

αk eik·(R′−R)vflat(k), (12)

where wα
R,R′ are the components of wR,R′ for the two distinct

d-orbital states d̂1 and d̂2. |R, dα〉 denotes the state of α = 1, 2
within the unit cell labeled by R. Nc is the number of unit
cells and cχ is the normalization constant. The CLS given in
Eq. (11) is an eigenfunction of the flat band. Note that the
translation-symmetry-related |χR〉 for different R may not be
orthogonal. They do not necessarily form a complete basis
when αk = 0 for some momentum k [100].

We give the following concrete example by choosing
t d
xy+ = −1/4, t d

xy− = −√
3/4, t̃ d

xy = −1/2, t d
z+ = −1/2, and

μd = −1/4, where we obtain a flat lower band at energy
E−(k) = −1 for kz = 0 and E−(k) = 0 for kz = π with band
gap E+(k) − E−(k) = 2 at momentum M = (π,−π/

√
3, 0).

The corresponding band dispersion is shown in Appendix C.
It resembles the band structure shown in Fig. 1(h). The flat-
band eigenvector at kz = 0 (π ) constructed as described above

FIG. 3. Visualization of the compact localized state (CLS) of the
singular flat band and the destructive interference for triangles (a) and
lines (b). The orbital weights (green) and hoppings (red, purple)
involve w = (1 + i

√
3)/2.

reads

vflat(k) = 1

αk

[(−3
0

)
+

(
w∗
w

)
eik·(a1+a2 )

+
(

w

w

)
e−ik·(a1+a2 ) +

(
w

w∗

)
eik·a2 +

(
w∗
w∗

)
e−ik·a2

+
(

w

−1

)
eik·a1 +

(
w∗
−1

)
e−ik·a1

]
(13)

with w = 1
2 (1 + i

√
3) = −e−i2π/3 and its complex conjugate

w∗. Using Eqs. (11) and (12), we can read off the CLS.
One of these nonorthogonal CLS involves a site and its six
nearest neighbors in the x-y plane, see Fig. 3. The localization
crucially relies on the destructive interference between the two
orbitals as sketched in Figs. 3(a) and 3(b). This destructive
interference via intra- and interorbital hopping resembles the
1d Creutz ladder [71]. Since the normalization αk vanishes at
� = (0, 0, 0), see Appendix C, and lifting the band crossing
leads to a Chern band for t d

z− 
= 0, the flat bands for kz = 0 and
kz = π are singular and the set of all translation-related CLS
do not form a complete basis [100].

IV. DISCUSSION

A. Application to pristine copper-doped lead apatite

Our band structures shown in Figs. 1(e), 1(h), 2(e), and 2(g)
are able to reproduce most of the key features reported in DFT
studies on copper-doped lead apatite that assumed the same
regular dopant placement [48–51]. For the two-band model
we have identified two parameter sets A and B, see Table I,
to capture the band structure for different relative positions of
copper and extra oxygen sites [51]. Parameter set B generates
the reported almost flat band [48,51,101]. Our models show
saddle-point Van Hove singularities in all bands at M and L
with an energy profile as reported in Ref. [51].
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The four-band model with parameter set C, see Table I, is
constructed to reproduce the nearly equal distribution of p and
d orbitals in the density of states, shown in Fig. 2(e), which
was seen in the DFT results [48–51] for bands 1 and 2. The
weak d character of bands 3 and 4 in the DFT results cannot be
captured by just four bands. Model D corresponds to a weakly
coupled four-band model with mixing of d and p orbitals of at
most 10%.

Later DFT studies include tight-binding models with pa-
rameters reasonably close to ours [102–109]. Note that these
models use cubic harmonics, whereas our models correspond
to C3-symmetric combinations of d and p orbitals, see Ap-
pendix A 1. The topology and quantum geometry analyzed in
Ref. [102] align with our conclusions.

We emphasize that there is a discrepancy between the
assumed pristine material structure in DFT and the ma-
terials studied experimentally. Copper-doped lead apatite
Pb9Cu(PO4)6O samples were found to exhibit comparable
substitution on both 4f and 6h Wyckoff positions as well as
a clustering of copper [52]. Since the site symmetry of 6h
only comprises mirror symmetry, no complex representation
exists, and therefore a metallic normal state in the absence
of interactions, as described in the present paper, is not ex-
pected for these samples. The originally proposed unusual
resistivity signatures of copper-doped lead apatite (referred
to as “LK-99”) [110,111] have been connected to a metal
insulator transition [112], which was experimentally related
to CuS2 impurities [52,102,113,114].

