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The recent discovery of a charge density wave order at the wave vector P ( 1
3 , 1

3 , 1
3 ) in the kagome metal

ScV6Sn6 has created a mystery because subsequent theoretical and experimental studies show a dominant
phonon instability instead at another wave vector H ( 1

3 , 1
3 , 1

2 ). In this paper, I use first-principles total energy
calculations to map out the landscape of the structural distortions due to the unstable phonon modes at H ,
L ( 1

2 , 0, 1
2 ), and P present in this material. In agreement with previous results, I find that the distortions due

to the H instability cause the largest gain in energy relative to the parent structure, followed in order by the L
and P instabilities. However, only two distinct structures occur due to this instability, which are separated by 6
meV/f.u. The instability at L results in three distinct structures separated in energy by 5 meV/f.u. In contrast, six
different distorted structures are stabilized due to the instability at P, and they all lie within 2 meV/f.u. of each
other. Hence, despite a lower-energy gain, the condensation at P could be favorable due to a larger entropy gain
associated with the fluctuations within a manifold with larger multiplicity via the order-by-disorder mechanism.

DOI: 10.1103/PhysRevMaterials.8.014006

I. INTRODUCTION

Materials that have the kagome lattice as their structural
motif have been well studied in the context of frustrated
magnetism [1]. The frustrated lattice also gives rise to a re-
markable electronic structure with Dirac cones and flat bands
[2–5]. Various emergent phases due to the electronic instabili-
ties in these materials have been anticipated [6–11], and the
discovery of charge density wave (CDW) order in kagome
metals AV3Sb5 (A = K, Rb, Cs) and FeGe has motivated
further exploration of this class of materials for uncommon
ground states and excitations [12,13].

A notable result of this activity is Arachchige et al.’s dis-
covery of a first-order CDW transition in the bilayer kagome
metal ScV6Sn6 at the wave vector P ( 1

3 , 1
3 , 1

3 ) [14], which is
highly unusual because P is not a high-symmetry point in
the Brillouin zone where a dense scattering phase space is
usually expected. Angle-resolved photoemission and optical
spectroscopy experiments across the transition show relatively
modest electronic structure changes at the Fermi level with
no gap opening [15–22], which indicates that an electronic
instability does not cause the CDW transition. Intriguingly,
inelastic x-ray scattering (IXS) experiments find that the
lowest-frequency phonon mode at P softens only modestly
as the transition temperature Tc = 92 K is approached from
above [20,23], while a phonon mode at another wave vector
H ( 1

3 , 1
3 , 1

2 ) softens completely to zero [20]. Diffuse scattering
signals that grow in intensity from room temperature to 100 K
are observed around H , whereas no such signals are seen
around the ordering wave vector P [20,23,24]. Calculated
phonon dispersions find an unstable branch that has the largest
imaginary frequency at H [25], seemingly in agreement with
the IXS experiments. However, the calculated energy gain due
to the instability at H is also larger than that due to the one
at P. This suggests that a mechanism beyond the harmonic
level in atomic displacements may be necessary to describe

the CDW transition observed in this material, although the
energetics of all possible distorted structures due to these
phonon instabilities has not been thoroughly investigated.

In this paper, I study the energetics of structural distortions
in ScV6Sn6 using group theory and density functional theory
(DFT) calculations. A group-theoretical analysis was utilized
to enumerate the possible symmetrically distinct distortions
in the order parameter subspaces described by the phonon
instabilities at H , L ( 1

2 , 0, 1
2 ), and P. Calculated eigenvectors

of these phonon instabilities were then used to generate the
distorted structures, and their total energies were obtained
from DFT after full relaxations that minimized both the lattice
stresses and atomic forces. Consistent with previous results, I
find that a distorted structure due to the instability at H has the
lowest energy. I was also able to stabilize six symmetrically
distinct structures due to the instability at P whose calculated
total energies lie within 2 meV/f.u. of each other. Fluctuations
among these nearly degenerate states likely stabilize the CDW
order at P via the order-by-disorder mechanism. Experimental
confirmation of the presence of these nearly degenerate states
by, for example, counting the number of domains in the low-
temperature phase would strengthen the case that entropic
force is responsible for the structural transition observed in
this material.

