
PHYSICAL REVIEW MATERIALS 8, 014002 (2024)

Piezoelectric electrostatic superlattices in monolayer MoS2
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Modulation of electronic properties of materials by electric fields is central to the operation of modern
semiconductor devices, providing access to complex electronic behaviors and greater freedom in tuning the
energy bands of materials. Here, we explore one-dimensional superlattices induced by a confining electrostatic
potential in monolayer MoS2, a prototypical two-dimensional semiconductor. Using first-principles calculations,
we show that periodic potentials applied to monolayer MoS2 induce electrostatic superlattices in which the
response is dominated by structural distortions relative to purely electronic effects. These structural distortions
reduce the intrinsic band gap of the monolayer substantially while also polarizing the monolayer through
piezoelectric coupling, resulting in spatial separation of charge carriers as well as Stark shifts that produce
dispersive minibands. Importantly, these minibands inherit the valley-selective magnetic properties of monolayer
MoS2, enabling fine control over spin-valley coupling in MoS2 and similar transition-metal dichalcogenides.
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I. INTRODUCTION

The electronic band structure of a solid—a representation
of allowed electronic energy levels—reflects the quantum
mechanical response of electrons to the underlying periodic
potential of the atomic lattice. A superlattice induces further
periodic modulations of the lattice potential over length scales
several times larger than the atomic spacing yet smaller than
the mean free path of an electron, localizing free carriers
and causing further quantization of energy bands into mini-
bands [1,2]. While semiconductor superlattices are typically
produced by alternating layers of different semiconductors
or by differently doped (n-/p-type) layers of a single semi-
conductor, it is also possible to induce directly a superlattice
potential via externally defined electrostatic gates or pat-
terned dielectric substrates [3–8]. Such externally defined
electrostatic superlattices (henceforth, simply electrostatic su-
perlatttices), employed early on with two-dimensional (2D)
electron gases [9–11], continue to attract interest in 2D ma-
terials [3–8,12], motivated in part by theoretical studies of
2D superlattices that promise key advances, for example,
in supercollimation, Mott-insulating states, superconductivity,
and topological subbands [13–18]. It is worth noting that
superlattices in 2D materials can also be achieved by various
other means, for example, by exploiting the naturally occur-
ring periodic potential of moiré patterns [19–22] or via strain
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patterning [23–25], among others. An assessment of these
various approaches can be found in a recent review [8].

To date, studies of 2D electrostatic superlattices—either
experimental [3–8,12] or theoretical [13,26–31]—have fo-
cused primarily on graphene (a semimetal). In comparison,
electrostatic superlattices in 2D transition-metal dichalco-
genides (TMDCs) are sparsely studied, that too only at the
theoretical level [32,33] without accounting for the role of
potential-induced strains. However, not only is it well known
that the (opto)electronic properties of TMDCs are sensitive
to strain [34–37] but it is also well known that inhomoge-
neous strains can lead to spatial variations in band profiles
that cause, for example, funneling of excitons and trions
[23,38–40]. In contrast, this coupling between strain and
potential has been studied widely in moiré superlattices of
TMDCs (homo-/hetero-bilayers) and it is recognized that ac-
counting for spatial variations of strain and morphology is
essential for modeling the response of these structures cor-
rectly [41–45]. Thus, in this paper, we take a prototypical
example of a one-dimensional (1D) electronic superlattice in
monolayer MoS2 and seek to understand how coupling be-
tween the external electrostatic potential and induced strains
affects the electronic response of the material. We employ
first-principles density functional theory calculations and
show that significant atomic relaxation is possible within
the MoS2 monolayer, when subjected to a periodic exter-
nal potential, and that these effects can lead to over an
order of magnitude decrease in the superlattice band gap
than would be anticipated from a purely electronic response.
Moreover, since monolayer MoS2 is piezoelectric [46], we
find a strong anisotropic, spatially varying coupling of the
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FIG. 1. (a) A 2D material (e.g., monolayer MoS2) subjected to
a spatially periodic external potential V (x). (b) In the absence of
structural relaxation, shifts in the electronic energy levels follow the
potential modulation, leading to localization of the valence band
maximum (VBM) and conduction band minimum (CBM) in the
regions of highest and lowest potential, respectively. (c) Structural
relaxation leads to displacement of atoms away from regions of high
potential and toward regions of low potential, inducing tensile and
compressive strains, respectively. Tensile strain reduces the band gap
of the monolayer while compressive strain increases the band gap
and the VBM and CBM are now localized within the region of higher
potential.

polarization response to the strain field induced by the ex-
ternal superlattice potential, and we show that the internal
polarization fields significantly influence miniband formation.
Importantly, we find that the minibands formed at the band
edges preserve the appealing spin-valley coupling property
of monolayer MoS2, opening up possibilities for spin-
selective miniband engineering of MoS2 and analogous 2D
semiconductors.