B. Further candidate materials

Our results apply to a range of doped variants of estab-
lished semiconductors. In the rhombohedral van der Waals
ferromagnet Cr2Ge2Te6 [53,54] Mn doping increases the car-
rier density, which coincides with the appearance of a complex
representation of the C3 symmetry, as described in Eq. (1),
and is found to improve the thermoelectric figure of merit
[55]. Doped monolayers of the well-studied semiconductor
SiC [56,57] have in-gap states with bands resembling models
A or B at kz = 0, dependent on the chosen dopant [58]. In the
2D dichalcogenide MoS2 sulfur vacancies act as active centers
for hydrogen evolution catalysis [59] and, interestingly, also
lead to an impurity band that is qualitatively described by
model A [60,61].

V. CONCLUSIONS

We discussed how doping-induced states in semiconduc-
tors and insulators enable the design of topological and
geometrical band structures by choosing a suitable site sym-
metry. The simplicity yet richness of the constructed two-
and four-band model makes them an optimal starting point to
study the implications of the discussed nontrivial multiband
quantum geometry and singular flat bands. Analogously to
the presented example, our method can be applied to other
dopant configurations and other doped insulating materials
[55,58,61,115], where symmetry-enforced band crossings oc-
cur whenever a complex representation exists due a three-,
four-, or sixfold rotation symmetry.
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APPENDIX A: TWO-BAND MODEL

1. Symmetry operations

The orbital character of our basis states is introduced by
the imposed symmetries. We represent space group P3 com-
prising C3 rotation and time reversal θ by

U d
C3

=
(

ei 2π
3 0

0 e−i 2π
3

)
and θ =

(
0 1
1 0

)
K, (A1)

respectively, where K refers to the complex conjugation oper-
ator. With the above definitions our two-band model in Eq. (1)
fulfills (

U d
C3

)†
H (k)U d

C3
= Hd

(
C−1

3 k
)
, (A2)

θHd (k)θ = Hd (−k), (A3)

where C3 is the conventional action on spatial coordinates,

C3 =
(

cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)
. (A4)

This complex representation can model any C3-symmetric
superposition of orbitals such as d orbitals. If these orbitals
are expressed in spherical harmonics Y m

l (θ, ϕ), the quantum
number m and the eigenvalues λC3 of threefold rotation fulfill
λC3 = exp(im2π/3). Thus, the first (second) component of
our basis can represent any superposition of states described
by m = 1,−2 (m = −1, 2). Expressed in cubic harmonics,
the complex representation may exhibit contributions from
(dxz, dyz) and (dxy, dx2−y2 ), which comprise states with |m| = 1
and |m| = 2, respectively.

2. Possible additional symmetry-allowed hopping terms

In the main text, we have considered only nearest-neighbor
hopping terms. To fit the model to a specific band structure,
we also provide second- and third-nearest-neighbor hopping
terms, with distances in real space

√
2 and

√
3 in units of the

lattice constant, respectively. The second-nearest neighbors
that occur are the six vectors shown in Fig. 1(a) combined
with a step in the a3 direction, which result in a Hamiltonian
δH11(k) that can be added to H11(k) in Eq. (2). Due to the
absence of mirror or additional rotation symmetries in the site
symmetry, this corresponds to six generally different terms in
δH11(k), see Eqs. (A5) and (A6) below. The terms in δH11(k)
can be used to describe anisotropy along the kz direction, e.g.,
the line H2-K-H similar to t d

z−. But unlike t d
z− the longer range

δH11(k) acts differently on the axes �-A and H2-K-H. The
third-nearest-neighbor terms δH12(k) are given in Eq. (A7)
below,
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δH11(k) = t d
1,xyz+(cos(k · (a1 + a3)) + cos(k · (−a1 − a2 + a3)) + cos(k · (a2 + a3)))

