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Saddle point search schemes are widely used to identify the transition state of different processes, like
chemical reactions, surface and bulk diffusion, surface adsorption, and many more. In solid-state materials with
relatively large numbers of atoms, the minimum mode following schemes such as dimer are commonly used
because they alleviate the calculation of the Hessian on the high-dimensional potential energy surface. Here,
we show that the dimer search can be further accelerated by leveraging Gaussian process regression (GPR).
The GPR serves as a surrogate model to feed the dimer with the required energy and force input. We test the
GPR-accelerated dimer method for predicting the diffusion coefficient of vacancy-mediated self-diffusion in
body-centered cubic molybdenum and sulfur diffusion in hexagonal molybdenum disulfide. We use a multitask
learning approach that utilizes a shared covariance function between energy and force input, and we show
that the multitask learning significantly improves the performance of the GPR surrogate model compared to
previously used learning approaches. Additionally, we demonstrate that a translation-hop sampling approach
is necessary to avoid overfitting the GPR surrogate model to the minimum-mode-following pathway and thus
succeeding in locating the saddle point. We show that our method reduces the number of evaluations compared
to a conventional dimer method.
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I. INTRODUCTION

Transition state theory (TST) [1] is widely used to quantify
the free-energy barrier (or activation free energy) of chemical
reactions, such as molecular dissociation, as well as ma-
terial processes including bulk diffusion, surface diffusion,
or surface adsorption [2–4]. Within TST, the activated state
is identified as the saddle point on the free-energy surface.
Consequently, saddle-point search methods are crucial for
quantifying the activated state, energy barrier, and rate of vari-
ous kinetic processes in materials [5–11]. Among saddle-point
search methods, minimum mode following methods [12,13],
such as the dimer algorithm [8,14,15], have gained popularity
due to their computational advantages, particularly for solid-
state processes. Unlike alternatives such as the partitioned
rational function optimization (P-RFO), these methods do not
require energy Hessian calculations in the high-dimensional
space of solid-state atomic systems [13]. However, utilizing
the dimer algorithm can still be computationally prohibitive
when combined with density functional theory (DFT) energy
calculations. In this study, we show that we can further en-
hance computational efficiency by utilizing Gaussian process
regression (GPR) as a surrogate model for inputting forces
to the dimer algorithm. We implement a GPR-guided dimer
algorithm, which we call the GPR-dimer, and apply it to
investigate bulk diffusion in body-centered cubic (bcc) Mo
as well as diffusion of sulfur in hexagonal MoS2. Building
upon previous studies that combined GPR with saddle-point
or minimum-energy-path search methods, this work provides
two new insights for advancing the utility of GPR-dimer. First,
we employ a multitask GPR learning approach, demonstrating
a significant reduction in both training error and time com-
pared to previously used GPR learning methods. Second, we
introduce a translation-hop sampling approach designed to

reduce the computational effort and enhance the robustness
of the search algorithm. Furthermore, this work extends the
application of GPR-dimer to solid-state materials.

The application of machine learning in materials and
molecular simulations, with the goal of improving com-
putational efficiency, encompasses diverse approaches and
objectives. Notable applications include global force field
generation, such as GDML [16], sGDML [17,18], and
BIGDML [19] for quantum machine learning force fields
(see Discussion for details). Here, our focus is solely on re-
viewing studies that employ machine learning for the search
of saddle points or minimum-energy paths. Previous studies
have successfully employed GPR to accelerate the search for
saddle points or minimum-energy paths [20–25]. For instance,
Jónsson’s group developed an adaptive GPR surrogate model
of the potential energy surface (PES) [20]. They utilized this
model to derive an initial interpolation of the minimum energy
path, which was subsequently optimized using the nudged
elastic band (NEB) method. Their investigations focused on
25 chemical reactions, primarily involving organic molecules,
known as the Baker test systems [26]. The results demon-
strated the superiority of the GPR-accelerated NEB search
over the classical NEB optimizer. The GPR model was trained
using the Matérn covariance function and a predetermined
weighted combination of energy-based and force-based loss
functions. Another study by Kästner’s group combined a
GPR-interpolated PES with the P-RFO method to identify
transition states in the Baker test systems [21]. By providing
the necessary Hessian information to the P-RFO optimizer,
the surrogate GPR model rendered the method computation-
ally efficient, comparable to force-based methods like the
dimer algorithm. Subsequently, they introduced a GPR-based
Hessian update scheme [25], where the GPR was employed
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to update Hessian matrices using gradient-based information
during the optimization procedure. This approach involved
at least one initial Hessian, along with additional energies
and gradients. Moreover, Denzel and Kästner [21] utilized
the Matérn covariance function and the “derivative observa-
tion” GPR learning technique [27], which explicitly relates
the learned forces to the negative partial derivatives of learned
energies. In a subsequent study, the same group combined
the GPR surrogate model, employing derivative observation
learning, with the NEB optimizer [22]. In two additional
studies, Jónsson’s group introduced the inverse-distance co-
variance function as an alternative to the previously employed
covariance functions [23,24], resulting in a significantly en-
hanced GPR surrogate model. By utilizing this improved GPR
model to guide the dimer and NEB saddle-point searches, they
investigated the dissociative adsorption of an H2 molecule on
the Cu(110) surface, three gas-phase chemical reactions, and
the diffusion hop of an H2O molecule on an ice Ih(0001)
surface [23,24].