II. RESULTS AND DISCUSSION

The key concept of this paper is illustrated schematically
in Fig. 1: we seek to understand the response of a 2D semi-
conductor (e.g., monolayer MoS2) subjected to a spatially
periodic potential, V (x), whose magnitude is much smaller
than the potential of the nuclei. If we ignore the forces induced
by the applied potential on the atoms, the response of the
material is purely electronic, and the energy levels rise and
fall in phase with the potential modulation [Fig. 1(b)]. As
a consequence, the valence band maximum (VBM) and the
conduction band minimum (CBM) are localized at the cor-
responding maximum and minimum of the applied potential
and are spatially separated. In analogy with the more famil-
iar situation of semiconductor heterojunctions, the material
response is akin to a staggered-gap (type II) heterojunction
[9]. However, if structural relaxation is accounted for, as it
should be, atoms are displaced from regions of higher poten-
tial energy toward regions of lower potential energy, leading
to a distribution of tensile and compressive strains within the
material [Fig. 1(c)]. It is well known that the electronic struc-

tures of 2D materials are sensitive to strain [34]: in the case of
monolayer MoS2, the band gap decreases or increases under
tension and compression, respectively [35,36]. Thus, the shifts
in electronic energies are no longer merely in phase with the
applied potential and, depending upon the precise balance
between strain- and potential-induced effects, the VBM and
CBM can instead localize within the same region of high ten-
sile strain where the band gap is smallest. This scenario is now
akin to a straddling-gap (type I) heterojunction. It is precisely
this coupling between external fields and induced strains, and
the ultimate consequences for the electronic response of the
monolayer, that we explore in detail here. Additionally, for a
material such as MoS2, the electronic response is much richer
due to its intrinsic piezoelectricity [46,47] and spin-valley
coupling [48,49], which we explore in detail below.

A. Electric field-induced piezoelectric coupling

In this work, we restrict attention to one-dimensional po-
tential modulations, V (r) = V0 cos(q · r), with the vector q
directed along either the armchair (qAC ) or the zigzag (qZZ )
direction: Figure 2(a) displays an example of a superlattice
along the armchair direction with V0 = 0.1 V and period L =
17.6 nm. The functional form of this potential is motivated by
the calculated displacement fields in Ref. [3] and we assume
that the field does not vary appreciably across the thickness
of the monolayer. In response to this external perturbation,
atoms are displaced from regions of higher potential toward
regions of lower potential [peak displacement of ±0.6 Å;
Fig. 2(c)], leading to tensile and compressive strains, ε11, that
range between ±1.8% (Fig. S2 of the Supplemental Material
[51]). Figure 2(b) displays the spatial distribution of band
edges from which we observe that electronic states, as deep as
0.1–0.2 eV into the valence or conduction band, are pre-
dominantly localized within the region of tensile strain. The
perturbation reduces the overall band gap by ∼30% rela-
tive to the unperturbed band gap of monolayer MoS2 (from
1.67 eV to 1.13 eV). By comparison, if atoms are held fixed at
their original positions (no structural relaxation; Fig. S3), the
valence and conduction band edges are spatially separated,
localizing within regions of positive and negative potential,
respectively, that too becoming more distinct only at larger
fields. The decrease in the band gap is now less than 1%
(∼15 meV), over an order of magnitude smaller than the
relaxed case at the same applied potential. These observa-
tions essentially confirm, at least to lowest order, the simple
physical picture presented previously. Of course, the armchair
direction is not special in this regard, and a calculation for
a cosine potential applied along the zigzag direction shows
analogous atomic displacements and localization of band
edges within the region of tensile strain (Fig. S4). However,
there is one crucial distinction between the responses of the
armchair and zigzag directions: for the armchair case, the
VBM and CBM, though localized within the region of tensile
strain, have very little spatial overlap [Fig. 2(b)]; in contrast,
for the zigzag case, the VBM and CBM overlap spatially
within the region of tensile strain (Fig. S4). To understand this
markedly anisotropic response, we undertake a more detailed
analysis of the structural response in each case.
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FIG. 2. (a) Contour plot of external potential V (r) = V0 cos(qAC · r) with V0 = 0.1 V superimposed over the simulation domain consisting
of NAC = 32 repeat units (L = 17.6 nm) along the armchair (x) direction. Thick black lines demarcate the region −L/4 � x � L/4. (b) In-
tegrated electronic charge density arising from windows of ±0.1 eV and ±0.2 eV at the valence (VBM) and conduction (CBM) band edges
projected over the plane of the monolayer (x-y plane). (c) Contour plot of atomic displacements induced by the superlattice potential, leading to
a net ionic dipole of �μion = 6.64 e Å within the domain −L/4 � x � L/4. (d) Integrated (over y-z plane) change in electronic charge density
�ρ(x) induced by the superlattice potential, leading to a net electronic dipole of �μel = 0.14 e Å within the domain −L/4 � x � L/4. Black
and yellow spheres in (a) and (c) indicate Mo and S atoms; the simulation cell is repeated along the y direction in (a)–(c) for ease of viewing.