+ t d
2,xyz+(cos(k · (a1 − a3)) + cos(k · (−a1 − a2 − a3)) + cos(k · (a2 − a3)))

+ t d
1,xyz−(sin(k · (a1 + a3)) + sin(k · (−a1 − a2 + a3)) + sin(k · (a2 + a3)))

+ t d
2,xyz−(sin(k · (a1 + a2 + a3)) + sin(k · (−a2 + a3)) + sin(k · (−a1 + a3)))

+ t d
3,xyz−(sin(k · (a1 − a3)) + sin(k · (−a1 − a2 − a3)) + sin(k · (a2 − a3)))

+ t d
4,xyz−(sin(k · (a1 + a2 − a3)) + sin(k · (−a2 − a3)) + sin(k · (−a1 − a3))), (A5)

δH22(k) = δH11(−k), (A6)

δH12(k) = t̃ d
1,xy

(
cos(k · (2a1 + a2)) + ei 2π

3 cos(k · (−a1 − 2a2)) + e−i 2π
3 cos(k · (−a1 + a2))

)
+ t̃ d

2,xy

(
cos(k · (a1 + 2a2)) + ei 2π

3 cos(k · (a1 − a2)) + e−i 2π
3 cos(k · (−2a1 − a2))

)
. (A7)

3. Real-space version of the tight-binding Hamiltonian

We Fourier transform the tight-binding Hamiltonian for the two-band model in Eq. (1) to real space via

d̂k,ν = 1√
Nc

∑
j

d̂ j,νe−ik·(R j+ρd ) (A8)

with lattice vector R j1, j2, j3 = j1a1 + j2a2 + j3a3, total number of unit cells Nc, and annihilation operator d̂ν of the orbital ν =
1, 2 at the unit-cell position ρd = (0, 0, 0). We obtain

Ĥ = Ĥ11 + Ĥ22 + Ĥ12 + Ĥ†
12 − μd

∑
j

(d̂†
j,1d̂ j,1 + d̂†

j,2d̂ j,2) (A9)

with

Ĥ11 =
∑

j

[
t d
xy

2

(
d̂†

j+ j1,1
d̂ j,1 + d̂†

j,1d̂ j+ j1+ j2,1
+ d̂†

j+ j2,1
d̂ j,1

) + tz d̂†
j+ j3,1

d̂ j,1

]
+ H.c., (A10)

Ĥ22 =
∑

j

[
(t d

xy)∗

2

(
d̂†

j+ j1,2
d̂ j,2 + d̂†

j,2d̂ j+ j1+ j2,2
+ d̂†

j+ j2,2
d̂ j,2

) + (tz )∗ d̂†
j+ j3,2

d̂ j,2

]
+ H.c., (A11)

with t d
xy = t d

xy,+ + it d
xy,− and Hermitian conjugate H.c. as well as

Ĥ12 =
∑

j

t̃ d
xy

2

[
(d̂†

j+ j1,1
d̂ j,2 + d̂†

j,1d̂ j+ j1,2
) + ei 2π

3 (d̂†
j+ j1+ j2,1

d̂ j,2 + d̂†
j,1d̂ j+ j1+ j2,2

) + e−i 2π
3 (d̂†

j,1d̂ j+ j2,2
+ d̂†

j+ j2,1
d̂ j,2)

]
, (A12)

and Ĥ21 = (Ĥ12)∗.

4. Effect of the parameters on several model properties

We give several relations between basic band structure
properties and the five model parameters, the a1-a2-plane
hoppings t d

xy± and t̃ d
xy and the out-of-plane hoppings t d

z±. Note
that t̃ d

xy is in general complex, whereas the other parameters
are real. We focus on the high-symmetry points � = (0, 0, 0),
M = (π,−π/

√
3, 0), K = (4π/3, 0, 0), A = (0, 0, π ), L =

(π,−π/
√

3, π ), and H = (4π/3, 0, π ).

a. Size of direct band gaps at high-symmetry
points and on the �-A line

We define the size of the direct band gaps as �k =
E+(k) − E−(k) and obtain

�� = 0, �M = 4|t̃ d
xy|, �K = 3

√
3|t d

xy−|, (A13)

�A = 0, �L = 4|t̃ d
xy|, �H = 3

√
3|t d

xy−|. (A14)