Building upon previous studies, we extend the application
of GPR-dimer to investigate solid-state processes, moving be-
yond molecular processes. This study presents two examples
of solid-state processes: vacancy-mediated self-diffusion in
bcc Mo and sulfur diffusion in hexagonal MoS2. We address
the challenge of handling high dimensionality when applying
GPR-dimer to solid-state processes through the use of the
inverse-distance covariance function introduced by Jónsson’s
group [23]. By only considering atoms in the vicinity of the
diffusing atom, the inverse-distance covariance formulation
significantly reduces the degrees of freedom in the high-
dimensional space of the atomic systems considered in this
study. More details are provided in Sec. II. Additionally, this
work advances the GPR-dimer method in two key aspects.
First, we introduce the use of multitask learning for the GPR
surrogate model, resulting in a substantial improvement in the
model’s performance and robustness compared to the previ-
ously employed derivative observation learning. The multitask
GPR learning approach resembles the learning scheme used
in Ref. [20], where the loss function represents a weighted
average of energy and force losses. However, in the multi-
task approach, the contribution from force and energy losses
is learned through a shared covariance function, unlike the
approach in Ref. [20], which requires prior knowledge of the
contribution of each loss. Second, we demonstrate that by em-
ploying a translation-hop sampling approach (defined below),
the GPR-dimer search becomes both successful and robust. As
detailed in Sec. II, the GPR-dimer method iteratively updates
the GPR model as the dimer walker progresses, incorporating
new DFT-calculated values from the energy surface into the
training data. We show that a minimum number of dimer
translation steps must be hopped over before updating the
GPR to ensure successful guidance of the dimer to reach the
saddle point. We refer to this approach as the translation-hop
sampling approach. This sampling strategy strikes a balance
between an overfitted and underfitted surrogate model. Sam-
pling at every translation step leads to a GPR surrogate model
that is overfitted to the dimer walk path on the PES, while
skipping too many translation steps results in an underfitted
model. A detailed discussion is provided in Sec. III. Denzel
and Kästner discuss a similar balance between interpolation

and extrapolation with the use of an overshooting approach
for sampling the GPR for geometry optimization [28] (not for
saddle-point search). The remainder of this article is organized
as follows: In Sec. II, we explain the GPR-dimer method
developed in this study. In Sec. III, we validate the predic-
tions of our GPR-dimer method for diffusivity coefficient of
monovacancy diffusion in bulk bcc Mo and the activation
energy for sulfur diffusion in MoS2. Subsequently, in Sec. III,
we elucidate the role of different factors in enhancing the
performance of the GPR-dimer saddle-point search method.
Finally, we compare the computational cost of the standard
dimer method against our implementation of the GPR-dimer
method. In Sec. IV, we provide a general interpretation of the
numerical experiments using the GPR-dimer method within
the context of GPR learning and the dimer search algorithm.

II. METHOD

The approach to accelerate the dimer walk using GPR is
based on a simple premise: GPR serves as a surrogate model
for the computationally intensive sampling of the potential
energy surface typically through methods like DFT. Once
trained, the surrogate model can readily provide the energy
values and their gradients (forces) at unsampled locations of
the energy surface. The interaction between GPR and the
dimer takes place through an iterative feedback loop: GPR
provides estimates of the energy and its gradient along the
dimer walk, while the dimer walker contributes new points
(i.e., atomic configurations) on the energy surface. These new
points are sampled through DFT and then used to update
(retrain) the GPR. Through this iterative process, the dimer
gradually converges towards the saddle point. The next two
subsections delve into the design and training of the GPR, as
well as the communication between the GPR and the dimer.