II. COMPUTATIONAL APPROACH

The phonon dispersions and structural relaxation
calculations presented here were performed using the
pseuodopotential-based QUANTUM ESPRESSO package [26]
within the optB88-vdW approximation for the exchange-
correlation functional [27]. I used the pseudopotentials gener-
ated by Dal Corso [28] and plane-wave cutoffs of 60 and 600
Ry for the basis-set and charge density expansions, respec-
tively. The Brillouin zone integration was performed using
a 12 × 12 × 6 k-point grid for the parent 13-atom structure.
Equivalent or denser grids were used for the calculations on
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FIG. 1. Calculated phonon dispersions of fully relaxed ScV6Sn6

in the parent P6/mmm phase obtained using the optB88-vdW
functional. The high-symmetry points are � (0, 0, 0), M ( 1

2 , 0, 0),
K ( 1

3 , 1
3 , 0), A (0, 0, 1

2 ), L ( 1
2 , 0, 1

2 ), H ( 1
3 , 1

3 , 1
2 ), � (0, 0, 1

3 ), U
( 1

2 , 0, 1
3 ), P ( 1

3 , 1
3 , 1

3 ). Imaginary frequencies are denoted by negative
values.

supercells. A 0.01 Ry Marzari-Vanderbilt smearing was used
to determine the partial occupancies. The dynamical matrices
of the parent structure were calculated on a 6 × 6 × 6 q-point
grid using density functional perturbation theory [29].

I used the ISOTROPY code [30] to determine the order
parameter directions of all possible distortions due to the
unstable phonon modes at H , L, and P, as well as the number
of domains exhibited by the distorted structures. The calcu-
lated phonon eigenvectors of the unstable modes were used to
generate the distorted structures corresponding to the isotropy
subgroups on the supercells commensurate with the phonon
wave vectors, which were then fully relaxed by minimizing
both the lattice stresses and atomic forces. I made extensive
use of the FINDSYM [31] and SPGLIB [32] codes in the sym-
metry analysis of the calculated structures. The AMPLIMODES

code [33] was used to determine the order parameter ampli-
tudes of the relaxed structure. The polynomial expansions of
the free energy as a function of the order parameters were
performed using the INVARIANTS code [34].

III. RESULTS AND DISCUSSION

The calculated phonon dispersions of ScV6Sn6 in the
high-temperature P6/mmm structure obtained using the
optB88-vdW functional are shown in Fig. 1. As in previously
published results [19–21,23,25], there is a nondegenerate
branch that is unstable along the path L-H and at P. The
largest instability occurs at H with a calculated imaginary
frequency of 40i cm−1. For comparison, the calculated values
at L and P are 22i and 7i cm−1, respectively. These results
are somewhat in agreement with the inelastic x-ray scattering
experiment of Korshunov et al. in that they observe a complete
softening of the phonon mode at H as Tc is approached from
above, whereas the phonons at L and P exhibit only a weak
softening [20]. However, these are incongruent with the fact
that the CDW order stabilizes at P, where the calculated insta-
bility is the weakest. The gain in energy due to the structural
distortion at P could in principle be larger than the one at H as

TABLE I. Isotropy subgroups and order parameter directions
(OPDs) of P6/mmm for the irreps H3, L−

2 , and P1. Total energies of
the fully relaxed structures corresponding to these order parameters
are given in units of meV per formula unit relative to the parent
P6/mmm phase. Note that the order parameters refer to that of
the initial structure before the minimization of stresses and forces.
Symmetry-allowed secondary order parameters appear for the final
relaxed structures. Not all distortions could be stabilized. Full struc-
tural information of all the phases that could be stabilized is given in
Supplemental Material [36].

Space group (No.) OPD Energy (meV/f.u.)

P6/mmm (191) H3(a, 0) −16.68
P63/mmc (194) H3(0, a) −10.64
P6m2 (187) H3(a, b)
Immm (71) L−

2 (a, 0, 0) −12.10
Fmmm (69) L−

2 (a, −a, 0) −4.01
P6/mmm (191) L−

2 (a, a, a) −7.50
C2/m (12) L−

2 (a, b, 0)
Cmmm (65) L−

2 (a, b, a)
P2/m (10) L−

2 (a, b, c)
R3m (166) P1(a, 0, 0, 0) −3.07
R3m (166) P1(−a, 0, 0, 0) −1.17
P6/mmm (191) P1(a, 0, a, 0) −2.18
P6/mmm (191) P1(−a, 0, −a, 0) −1.76
P6mm (183) P1(a, b, a, b) −2.20
P6mm (183) P1(−a, −b, −a, −b) −1.92
R3m (160) P1(a, b, 0, 0)
P6m2 (187) P1(a, b, a, −b)
P3m1 (164) P1(a, 0, b, 0)
P3m1 (156) P1(a, b, c, d )

a result of additional freezing of secondary order parameters.
But full structural relaxations by Tan and Yan show that the
distorted structure due to the instability at H is lower in energy
than the one due to the instability at P [25].