We see that �� = �A = 0 as expected. Furthermore, �M =
�L and �K = �H . The splitting on the symmetry line �-A,
that is k = (0, 0, kz ) is given by

��-A = 2|t d
z− sin(k · a3)|, (A15)

with maximal value �max
�-A = 2|t d

z−| for kz = π/2.

b. Band curvature at � and A in various directions

The momentum expansion of the two bands at
� = (0, 0, 0) in direction v�-M = (M − �)/|M − �| =
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TABLE II. The parameter dependence of the curvature trends at
� and A in direction M, K and L, H , respectively. ↗ indicates a
positive curvature. ↘ indicates a negative curvature. The missing
combination (↘ ↗) is inconsistent with the fixed definition of the
lower and upper band and, thus, left out.

E+ E− Conditions

↗ ↗ 2|t d
xy+| > |t̃ d

xy| and t d
xy+ < 0

↘ ↘ 2|t d
xy+| > |t̃ d

xy| and t d
xy+ > 0

↗ ↘ |t̃ d
xy| > 2|t d

xy+|

(
√

3/2,−1/2, 0) and vG-K = (K − �)/|K − �| = (1, 0, 0)
reads

E+(k v�-M) = E+(k v�-K )

=
(

3t d
xy+ + t d

z+ − μd

)
+ 3

8

(
|t̃ d

xy| − 2t d
xy+

)
k2 + O(k3),

(A16)

E−(k v�-M) = E−(k v�-K )

=
(

3t d
xy+ + t d

z+ − μd

)
− 3

8

(
|t̃ d

xy| + 2t d
xy+

)
k2 + O(k3).

(A17)

The momentum expansion of the two bands at A = (0, 0, π )
in direction vA-L = (L − A)/|L − A| = (

√
3/2,−1/2, 0) and

vA-H = (H − A)/|H − A| = (1, 0, 0) reads

E+(k vA-L) = E+(k vA-H)

=
(

3t d
xy+ − t d

z+ − μd

)
+ 3

8

(
|t̃ d

xy| − 2t d
xy+

)
k2 + O(k3),

(A18)

E−(k vA-L) = E−(k vA-H)

=
(

3t d
xy+ − t d

z+ − μd

)
− 3

8

(
|t̃ d

xy| + 2t d
xy+

)
k2 + O(k3).

(A19)

We read off six different scenarios. If |t̃ d
xy| = 2|t d

xy+| or |t̃ d
xy| =

−2|t d
xy+|, the upper or the lower band remains flat. We con-

clude the following trends: (i) E+ has positive curvature if
|t̃ d

xy| > 2t d
xy+, (ii) E+ has negative curvature if |t̃ d

xy| < 2t d
xy+,

(iii) E− has positive curvature if |t̃ d
xy| < −2t d

xy+, and (iv) E−
has negative curvature if |t̃ d

xy| > −2t d
xy+. We see that the trends

depend on the relative size of |t̃ d
xy| and |t d

xy+| as well as the sign
of t d

xy+. We summarize the result in Table II.

c. Lower-band shift at K and H with respect to �

The energy of the lower band at high-symmetry points K
and H with respect to � is given by

E−(K ) − E−(�) = −3
√

3

2
|t d

xy−| − 9

2
t d
xy+, (A20)

E−(H ) − E−(�) = −3
√

3

2
|t d

xy−| − 9

2
t d
xy+ − 2t d

z+. (A21)

FIG. 4. Berry curvature �
xy
− [(a),(b)] and quantum metric gxx

−
[(c),(d)] at kz = π/2 for the parameter sets A and B of the two-band
model.

5. Berry curvature and quantum metric for the two-band
model at kz = π/2

For the parameter sets A and B, see Table I, we show the
Berry curvature and quantum metric at kz = π/2 in Fig. 4.
Besides the divergence of Berry curvature and quantum metric
at the Weyl points, both quantities exhibit larger values for
the parameter set A, i.e., the one with the smaller gap on
�-A. Notably, albeit the localization of the weight in k space
strongly differs between models A and B, as seen when com-
paring Fig. 4(c) to Fig. 4(d), the integrated values are of the
same order of magnitude. Specifically, integrating the metric
on the plane shown in Fig. 4 (c)[(d)] yields

∫
d2k
A gxx

− (k) =
0.80 [0.74] with A = 8π2/

√
3. For the Berry curvature the

values are identical, because the integral over the plane shown
in Figs. 4(a) and 4(b) equals the Chern number of ν = −1.