A. Gaussian process regression (GPR) surrogate model

1. Training data set

The GPR is initially trained on ni atomic configurations.
These atomic configurations are collected from the first ni

translation steps of a DFT-guided dimer walk (i.e., standard
dimer). The standard dimer is launched from an atomic con-
figuration which is estimated to be in the vicinity of the saddle
point using a geometric interpolation (as detailed in Sec. III).
The atomic configurations constitute the input space and the
DFT-calculated atomic forces and energies constitute the tar-
get values in the training data set (see more details below).
The training data set is expanded as the dimer progresses
by adding a new DFT-calculated data at every nh translation
steps of the dimer walk. We call this approach the translation-
hop sampling method. The effect of different nh values are
examined and explained in Sec. III. For both studies of bcc
Mo self-diffusion and sulfur diffusion in hex MoS2, we use
three atomic configurations for the initial training of the GRP
(ni = 3) and we hop over 10 translation steps before adding a
new DFT calculation to the training data (nh = 10).

The DFT calculation of energy and forces are performed
using the Vienna Ab Initio Simulation Package (VASP) [29],
which employs the projector-augmented-wave (PAW) method
[30] and the generalized gradient approximation (GGA) for
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exchange-correlation energy in the Perdew-Burke-Ernzerhof
(PBE) form [31]. For bcc Mo, we use a a 3 × 3 × 3 supercell
of the conventional bcc unit cell with 54 atoms. We use a
Monkhorst-Pack k-point mesh of 5 × 5 × 5 and an energy cut-
off of 520, respectively, within the PBE exchange-correlation
functional. For hex MoS2, we use a 2 × 2 × 2 supercell of
the convectional hexagonal unit cell with 48 atoms. We use a
Monkhorst-Pack k-point mesh of 5 × 5 × 1 and an energy cut-
off of 520, respectively, within the PBE exchange-correlation
functional.

2. GPR covariance function

Choosing an appropriate covariance function is crucial for
GPR performance [32]. Here, we use the inverse distance
covariance function of Ref. [23], which demonstrates superior
performance compared to the radial basis function (RBF) or
its variants (e.g., Matérn) as shown in Ref. [24]. Compared
to a stationary covariance function such as RBF, the inverse
distance covariance function can better capture the asymmetry
of interatomic forces, specifically the large repulsive forces
caused when atoms get close to each other. This is because
the inverse distance difference measure [i.e., D1/r (x, x′) term
in Eq. (1)] stretches when atoms approach each other. This
makes the covariance function nonstationary with respect to
the atom coordinates and allows faster variation of energy in
those directions (see more details in Ref. [24]). The inverse
distance covariance function measures the similarity of two
input atomic coordinates x and x′ as [23]

k1/r (x, x′)

= σ 2
c + σ 2

m exp

⎛
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−1

2

∑
i∈Am
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(
1
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)2
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︸ ︷︷ ︸
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(1)

Here, x (or x′) denotes a 3N-dimensional configuration
vector including the Cartesian coordinates of the atomic sys-
tem with N atoms, x = [x11, x12, x13, ..., xN1, xN2, xN3]T. ri, j

is the distance between atoms i and j, defined as ri, j =√∑3
d=1(xid − x jd )2. lφ(i, j) denotes the length scale for the

atom pair φ(i, j). σm controls the magnitude of the covariance
function, and σc is the variance of a constant Gaussian prior
distribution. The lφ vector (with a size of the number of atomic
pairs), σm, and σc are the training parameters of the inverse
distance covariance function. As shown in Eq. (1), index i runs
over moving atoms Am and index j runs over other moving
atoms and frozen atoms A f . Therefore, atom pairs are only
defined between moving atoms and the rest of the moving
and frozen atoms. This construct reduces the total number
of pairs (i.e., the size of vector lφ) from 1

2 N × (N − 1) to
1
2 Nm × (Nm − 1) + Nm × Nf , where N , Nm, and Nf denote the
number of all atoms, moving atoms, and frozen atoms, respec-
tively. In the examples of this study, we define the diffusing
atom to be the moving atom (Nm = 1), and frozen atoms

are those confined in a sphere of radius r f centered around
the moving atom. We call this spherical region the active
region. We examine the effect of different r f values on GPR
performance in Sec. III. The partitioning of the atomic system
into the moving and frozen atoms is specially advantageous in
reducing the number of degrees of freedom (i.e., the number
of atomic pairs or size of lφ vector) for the solid-state phases
in our study. Additionally, by only including the atomic pair
distances between a moving atom and frozen atoms in the
covariance function, we inform the GPR model with the most
physically important atomic pairs. In other words, the atomic
pair distances formed between nonmoving atoms carry less
physically significant information in describing the potential
energy surface. This physical knowledge embedded into the
construct of the covariance function aids the model to learn
the energy surface more effectively.