Monolayer MoS2 (space group P6̄m2; point group D3h)
lacks a center of inversion and is strongly piezoelectric [46].
The polarization vector (P) and strain tensor (ε) are related
via the constitutive relation P = eε, where e is the third-rank
piezoelectric tensor [50]. When the external potential V is
aligned with the armchair direction (q ‖ qAC), the piezoelec-
tric coupling to the induced strain field induces a polarization
field that is aligned with the armchair direction (P ‖ qAC).
In contrast, when the external potential V is aligned with
the zigzag direction (q ‖ qZZ ), the polarization field is along
the orthogonal armchair direction (P ⊥ qZZ ). Further details
can be found in the Supplemental Material [51]. Consider-
ing the armchair case and focusing on the region of tensile
strain −L/4 � x � L/4 where the band edges are localized,
we calculate a net ionic dipole moment of 6.64 e Å or
∼12 µC/cm2 along the direction of quantization (qAC) [52].
Note that this degree of polarization is comparable to the rem-
nant polarization in several ferroelectric materials [53]. Thus,
separation of the valence and conduction band edges within
the tensile region is driven by the internal electric field that
arises from piezoelectric coupling to the strain field induced
by the external potential. For a larger external potential (V0 =
0.3 V; Fig. S5), both the localization of band edges within the
region of tensile strain as well as their spatial separation are
more marked, as deep as 0.5 eV into the valence/conduction
band. By contrast, for the zigzag case, the dipole moments
within the region of tensile strain −L/4 � x � L/4 are or-
thogonal to the direction of quantization and, hence, there is
no further spatial separation of band edges within this region
of quantum confinement.

B. Minibands and band-gap tuning

We now investigate the influence of structural relaxation
and strain-induced internal electric fields on the electronic
band structure of monolayer MoS2 and the emergence of su-
perlattice minibands. As the external potential and structural
relaxation can be viewed as perturbations to the pristine MoS2