Previous structural relaxation studies report only one
distorted structure due to the instability at P [23,25,35], and
it is possible that another distorted structure at P lies at the
global minimum in the energy landscape. In fact, even though
the unstable phonon branch is nondegenerate, the order
parameter subspaces due to the instabilities at H , L, and P are
multidimensional because the stars of these points have two,
three, and four elements, respectively. The corresponding stars
are H {( 1

3 , 1
3 , 1

2 ), ( 2
3 , 2

3 , 1
2 )}, L {( 1

2 , 0, 1
2 ), (0, 1

2 , 1
2 ), ( 1

2 , 1
2 , 1

2 )},
and P {( 1

3 , 1
3 , 1

3 ), ( 2
3 , 2

3 , 1
3 ), ( 1

3 , 1
3 , 2

3 ), ( 2
3 , 2

3 , 2
3 )}. The elements

of a star correspond to distinct directions that span the
subspace of all atomic displacements generated by the
eigenvector of the unstable phonon mode. The phonon
instabilities at H , L, and P have the irreducible representations
(irreps) H3, L−

2 , and P1, respectively. The isotropy subgroups
of an irrep enumerate all possible low-symmetry space groups
that can arise out of the corresponding phonon instability,
and Table I lists the isotropy subgroups and the associated
order parameter directions due to these instabilities. I used
the calculated eigenvectors of the unstable phonon modes
to generate all these structures. Thus generated structures
were then fully relaxed by minimizing both lattice stresses
and atomic forces. Relaxation takes a structure to the local
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TABLE II. Mode amplitudes (Å) of the primary and secondary order parameter directions for the six distorted structures that could be
stabilized due to the P1 phonon instability. �+

1 and K1 are one- and two-dimensional irreps, respectively. The OPD of K1 is (a, 0) for all
structures. d1

Sc-Sn, d2
Sc-Sn, and d3

Sc-Sn denote the three shortest nearest-neighbor Sc-Sn distances in Å in increasing order.

P1 �+
1 �1 K1 d1

Sc-Sn d2
Sc-Sn d3

Sc-Sn

Space group OPD Amplitude Amplitude OPD Amplitude Amplitude

R3m (a, 0, 0, 0) 0.1843 0.0024 2.9108 2.9323 2.9722
R3m (−a, 0, 0, 0) 0.0981 0.0040 2.9161 2.9368 2.9501
P6/mmm (a, 0, a, 0) 0.1477 0.0028 (a, 0) 0.0066 0.0060 2.9109 2.9125 2.9334
P6/mmm (−a, 0, −a, 0) 0.1287 0.0039 (a, 0) 0.0412 0.0028 2.9048 2.9159 2.9330
P6mm (a, b, a, b) 0.1463 0.0028 (a, b) 0.0094 0.0058 2.9103 2.9120 2.9122
P6mm (−a,−b, −a, −b) 0.1299 0.0038 (a, b) 0.0389 0.0026 2.9032 2.9065 2.9151

minimum in the manifold of the energy landscape defined by
the respective order parameter direction.

The calculated total energies of the distorted structures cor-
responding to the isotropy subgroups obtained after structural
relaxations are also given in Table I relative to the energy of
the parent P6/mmm phase. In agreement with the finding of
Tan and Yan [25], the H3(a, 0) distortion which also belongs
to the space group P6/mmm has the lowest energy. How-
ever, I was able to stabilize several more distorted structures,
although not all possible isotropy subgroups due to the H3,
L−

2 , and P1 instabilities could be stabilized during structural
relaxation. The unstable order parameters presumably lie at
local maxima or saddle points in the energy landscape, and
they relaxed to one of the higher-symmetry phases during the
relaxation process.