3. GPR training and prediction

For training the GPR, we adopt a multitask learning ap-
proach [33,34] as implemented in GPyTorch [35], which
enables simultaneous learning of energy and forces by shar-
ing information across the prediction tasks. As we show in
Sec. III, multitask learning outperforms derivative observation
learning by reducing the GPR training time and error and
enhancing its performance and robustness. Through multitask
GPR [33] the intertask dependencies are learned based solely
on the task identities and the observed data for each task,
unlike the derivative observation GPR which explicitly en-
forces the dependence of forces and energy values by equating
forces to the negative derivative of energy. For details of the
derivative observation GPR learning approach, see Eqs. (28)
and (29) of Ref. [24]. For multitask GPR learning, a shared
covariance function between tasks t1 and t2 is defined for two
inputs x and x′ as [33]

k([x, t1], [x′, t2]) = kinput (x, x′) × ktask (t1, t2), (2)

where kinput is the inverse distance covariance function defined
in Eq. (1) and ktask is the intertask similarity measure describ-
ing the correlation between tasks. In this study, the related
tasks are the prediction of energy and atomic force compo-
nents. The prediction of each force component is a separate
task, thus the total number of tasks is 1 + 3N for N atoms
in the system. Following the multitask learning approach of
Ref. [33], ktask is defined as a “free-form” task-similarity ma-
trix, instead of a parametric covariance function. Specifically,
ktask is defined as a positive semidefinite matrix which is
approximated by an incomplete-Cholesky decomposition of
rank P. Here, we use rank 1 for approximating ktask, resulting
in only one additional trainable parameter of the GPR. More
details about the paramterization of the task-similarity matrix
are given in Ref. [33].

Given a set of M tasks and D training data points (or
observations), the shared covariance matrix K ∈ RDM×DM can
be expressed as the Kronecker product of the input covariance
matrix Kinput ∈ RD×D and the task covariance matrix Ktask ∈
RM×M :

K = Ktask ⊗ Kinput. (3)
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Here, the D distinct observations constitute the training
data set {X, Y}. X consists of input atomic configurations,
X = {x1, ..., xD}, and Y consists of DFT-evaluated energy and
force components at X, Y = (E1, ..., ED, f1, ..., fD)T , where E
and f = [ f1,1, f1,2, f1,3, ..., fN,1, fN,2, fN,3] are the energy and
force vector for each input atomic configuration, respectively.
The set of trainable parameters θ = {σc, σm, lφ} and the single
parameter of matrix Ktask are optimized by maximizing the
log marginal likelihood over the shared covariance function
[32]

argmax
θ,Ktask

{
L = −1

2
YT

(
K + σ 2

n I
)−1

Y

− 1

2
log

∣∣K + σ 2
n I

∣∣ − D

2
log 2π

}
. (4)

Here, K is the shared covariance matrix of Eq. (3), I is the
identity matrix, and σ 2

n is the random noise variance, which
we set to 10−4.

The GP approximation for the energy or each force com-
ponent is then obtained as the mean prediction on a new
data-point x∗ for task l using the posterior distribution con-
ditional on the optimized parameters:

fl (x
∗) = (

kl
task ⊗ k∗

input

)(
K + σ 2

n I
)−1

Y, (5)

where kl
task denotes the lth column of Ktask and k∗

input is the
vector of covariances between the query point x∗ and the
training points.

B. GPR-accelerated dimer

In this study, we use the dimer saddle-point search method
as detailed in Ref. [6]. A dimer contains a pair of two auxiliary
points in the atomic configuration space of dimension 3N (or
images), separated by a fixed distance of 0.1 Å. Each dimer
iteration is divided into a set of rotation steps and a translation
step. During the rotation steps, the dimer is rotated around
its midpoint to find the orientation that gives the lowest total
energy of the two images. This gives the direction of the
lowest curvature mode or the minimum mode. The dimer
is then translated by reversing the force components in the
minimum mode direction multiplied by a step size of 0.1 Å.
Details of the dimer algorithm used in this work are presented
in Ref. [6]. We used Algorithm B1 and Algorithm B3 of
Ref. [6], respectively, for rotation and translation of the dimer.