monolayer, unfolding the superlattice band structure [54–56]
from its reduced Brillouin zone to the full (extended) Brillouin
zone of monolayer MoS2 (Appendix B; Fig. 6) allows for
a more transparent analysis. Figures 3(a) and 3(b) display
the unfolded band structures for the unrelaxed and relaxed
armchair superlattices, from which we note several important
distinctions. In the unrelaxed case [Fig. 3(a)], the change in
band gap is small (<1%; 15 meV) for this magnitude of
external potential (V0 = 0.1 V), and the gap remains direct at
the K valleys. In the extended zone picture, we clearly observe
the formation of superlattice minibands that are gapped due
to the quantum confinement effect of the external potential.
When the lattice is allowed to relax, these gapped minibands
are further dispersed and the decrease in band gap is more
substantial (∼30%; 0.54 eV for V0 = 0.1 V), the gap now
being indirect between the � valley at the valence band edge
and the (degenerate) K valleys at the conduction band edge;
the direct gap at the K valleys is ∼40 meV larger. Similar
results are seen in the zigzag case (Fig. S6). For a larger
external potential (V0 = 0.3 V; Fig. S7), the miniband disper-
sion becomes even more distinct with substantial miniband
gaps (tens of meV). To demonstrate conclusively the structural
basis of our findings, we recalculated the band structures
of fully relaxed superlattices by artificially fixing atoms at
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FIG. 3. (a), (b) Unfolding into the first Brillouin zone of the electronic band structure of an MoS2 superlattice (NAC = 32) subjected to an
external potential V (r) = V0 cos(qAC · r) with V0 = 0.1 V, without (a) and with (b) atomic relaxation. The intensity of the color map indicates
the overall contribution from supercell eigenstates to a primitive cell eigenstate at wave vector k and energy E—the spectral function A(k, E )
[56]. Bands of the pristine (unperturbed) MoS2 monolayer are overlaid in thin dashed lines. (c), (d) Details of the unfolded electronic band
structure at the ±K2 valleys with the inclusion of spin-orbit splitting without (c) and with (d) atomic relaxation. Symbols are colored by
the degree of spin polarization (ηz = mz/|m|); the size of the symbol is proportional to the magnitude of the projection of the superlattice
eigenstates on the primitive cell eigenstate. Up/down (red/blue) spin bands are split into separate frames to allow for clear visualization of
otherwise overlapping states. Shaded pink/blue lines show the spin-orbit-split electronic bands of pristine MoS2; these bands have been shifted
in energy to align with the band edges of the unfolded superlattice.

their (field-dependent) positions and turning off the external
potential (Figs. S8, S9) and found relatively small changes
(<10%) in the band gap with no qualitative changes in the
miniband dispersion. We therefore conclude that the miniband
dispersion occurs primarily due to Stark shifts driven by the
internal polarization field that arises from piezoelectric cou-
pling to the induced strain in the superlattice. Such effects
are well known in quantum-well heterostructures composed
of piezoelectric materials (e.g., zinc-blende-structure III-V
superlattices [2]) in which strains at interfaces produce built-in
electric fields that lead to Stark shifts and consequent disper-
sion of minibands that are accompanied by a decrease in the
band gap. The important distinction is that, unlike quantum-
well heterostructures involving dissimilar materials, we have
here an electrostatic superlattice in a pristine monolayer of a
single-phase 2D material that displays analogous physics.

To complete our analysis of band gap tuning of monolayer
MoS2 electrostatic superlattices, we sampled the parameter
space of such superlattices, including wavelengths and am-
plitudes of potential modulations as well as the effects of
structural relaxation. The outcome of these studies is dis-
played in Fig. 4, from which we see that (i) for a given
superlattice length, L, the band gap, Eg, decreases nearly
linearly with the amplitude, V0, of the applied potential [32];
(ii) for a fixed value of V0, a longer supercell experiences
a greater reduction in band gap; and (iii) the reduction

in band gap is substantially greater when structural relax-
ation is allowed. These observations hold irrespective of the
direction—armchair or zigzag—of the potential modulation.
Based on these observations, we make a scaling ansatz

Eg = Eg,0

[
1 − αqV0

Eg,0

(
L

a0

)γ ]
, (1)

where Eg,0 is the band gap of an unperturbed MoS2 mono-
layer, a0 is the lattice constant of the monolayer, q is the
elementary charge, and α and γ are fitting parameters. Given
the vast difference in behavior between unrelaxed and relaxed
cases, as well as smaller but noticeable differences between
the armchair and zigzag cases, we find it necessary to use
different prefactors, αi for each case; however, it is sufficient
to use a single exponent γ to fit the data accurately. For a
specific direction (armchair/zigzag) of applied potential, a
comparison of the prefactors, αi, for the relaxed and unrelaxed
cases [Fig. 4(c)] indicates that the band gap is reduced by over
an order of magnitude (∼15 times) when superlattice relax-
ation is permitted. This unambiguously underscores the need
to account for structural relaxation, which has been neglected
in theoretical modeling of 2D electrostatic superlattices [57].
In contrast, the direction of the applied potential modulation
is of less importance for band gap tuning although it is sig-
nificant for charge-carrier separation, as noted before. Finally,
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FIG. 4. Band gap (Eg) of monolayer MoS2 subjected to a superlattice potential V (r) = V0 cos(q · r) along the armchair direction (a) and
zigzag direction (b) with or without atomic relaxations. NAC and NZZ are the number of repeat armchair or zigzag units in one period of the
superlattice. The lines are a guide to the eye. (c) Parity plot of relative change in band gap from DFT calculations versus power-law model
with exponent γ = 0.595 (R2 = 0.99).