APPENDIX B: FOUR-BAND MODEL

1. Sublattice hopping in the four-band model

We give the explicit form of the sublattice hopping of the
four-band model in Eq. (5). They are

Hd p(k) = eik·
(

(a1+2a2 )/3+z a3

)(
Hd p

11 (k) Hd p
12 (k)

Hd p
21 (k) Hd p

22 (k)

)
, (B1)

with the 1b Wyckoff position (a1 + 2a2)/3 + z a3 and

Hd p
11 (k) = (

t d p
xy + t d p

xyze
ik·a3

)
[1 + e−ik·a2 + e−ik·(a1+a2 )],

(B2)

Hd p
22 (k) = Hd p

11 (−k)∗, (B3)

Hd p
12 (k) = (

t̃ d p
xy + t̃ d p

xyze
ik·a3

)
×

[
1 + ei 2π

3 e−ik·a2 + e−i 2π
3 e−ik·(a1+a2 )

]
, (B4)

Hd p
21 (k) = Hd p

12 (−k)∗. (B5)
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Note that the relative height difference between the 1a and 1b
Wyckoff positions, denoted as z in Eq. (B1), does not affect
the band structure. For the present paper the exact value of z
does not affect the results, because all considered geometric
quantities are restricted to derivatives in the kx-ky plane.

2. Symmetries and basis convention

The second pair of bands described by Hp(k) obeys by
itself the same symmetry representation as Hd (k), but since
the 1b Wyckoff position is not invariant under C3, the appli-
cation of C3 moves the site into a neighboring unit cell. Thus,
the unitary representation UC3 contains a factor of eik·(a1+a2 ).
Yet, once represented in the basis convention introduced by
the Fourier transform in Eq. (A8), this phase cancels and one
finds

U p
C3

=
(

ei 2π
3 0

0 e−i 2π
3

)
(B6)

leading to the definition

UC3 =
(

U d
C3

0
0 U p

C3

)
, (B7)

which is then a symmetry of the four-band model H4×4(k)
given in Eq. (5). Time-reversal symmetry is local in real space,
and hence is the same for the states corresponding to 1a and
1b Wyckoff positions.

3. Real-space version of the tight-binding Hamiltonian

The tight-binding Hamiltonian defined in Eq. (5) is Fourier
transformed to real space via Eq. (A8). The annihilation op-
erators for the d and p orbitals are denoted by d̂ν and p̂ν with
ν = 1, 2. The d and p orbitals are located at ρd = (0, 0, 0) and
ρp = (a1 + 2a2)/3 + za3 = (1/2, 1/2

√
3, z) in the unit cell.

The Fourier transform of Hd (k) is already given in Eq. (A9).
The Fourier transform of Hp(k) is equivalent to those of Hd (k)
with d replaced by p. We give the remaining expressions of
Hd p(k),

Ĥd p
11 =

∑
j

[
t d p
xy (d̂†

j,1 p̂ j,1 + d̂†
j+ j1+ j2,1

p̂ j,1 + d̂†
j+ j2,1

p̂ j,1)

+ t d p
xyz (d̂†

j,1 p̂ j+ j3,1
+ d̂†

j+ j1+ j2,1
p̂ j+ j3,1

+ d̂†
j+ j2,1

p̂ j+ j3,1
))

]
, (B8)

Ĥd p
22 =

∑
j

[(
t d p
xy

)∗
(d̂†

j,2 p̂ j,2 + d̂†
j+ j1+ j2,2

p̂ j,2 + d̂†
j+ j2,2

p̂ j,2)

+ (
t d p
xyz

)∗
(d̂†

j,2 p̂ j+ j3,2
+ d̂†

j+ j1+ j2,2
p̂ j+ j3,2

+ d̂†
j+ j2,2

p̂ j+ j3,2
))

]
, (B9)

Ĥd p
12 =

∑
j

[
t̃ d p
xy (d̂†

j,1 p̂ j,2 + ei2π/3d̂†
j+ j2,1

p̂ j,2

+ e−i2π/3 d̂†
j+ j1+ j2,1

p̂ j,2)

+ t̃ d p
xyz (d̂†

j,1 p̂ j+ j3,2
+ ei2π/3d̂†

j+ j2,1
p̂ j+ j3,2

+ e−i2π/3d̂†
j+ j1+ j2,1

p̂ j+ j3,2
)
]
, (B10)

and Ĥd p
21 = (Ĥd p

12 )†.