For a GPR-guided dimer, the GPR-approximation of the
energy and force components [according to Eq. (5)] are used
to provide the forces acting on the images of the dimer during
rotation and translation. Rotational forces are then defined
according to the projected atomic forces on the two images
of the dimer as FR. Rotational steps are carried out until FR

falls below a threshold (0.1 eV/Å) or a maximum number of
rotations are performed. The maximum number of rotations
is set to 5 for the standard dimer (our code) and to 25 for
the GPR-dimer. We use the conjugate gradient algorithm for
determining the rotational plane of the dimer. As explained in
the previous section, the GPR model is updated (retrained)
after every nh translation steps by using an expanded set
of DFT-calculated training data points. The final conver-
gence of the dimer to the saddle point is achieved when the

(a) (b)

(c) (d)

(e)

FIG. 1. The evolution of the GPR approximation of the potential
energy surface and the dimer location on the GPR-approximated
energy surface at (a) the initial point, and after (b) 4, (c) 5, and
(d) 13 dimer translation steps. (d) The final step of the GPR-dimer,
where it reaches the exact saddle point at x = 0 and y = 0. (e)
Force magnitude (i.e., derived from the negative gradient of the
GPR-approximated potential energy) versus the GPR-dimer steps.
The inset illustrates the 2D potential model, z = − sin πx sin πy.

maximum atomic force approximated by the GPR is below
0.01 eV/atom. An accurate DFT calculation of the force at the
final point of dimer is performed to confirm the convergence
to the saddle point.

III. RESULTS

A. Validation: Two-dimensional sinusoidal potential model

We first validate the GPR-dimer method of this work, as
detailed in Sec. II, on a toy potential model of sinusoidal
form. The model has the function form of z = − sin πx sin πy,
where z denotes the potential energy value and x and y
constitute the two coordinates of the input, mimicking the
atomic coordinates in a two-dimensional space. We initiate
the GPR-dimer from the minimum on the potential surface
at x = −0.5 and y = −0.5. The GPR-approximated energy
surface z̃ is updated (or retrained) after each dimer translation
step (i.e., nh = 0). The training set is expanded by a new data
point, zi(xi, yi ), at each dimer translation step, where (xi, yi )
specify the 2D atomic coordinates of the new dimer location,
and then the GPR is trained on the new training data. The
threshold for training of the GPR is for the mean absolute
error (MAE) of the force and energy to drop below 0.01 eV/Å
and 0.01 eV, respectively. Figure 1 illustrates the evolution
of the GRP energy surface, z̃, and the dimer walker location
at different dimer translation steps. Figure 1 also shows the
decrease of the force magnitude, |F̃ | (i.e., |F̃ | =

√
F̃ 2

x + F̃ 2
y

where F̃x = − ∂ z̃
∂x and F̃y = − ∂ z̃

∂y ) as the GPR-dimer progresses
toward the saddle point. The GPR-dimer reaches the saddle
point at x = 0 and y = 0 after 13 translation steps, with a total
number of 60 dimer rotations. For the 2D potential model,
we use the radial basis covariance function (RBF), as im-
plemented in GPyTorch [35] and the derivative-observation
learning approach [27].

B. Validation: Self-diffusion in bcc Mo

To validate that the GPR-dimer method can successfully
identify the transition state of a solid-state process, we apply
it to calculate the energy barrier for a vacancy diffusive hop
in the bcc phase of Mo. We initiate the GPR-dimer walker at
an atomic configuration that is a linear interpolation between
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FIG. 2. (a) Diffusion coefficient versus temperature in bcc Mo.
The predictions of this work, from DFT calculations and the
GPR-dimer, are compared against experimental measurements [38].
(b) The evolution of the atomic configuration in the vicinity of the
diffusing atom starting from the input atomic configuration (yellow)
to the saddle point on the energy surface (red) output by the GPR-
dimer. The atomic configuration of the local minimum state-vacancy
residing on a bcc site- is also shown (blue).