There are three isotropy subgroups of the H3 irrep, out of
which the P6/mmm H3(a, 0) and P63/mmc H3(0, a) struc-
tures could be stabilized with energies of −16.68 and −10.64
meV/f.u., respectively, relative to that of the parent struc-
ture. Six isotropy subgroups belong to the L−

2 irrep, but only
three of them maintained their symmetry during the structural
relaxation. They are Immm L−

2 (a, 0, 0), Fmmm L−
2 (a, a, a),

and P6/mmm L−
2 (a,−a, 0) with relative energies of −12.10,

−4.01, and −7.50 meV/f.u., respectively. The P1 irrep has
seven isotropy subgroups, but only structures belonging to
the R3m P1(a, 0, 0, 0), P6/mmm P1(a, 0, a, 0), and P6mm
P1(a, b, a, b) subgroups remained stable during relaxation.
Interestingly, for each of these three subgroups, two distinct
structures could be stabilized that are characterized by order
parameters that are out of phase by 180◦. The out-of-phase
pairs occur at different magnitudes of the order parameter,
which indicates the presence of local minima at asymmetric
positions in the energy landscape defined by the order param-
eter subspace. This can happen because odd-order terms are
allowed by symmetry in the polynomial expansion of the free
energy as a function of the order parameters associated with
the P1 irrep, while only even-order terms are allowed for those
of H3 and L−

2 irreps. Nevertheless, the presence of odd-order
terms only guarantees that the energy surface be asymmet-
ric with respect to the order parameter direction and does
not necessitate multiple minima. Therefore, the occurrence
of three out-of-phase pairs at different values of the order
parameters in the energy landscape is noteworthy. Figure 2
shows the energy curves along the order parameter directions
P1(a, 0, 0, 0), P1(a, 0, a, 0), and P1(a, b, a, b) that illustrate
the presence of six local minima in this manifold.

As one can note from Table I, the calculated total energies
of the six distorted phases due to the P1 instability lie within
2 meV/f.u. of each other, with values ranging from −3.07 to
−1.17 meV/f.u. relative to that of the parent phase. Despite
this near degeneracy, these structures can be distinguished by
the different values of mode amplitudes for the primary and
secondary order parameter directions, which are given in Ta-
ble II. For example, the two R3m phases with the P1(a, 0, 0, 0)
order parameter direction out of phase by 180◦ have ampli-
tudes of 0.1843 and 0.0981 Å for this mode. There is only one
nearest-neighbor Sc-Sn distance in the out-of-plane direction
in the parent structure, which multiplies into different values
in the distorted structures. The three shortest nearest-neighbor
distances in these six structures are also given in Table II, and
they can also be used to distinguish these structures.

Although the calculated energies of the distorted phases
due to the P1 instability are higher relative to those due to the
H3 and L−

2 instabilities, more nearly degenerate distinct struc-
tures occur in the manifold of the energy landscape generated
by P1. As a result, there is more phase space for fluctuations
in the order parameter subspace of P1 than in the subspaces

FIG. 2. Calculated energy curves of ScV6Sn6 along three differ-
ent order parameter directions due to the P1 instability illustrating
the presence of six symmetrically distinct local minima. The energy
curves are asymmetric due to the presence of odd-order terms in
the free energy. For P1(a, b, a, b), b = a cos(75◦) has been used that
gives the deepest local minimum. Note that the total energies of the
structures at the local minima are further lowered and arrive at the
values given in Table I after structural relaxations.
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of H3 and L−
2 . The gain in entropy associated with this larger

multiplicity can energetically favor ordering at P, in a manner
analogous to the order-by-disorder mechanism discussed in
the context of frustrated magnetic systems [37,38]. The exis-
tence of almost degenerate states that are not trivially related
by symmetry is a prerequisite for this phenomenon, and the
heuristic argument made here should be confirmed by more
rigorous Monte Carlo simulations or field theoretical studies.

Mozaffari et al. observe a sublinear relationship ρxx ∝
T 0.62 between longitudinal resistivity ρxx and temperature T
in ScV6Sn6 above the CDW transition, which they ascribe
to the enhanced scattering of charge carriers in the Dirac
band by the high density of electrons residing at the van
Hove singularities that are slightly below the Fermi level [39].
However, such van Hove singularities also exist in the elec-
tronic structure of the closely related compound LuV6Sn6, but
this material does not exhibit sublinear resistivity. Therefore,
scattering between electrons in the dispersive Dirac and flat
van Hove bands is likely not the cause of sublinear resistivity
in ScV6Sn6. Meanwhile, sublinear resistivity is also observed
in the vanadium kagome materials AV3Sb5 (A = K, Rb, Cs)
that exhibit a CDW instability [39–42]. Calculations show that
nearly degenerate distorted phases also occur in these materi-
als [43]. This suggests that the scattering of charge carriers
with structural fluctuations among the competing phases may
lead to sublinear resistivity.