APPENDIX C: FLAT BANDS WITHIN
THE TWO-BAND MODEL

The eigenvector of the lower band of a generic two-band
model reads

v−(k) = 1

αk

(
dz(k) − d (k)

dx(k) + idy(k)

)
. (C1)

with normalization αk = √
2
√

d (k)2 − dz(k)d (k), which
leads to Eq. (10) after inserting the flat-band condition. Con-
sidering the Hamiltonian defined in Eq. (1), we construct

d0(k) = 1
2 (H11(k) + H22(k)), (C2)

dx(k) = 1
2 (H12(k) + H21(k)), (C3)

dy(k) = i
2 (H12(k) − H21(k)), (C4)

dz(k) = 1
2 (H11(k) − H22(k)). (C5)

We are interested in a flat band in the x-y plane and fix kz = 0.
Following the procedure as described in Sec. III B 1, we obtain
four sets of flat-band conditions different in the relative sign
only,

t d
xy+ = −1

2

∣∣t̃ d
xy

∣∣, t d
xy− = −

√
3

2

∣∣t̃ d
xy

∣∣, c0 = 3

2

∣∣t̃ d
xy

∣∣ − t d
z+ + μd ,

(C6)

t d
xy+ = −1

2

∣∣t̃ d
xy

∣∣, t d
xy− =

√
3

2

∣∣t̃ d
xy

∣∣, c0 = 3

2

∣∣t̃ d
xy

∣∣ − t d
z+ + μd ,

(C7)

t d
xy+ = 1

2

∣∣t̃ d
xy

∣∣, t d
xy− = −

√
3

2

∣∣t̃ d
xy

∣∣, c0 = −3

2

∣∣t̃ d
xy

∣∣ − t d
z+ + μd ,

(C8)

t d
xy+ = 1

2

∣∣t̃ d
xy

∣∣, t d
xy− =

√
3

2

∣∣t̃ d
xy

∣∣, c0 = −3

2

∣∣t̃ d
xy

∣∣ − t d
z+ + μd .

(C9)

The dispersion in the x-y plane remains flat for any kz for
arbitrary t d

z+. A finite t d
z− gaps the quadratic band touching at

kx = ky = 0 for any kz 
= 0, π and breaks the flat-band condi-
tions leading to a dispersive lower band in the x-y plane. Using
Eq. (C6), the parameters discussed in Sec. III B 2 are chosen
such that the flat lower band has energy E−(k) = −1 for kz =
0 and E−(k) = 0 for kz = π with band gap E+(k) − E−(k) =
2 at momentum M = (π,−π/

√
3, 0). The Hamiltonian for

t d
z− = 0 explicitly reads

d0(k) = 1

4
(1 − cos((a1 + a2) · k) − cos(a1 · k)

− cos(a2 · k) − 2 cos(a3 · k)),
(C10)

dx(k) = 1

4
(cos((a1 + a2) · k) − 2 cos(a1 · k) + cos(a2 · k)),

(C11)

dy(k) =
√

3

4
(cos((a1 + a2) · k) − cos(a2 · k)), (C12)

dz(k) =
√

3

4
(sin((a1 + a2) · k) − sin(a1 · k) − sin(a2 · k)).

(C13)
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FIG. 5. Band structure fulfilling the flat-band conditions.

The dispersion is shown in Fig. 5. The normalization of the
CLS in Eq. (13) is

α2
k = 2 (−3 + cos((a1 + a2) · k) + cos(a1 · k) + cos(a2 · k))

× g(−3+ cos((a1+a2) · k) + cos(a1 · k) + cos(a2 · k)

−
√

3(sin(a1 · k) + sin(a2 · k) − sin((a1 + a2) · k))),

(C14)
which vanishes at � = (0, 0, 0).
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