the initial state (a local minimum state), where a bcc lattice
site is vacant, and the final state (a symmetrically equivalent
local minimum state), where the vacant bcc site has hopped
to the nearest neighbor. The input configuration is a weighted
average of the atomic coordinates with 3/4 contribution
from the initial state and 1/4 from the final state [see
Fig. 2(b)]. Supplemental Note 1, along with Supplemental
Figs. S2–S5 [36], examine the GPR-dimer application using
the local minimum configuration as the initial input. Given
the input configuration, we perform the standard dimer for
two translation steps to provide the data points for training the
GPR. A total of three atomic configurations are used to train
the GPR (ni = 3). The GPR-dimer is then launched to locate
the saddle point. We use the inverse distance covariance
function with an active region of size r f = 3 Å . For training
the GRP, we employ the multitask learning as detailed in
Sec. II. The training data set is expanded by an additional
atomic configuration at every 10th translation step of the
dimer (i.e., nh = 10), followed by an update (or retraining) of
the GPR. The criterion of reaching the saddle point is for the
total force magnitude to be less than 0.01 eV/Å, where the
GPR-dimer stops. The total force magnitude is calculated as
F =

√∑N
i=1 F 2

i1 + F 2
i2 + +F 2

i3. The energy difference between
the final step of the GPR-dimer (or the transition state) and
the initial state of the vacancy hop (the local minimum)
is calculated to provide the energy barrier for the vacancy
diffusive hop (or the enthalpy of vacancy migration), �Hm.
Energies of the transition and local minimum states are both
calculated using DFT. The calculated enthalpy of vacancy
migration is equal to 1.34 eV [see Fig. 2(b)], which is in good
agreement of our previous calculation using NEB [37].

Using the calculated enthalpy of vacancy migration, �Hm,
we validate the diffusion coefficient of bcc Mo as a func-
tion of temperature with experimental measurements [38].
Figure 2(a) shows the calculated diffusion coefficient based
on the located saddle point on the energy surface by the
GPR-dimer method in comparison with experimental results
[38]. We calculate the self-diffusion coefficient for mono-
vacncy diffusive jumps according to D = Cvd2�, where d
is the vacancy (or atom) jump distance, Cv is the equilib-
rium vacancy concentration, and � is the successful vacancy
jump rate. Vacancy jump distance in bcc is equal to the
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FIG. 3. Evolution of the GPR-dimer to locate the transition state
of sulfur-monovancy diffusive jump in hex MoS2. (a) The total
force magnitude of the atomic configuration versus dimer translation
step. The inset depicts the input configuration to the GPR-dimer.
(b) Displacement of the diffusing sulfur atom during the GPR-dimer
saddle-point search, projected along the [100] and [010] directions.
The insets depict the atomic configuration in the vicinity of diffusing
sulfur. Sulfur, molybdenum, and vacancy are colored by yellow,
purple, and dotted red circles, respectively. The color bar maps the
energy of different dimer steps.

nearest-neighbor distance or
√

3
2 a0, where a0 is the lattice

constant. Vacancy concentration at temperature T is given
by Cv = exp( �S f

kB
) exp(−�Hf

kBT ), where �Hf and �S f are the
formation enthalpy and entropy of vacancy, respectively, and
kB is the Boltzmann constant. We obtain the DFT-calculated
values of a0 and Cv from our previous results in Ref. [37].
The vacancy jump rate � is obtained from the migration
enthalpy, �Hm, and the effective vibration frequency along
the migration path, ν∗, by � = ν∗ exp( −�Hm

kBT ). Here, �Hm

is the vacancy migration energy barrier calculated according
to the saddle point located by the GPR-dimer method. We
obtain the DFT-calculated ν∗ from Ref. [37], which calculates
ν∗ as the ratio of the product of normal vibration frequencies
of the initial state of atomic migration, νi, to that of the non-
imaginary normal frequencies of the transition state, ν ′

j , i.e.,

ν∗ =
∏3N−3

i=1 νi∏3N−4
j=1 ν ′

j

. The obtained value is 2.4 THz. Alternatively,

we estimate ν∗ to be equal to the Debye frequency, ν∗ ≈ νD =
2.9 THz, which is calculated from Debye temperature 
D as
νD = 
D

kB
h̄ , where h̄ is the reduced Plank’s constant.