it is worth noting that the quantitative values of band gaps are
underestimated due to the well-known limitations of semilocal
exchange-correlation functionals, but the qualitative behavior
presented here is expected to be robust (see Appendix C).

C. Spin-valley coupling in minibands

One of the most interesting properties of monolayer MoS2

is the coupling between valley and spin degrees of free-
dom, due the combination of strong spin-orbit splitting at
the valence band edge and lack of centrosymmetry [48,49].
Specifically, in the absence of magnetic fields, the K and −K
valleys of monolayer MoS2 are related only by time-reversal
symmetry and associated with distinct and opposite magnetic
moments. Thus, it is natural to inquire whether these desirable
valley-selective properties are still preserved in electrostatic
superlattices, in spite of large changes in electronic band gaps
and, more importantly, significant Stark shifts at the band
edges. Figures 3(c) and 3(d) display the spin-orbit-split band
edges at the ±K2 valleys of the corresponding band structures
displayed in Figs. 3(a) and 3(b), respectively. In the unrelaxed
case [Fig. 3(c)], which we recall presents a very small change
in band gap and no significant miniband dispersion, the super-
lattice states essentially follow the dispersion of the primitive
cell eigenstates and preserve the valley polarization. The situ-
ation is more interesting for the relaxed case [Fig. 3(d)], which
shows the formation of distinct spin-polarized minibands that
preserve the strong spin-polarization (mz → ±1) of the ±K2

valleys. At the valence band edge, in particular, minibands of
exclusively one spin polarization populate the spin-orbit gap
(∼150 meV [58,59]) and, importantly, these minibands are
gapped by several tens of meV. At the conduction band edge,
the spin-orbit splitting is very small [60,61] and, while the
miniband gaps are appreciable, the up/down spin states are
nearly degenerate. Increasing the potential amplitude (V0 =
0.3 V; Fig. S9) further increases the miniband splitting to
∼100 meV but there still remains a single spin-polarized
miniband within the spin-orbit gap, suggesting a degree of
tunability of these miniband energies. The zigzag superlattice,

in contrast, does not show significant miniband dispersion at
the valence band edge of the K valleys (Fig. S6) and thus,
there are no miniband states within the spin-orbit gap.

While valley-polarization and the consequent valley-
selective properties of monolayer MoS2 (and several other
2D materials) are well known, the possibility of engineering
valley-polarized minibands within a single-phase monolayer
is of particular significance. Not only are minibands of impor-
tance for optical emission/detection in the midinfrared and
THz spectral ranges, but the fact that these minibands are
valley-polarized implies that such emission/detection could
also be spin-selective, enabling future spintronic and quantum
electronics applications. Furthermore, while MoS2 already
presents an appreciable spin-orbit gap (∼150 meV), opening
up this gap further could provide an even larger energy win-
dow within which miniband splitting can be tuned. To this
end, we display in Fig. 5 an example of the band structure of a
relaxed superlattice of monolayer WS2—also a piezoelectric
material [46]—subjected to a cosine potential of amplitude
V0 = 0.1 V along the armchair direction (in exact correspon-
dence with the MoS2 case). Spin-orbit splitting of the valence
band edge at the K valleys in monolayer WS2 is nearly three
times larger than in MoS2 [58,59], and we now observe
several spin-polarized minibands; increasing the potential to
V0 = 0.3 V further enhances the miniband splitting (Fig. S10).
Thus, we suggest that electrostatic superlattices in piezoelec-
tric 2D materials [62] with strong spin-orbit coupling can add
a new dimension of miniband engineering to ongoing efforts
in quantum electronics.