The CDW phase of ScV6Sn6 has been variously refined
to R32 [14] and R3m [20] space groups from separate x-ray
diffraction studies. The R32 structure differs from the R3m
structure by only 0.002 Å [25], and it has mode amplitudes of
P1(a, 0, 0, 0) = 0.3440 and P2(b, 0, 0, 0) = 0.0068. Further-
more, structural relaxations of the R32 phase yield a structure
that is almost the same as the R3m P1(a, 0, 0, 0) structure,
with the two of them differing by only 0.001 Å [25]. The
difficulty in resolving the low-temperature structure might
be due to the freezing in of competing phases. There are
two, three, and six possible domains within each xy plane
due to the R3m P1(a, 0, 0, 0), P6/mmm P1(a, 0, a, 0), and
P6mm P1(a, b, a, b) order parameters, respectively, while the
R32 P1(a, 0, 0, 0) + P2(b, 0, 0, 0) order parameter can lead to
four different in-plane domains. (Multiplication of each of
these numbers by three gives the total number of domains
due to different stackings.) Therefore, counting the number of
domains that are present in a sample can verify the existence
of multiple nearly degenerate minima proposed here. The
P6mm P1(a, b, a, b) phase lacks the inversion symmetry, and
the observation of a second-harmonic generation signal would
also support the occurrence of this phase. A more robust test
would be the presence of multiple peaks in the pair distri-
bution function due to different nearest-neighbor distances,
which would also manifest as different structure factors for
the diffraction peaks lying in different Brillouin zones. NMR
experiments would be another useful probe because different
order parameters due to the P1 instability lead to different
numbers of splitting of the Wyckoff positions.

Hu et al. have noted the existence of a nearly flat disper-
sion of the soft phonon branch in the region around H as it
collapses near the CDW transition, and they instead propose
that fluctuations in the reciprocal space around H stabilize the
instability at P [44]. They point out that the fluctuations are

suppressed at P due to the presence of a cubic term in the
polynomial expansion of the free energy, although they do not
discuss the occurrence of multiple nontrivially related minima
in the energy landscape due to the odd-order nonlinearity. In
principle, their theory is complementary to the one proposed
in the present study, although the emphasis on the fluctuations
about H is hard to reconcile with the disappearance of diffuse
signals around H in diffuse scattering experiments below the
structural transition.

Finally, although the nearly degenerate distorted structures
stabilized in this work lie in their respective local minimum,
these structures could show new phonon instabilities that
further reduce their total energies. However, any new
instability in the distorted phases should be weaker than
the instabilities in the parent phase. Considering the already
weak phonon instabilities of the parent phase, additional
instabilities in the distorted phases should produce even more
shallow local minima.

IV. SUMMARY AND CONCLUSIONS

In summary, I have used first-principles calculations to
map out the energy landscape of the structural distortions
in ScV6Sn6 due to the phonon instabilities present in its
high-temperature P6/mmm phase. Consistent with previous
theoretical and experimental studies, the calculated phonon
dispersions show a nondegenerate branch that is unstable
along the path L-H and at P, with the instability at H be-
ing the dominant one. I used a group-theoretical analysis to
enumerate all possible distortions due to the instabilities at H ,
L, and P, and generated corresponding structures using the
calculated phonon eigenvectors. Structural relaxations show
that distortions due to the instabilities at H and L have lower
calculated total energies than the ones due to the instability at
P, which is the wave vector where the CDW order condenses.
However, I find that the energy landscape in the submanifold
defined by the order parameter of the P instability is shallower
than those due to the H and L instabilities. Only two and three
symmetrically distinct distorted structures are stable at H and
L that are spread within the energy ranges of 6 and 5 meV/f.u.,
respectively. On the other hand, I was able to stabilize six
different structures due to the instability at P whose relative
energies lie within 2 meV/f.u. of each other.

The presence of a larger number of almost degenerate
distorted structures at P likely provides the requisite entropic
force to cause the first-order CDW transition experimentally
observed in ScV6Sn6 at this wave vector via the order-by-
disorder mechanism, and the heuristic suggestion made here
should be confirmed by more rigorous theoretical studies.
The energetically shallow manifold of distortions at P could
also be verified experimentally, for example, by the presence
of more than two in-plane domains in the low-temperature
phase or the presence of multiple peaks in the pair distribution
function due to different nearest-neighbor distances.
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