C. Validation: Sulfur diffusion in hex MoS2

To further validate the accuracy of the GPR-dimer method
in identifying transition states in solid-state processes, we
apply it to calculate the energy barrier for the monovacancy-
sulfur diffusive jumps in hexagonal MoS2 (P63/mmc space
group with 2b and 4f wyckoff positions for Mo and S, re-
spectively). The input atomic coordinates to the GPR-dimer
are linearly interpolated with 3/4 contribution from the local
minimum configuration, where one sulfur site is vacant, and
1/4 from the final state, where the vacancy and the nearest
sulfur has exchanged their positions (see Fig. 3 for the in-
put configuration). Subsequently, we launch the GPR-dimer
method to locate the saddle point along the diffusion pathway.
Like the example of bcc Mo, we use the first three atomic
configurations from the translation steps of standard dimer
to train the GPR (i.e., ni = 3), and we consequently update
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FIG. 4. Comparison of the gradient observation and the multitask learning on the GPR predictive performance. The mean absolute error
(MAE) of the energy prediction (eV) and the atomic force magnitude prediction (eV/Å) in terms of the training epoch for (a) gradient
observation and (b) multitask learning. Different line styles and markers indicate various sizes of the training data.

(or retrain) the GPR after every 10 translation steps (i.e.,
nh = 10). We use an active region of radius r f = 5 Å centered
at the diffusing sulfur atom for the inverse-distance covariance
function of Eq. (1). Figure 3(a) shows the evolution of the total
force magnitude of the atomic configuration at different trans-
lation steps of the GPR-dimer. Once the total force is below
0.01 eV/Å, we stop the GPR dimer. Figure 3(b) shows the
displacement of the diffusing atom projected on the [100] and
[010] directions during the GPR-dimer evolution. The energy
of the output of the GPR-dimer (or the transition state) and the
local minimum configuration are calculated using DFT. The
calculated energy difference between these two configurations
equals 2.3 eV, which is in good agreement with the DFT-NEB
calculation of Ref. [39].

D. GPR-dimer performance analysis

In this section, we examine the impact of various parame-
ters on the performance of the GPR-dimer method introduced
in this study. These parameters include: (1) the learning ap-
proach or the GPR training method, (2) the energy surface
sampling frequency or the number of dimer translation hops
between DFT-calculations, (3) the size of the active region
containing frozen atoms in the inverse-distance covariance
function of Eq. (1), and (4) the number of preceding DFT-
sampled data points included in GPR training set at each
retraining step. We present our study on the diffusive jump
of a monovacancy in bcc Mo.

To evaluate the impact of different GPR learning ap-
proaches, we compare multitask learning (explained in
Sec. II) with the commonly used derivative-observation learn-
ing. Figure 4 illustrates the learning curves for multitask
learning and derivative-observation learning. The GPR serves
as the initial surrogate model for the energy surface, and
the training data consist of ni consecutive DFT-calculated
dimer translation steps starting from the initial atomic con-
figuration (as detailed in Sec. II). The mean absolute error
(MAE) for energy and force predictions are presented over the
training epoch for various numbers of input training data, ni.
The multitask learning method demonstrates superior learning
performance in terms of prediction accuracy and stability

compared to derivative-observation learning. The multitask
learned GPR consistently exhibits lower MAE across all
epochs and input data sizes. Furthermore, the MAE remains
low and relatively stable for different input data sizes, in-
dicating the robustness of multitask learning and its lower
sensitivity to observations (or training data). In contrast, the
GPR trained with derivative-observation learning shows an
increase in MAE as the number of input data increases.
Specifically, the MAE for energy prediction starts to rise
significantly above 1 eV after around 200 epochs, while the
MAE for force prediction remains low. This behavior is likely
attributed to overfitting of the derivative-observation GPR to
a single task. The explicit relationship between forces and
energies in derivative-observation learning constrains the opti-
mization process, making it prone to issues such as overfitting
to forces in this particular example. However, multitask learn-
ing employs an implicit regularization effect, mitigating the
risk of overfitting to a single task. By simultaneously learning
multiple correlated tasks, the model captures common latent
features that generalize better to new data.