III. CONCLUSIONS

In conclusion, we explored 1D superlattices induced
by a confining electrostatic potential in monolayer MoS2,
a prototypical two-dimensional (2D) semiconductor, and
demonstrated via first-principles calculations that the elec-
tronic response of the material to the applied potential
is dominated by field-induced structural distortions rather
than pure shifts in electronic levels alone. These structural

014002-5



ASHWIN RAMASUBRAMANIAM AND DORON NAVEH PHYSICAL REVIEW MATERIALS 8, 014002 (2024)

(a) (b)

FIG. 5. (a) Unfolding into the first Brillouin zone of the electronic band structure of a fully relaxed WS2 superlattice (NAC = 32) subjected
to an external potential V (r) = V0 cos(qAC · r) with V0 = 0.1 V. Bands of the pristine (unperturbed) WS2 monolayer are overlaid in thin dashed
lines. The intensity of the color map indicates the overall contribution from supercell eigenstates to a primitive cell eigenstate at wave vector
k and energy E—the spectral function A(k, E ). (b) Details of the unfolded electronic band structure at the ±K2 valleys with the inclusion
of spin-orbit splitting. Symbols are colored by the degree of spin polarization (ηz = mz/|m|); the size of the symbol is proportional to the
magnitude of the projection of the superlattice eigenstates on the primitive cell eigenstate. Up/down (red/blue) spin bands are split into
separate frames to allow for clear visualization of otherwise overlapping states. Shaded pink/blue lines show the spin-orbit-split electronic
bands of pristine WS2; these bands have been shifted in energy to align with the band edges of the unfolded superlattice.

distortions are tunable with applied potential and reduce the
intrinsic band gap of monolayer MoS2 substantially while also
polarizing the monolayer through piezoelectric coupling, re-
sulting in spatial separation of charge carriers as well as large
Stark shifts that produce well-separated (several tens of meV)
dispersive minibands that inherit the valley-selective magnetic
properties. Consequently, we suggest that coupling between
electric fields and internal strains in monolayer MoS2 and
analogous TMDCs could be harnessed to design continuously
tunable spin-selective emitters/detectors in the midinfrared
and THz spectral ranges, enabling further application of these
materials in spintronics and quantum electronics.
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APPENDIX A: DENSITY FUNCTIONAL
THEORY MODELING

Density functional theory (DFT) modeling was performed
using the Vienna Ab initio Simulation Package (VASP; ver-
sion 6.2.1) [63,64]. The projector-augmented wave method
[65,66] was used to represent core and valence electrons; the
valence electronic configurations are 5s14d5 for Mo, 6s15d5

for W, and 3s23p4 for S. Electron exchange and correlation
were modeled using the Perdew-Burke-Ernzerhof form of the
generalized-gradient approximation [67]. The kinetic energy
cutoff for plane waves was set to 400 eV. Gaussian smearing
of 0.01 eV was used for Brillouin zone integrations in con-
junction with a dense grid of 3000 points to sample the density
of states. Orthorhombic unit cells of 2H MoS2 and WS2

monolayers were fully relaxed (both atomic positions and
lattice vectors) using the conjugate-gradient method with a
force tolerance of 0.01 eV/Å and energy tolerance of 10−4 eV.
Supercells were thereafter constructed by replicating these re-
laxed unit cells along the armchair or zigzag directions (Fig. 6)
and subsequently only atomic positions of these supercells
were relaxed under applied external fields. �-centered k-point
meshes for relaxation calculations were constructed using 5
and 8 grid points, respectively, along the shorter and longer
reciprocal lattice vectors (Fig. 6) of the orthorhombic unit
cell and these grid points were proportionately decreased for
the supercells. Subsequent to structural relaxation, the k-point
mesh density was doubled to obtain more accurate electronic
structures for the various supercells. To render the calculations
tractable, spin-orbit coupling was neglected in the relaxation
and single-point calculations; this has no bearing on the qual-
itative trends and overall conclusions drawn in this work. A
few select examples were studied with the inclusion of spin-
orbit coupling to demonstrate the impact of the superlattice
potential on spin-valley coupling, as discussed in the main
text.

The VASP source code was modified to apply an external
periodic potential, V (r) = V0 cos(q · r), by customizing the
existing subroutine EXTERNAL_POT in the pot.F file.

APPENDIX B: UNFOLDING CALCULATIONS

Brillouin zone unfolding was performed using the
bands4vasp postprocessing package [68] with the unfolding
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(a) (b)

(c) (d)

FIG. 6. (a), (c) Primitive (red rhombus) and orthorhombic (yel-
low rectangle) unit cells of MoS2; black and yellow spheres indicate
Mo and S atoms. Orthorhombic unit cells are repeated NAC or NZZ

times along the horizontal direction in panels (a) or (c), respectively,
to produce simulation supercells. The simulation supercells are fully
periodic in-plane. The lattice parameter for the (relaxed) primitive
cell is a0 = 3.183 Å. (b), (d) First Brillouin zones of the primitive and
orthorhombic unit cells, colored in correspondence to their real-space
counterparts, and their reciprocal lattice vectors indicated in lower-
and uppercase, respectively. Select high-symmetry k points of the
first Brillouin zone of the primitive cell are also noted; the K points
are denoted as individual time-reversal-symmetric (±) pairs, as their
nominal threefold symmetry could be broken by the applied external
potential.

patch [69] applied to the VASP source code [56]. To un-
fold the supercell Brillouin zone into that of the primitive

cell, it is necessary that the supercell lattice vectors (A)
and the primitive cell lattice vectors (a) satisfy the relation
A = Ma, where all elements of the transformation matrix,
M, are integers [56]. As an example, consider the primitive
cell and orthorhombic unit cell in Fig. 6(a): the corre-
sponding cell vectors are A1 = [

√
3a0, 0], A2 = [0, a0], a1 =

[
√

3a0/2, a0/2], a2 = [0, a0]. It is straightforward to show
that the integer transformation matrix is

M =
[

2 −1
0 1

]
, (B1)

and, furthermore, if the orthogonal unit cell is replicated NAC

times along the armchair direction to produce the supercell,
the transformation matrix becomes

M =
[

2NAC −NAC

0 1

]
. (B2)

Similarly, for the choice of primitive and orthogonal cells in
Fig. 6(b), the transformation matrix is

M =
[

1 0
−1 2

]
, (B3)

and, if the orthogonal unit cell is replicated NZZ times along
the zigzag direction, the transformation matrix becomes

M =
[

NZZ 0
−1 2

]
. (B4)

We use these two sets of supercells and transformation matri-
ces in our calculations. Electronic band gaps are obtained by
unfolding the superlattice band structure along the �-K2 line
(Fig. 6) and calculating the smallest gap, which is typically
either direct at K2 or indirect between � at the valence band
edge and K2 at the conduction band edge.

APPENDIX C: COMPARISON OF SEMILOCAL
AND HYBRID FUNCTIONALS

Semilocal exchange-correlation functionals such as PBE
are well known to underestimate band gaps in materials.
While calculation of quantitatively accurate band gaps of elec-
trostatic superlattices might potentially be accomplished using
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FIG. 7. Density of states (DOS) per formula unit (f.u.) of MoS2 using the (a) PBE and (b) HSE functionals. The black line indicates the
DOS of the unperturbed MoS2 monolayer (primitive cell); red and blue lines correspond to the relaxed armchair superlattices (NAC = 32) with
potential amplitude V0 as indicated in the plot legend.
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more accurate functionals [70]—albeit, at higher computa-
tional cost—the main purpose of this paper is to demonstrate
qualitative features of piezoelectric coupling and miniband
formation in electrostatic superlattices. Nevertheless, it is
worth confirming that the results are not artifacts of the choice
of the exchange-correlation functional and, to this end, we
performed a few test calculations on an armchair superlattice
(NAC = 32), employing the HSE hybrid functional [71] with
PBE-relaxed structures as inputs. As hybrid-DFT calculations
of these superlattices (192 atoms for NAC = 32) are compu-
tationally demanding, we restricted calculation of the Fock
operator (exact exchange contribution) to just the � point:

the calculations are thus not fully converged at the HSE
level but the outcome is nevertheless sufficient to corrobo-
rate the PBE results. No down-sampling was needed for the
primitive cell. Figure 7 displays the density of states (DOS)
calculated with PBE and HSE functionals for a couple of
different potential amplitudes (V0). As evident, the band gap
clearly decreases with increasing magnitude of the applied
potential. Furthermore, the sharp resonances in the DOS of
the unperturbed monolayer are smeared out in the (relaxed)
superlattices and we note the emergence of smaller peaks near
the band edges, consistent with the appearance of superlattice
minibands.
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