We assess the impact of the number of translation hops,
denoted as nh, in the translation-hop sampling approach de-
scribed in Sec. II, on the performance of GPR-dimer. In
Fig. 5, we present the behavior of the GPR-dimer for different
values of nh (nh = 0, 1, 3, 5, 10). The figure illustrates the
DFT-calculated total atomic force magnitude and the force
magnitude of the diffusing atom as a function of the dimer
translation step. The force values are only displayed for the
dimer translation steps where the GPR is updated, corre-
sponding to the atomic configurations associated with the
DFT-calculated steps. The GPR-predicted forces at the inter-
mediate steps between DFT sampling points are not shown.
Based on our examination, we observe that the GPR-dimer
with zero, one, and three translation hops failed to locate
the saddle point. In contrast, the GPR-dimer with five and
ten translation hops successfully converged to the saddle
point. This observation provides valuable insights into how
the sampling frequency along the dimer path influences the
GPR surrogate model, striking a balance between a localized
and global representation of the energy surface. For zero,
one, and three translation hops, the GPR becomes excessively

013804-6



IMPROVING AB INITIO DIFFUSION … PHYSICAL REVIEW MATERIALS 8, 013804 (2024)

(f)

(c)

(e)

(b)

(d)

(a) nh = 0 nh = 1 nh = 3

nh = 5 nh = 10

Total force Diffusing atom force

Step 0

F
(e

V
/A

)

F
(e

V
/A

)

F
(e

V
/A

)

F
(e

V
/A

)

F
(e

V
/A

)

Step 0

Step 10

Step 10

Step 49

Step 49: Saddle Point

[111]
direction

Ste
Stepee

Y
x

Z

GPR-
Dimer

FIG. 5. Assessing the performance of the GPR-dimer for different translation-hop values in the translation-hop sampling approach. The
evolution of the total atomic force and the diffusing atom force in terms of dimer translation steps for (a) zero, (b) one, (c) three, (d) five, and
(e) ten translation hops. The x axis represents the GPR-dimer translation steps only where the GPR is updated with new DFT-calculated data
points. (f) Evolution of the atomic configuration in the vicinity of the diffusing atom at different steps for the GPR-dimer with nh = 10.

influenced by the energy surface in the vicinity of the dimer
path. Consequently, it overfits to the minimum-mode fol-
lowing path while neglecting the broader energy landscape.
However, delaying the sampling by 5 or 10 translation hops
enables the GPR to capture a more balanced representation,
encompassing both the vicinity of the path and the wider
energy surface shape. In other words, the translation-hop
sampling approach provides the opportunity to balance ex-
ploration and exploitation through tuning the nh parameter.
It is worth noting that in the case of a 2D potential model
(depicted in Fig. 1), no translation hops are required. The GPR
demonstrates robustness against overfitting due to the low
dimensionality of the input space of the covariance function.

To further investigate the influence of translation-hop sam-
pling frequency on the GPR model, we present the energy
profile of the GPR-dimer for different translation hops in
Fig. 6. The minimum energy pathway, obtained from NEB
calculations implemented in VTST [7], is shown as a ref-
erence. The movement of the GPR-dimer is projected along
the minimum energy path direction (or along the [111] lattice
direction), which serves as the x axis in Fig. 6. In the case
of zero hops [Fig. 6(a)], the GPR-dimer bypasses the saddle
point and explores high-ridge regions of the energy surface.
This is because the GPR is overfitted to the walker pathway
and most likely to the noise in the initial dimer walker oscilla-
tions, which results in misguiding the walker. For one or three
hops [Figs. 6(b) and 6(c)], the walker goes back and forth
between lower and higher energy regions but fails to locate
the saddle point. In contrast, for five and ten hops [Figs. 6(d)
and 6(e)], the GPR-dimer walker deviates from the NEB path
at the beginning, as the GPR’s accuracy in predicting energies
near the pathway is reduced. The walker takes larger steps

and explores a diverse range of points on the energy surface,
eventually converging to the saddle point as it progresses and
incorporates more sampled data points. Supplemental Fig. S1
[36] illustrates a 2D projection of the GPR-dimer’s diffusing
atom trajectory on the high-dimensional energy surface for
different translation hops.

We investigate the impact of the active region radius, de-
noted as r f (see Sec. II for details), on the overall performance
of the GPR-dimer. Increasing the active region radius results
in more frozen atoms in the inverse distance covariance func-
tion of Eq. (1). This leads to more pairs between the moving
atom (or the diffusing atom) and the frozen atoms, provid-
ing the GPR with more information about the surrounding
atomic configuration. Figure 7 illustrates the GPR-dimer’s
behavior for r f values of 3, 5, and 7 Å (associated with the
first, second, and third nearest neighbors of the moving atom,
respectively), with a fixed translation hop of nh = 10. The
DFT-calculated total atomic force and diffusing atom force are
shown as a function of the GRP-dimer step. In all three cases,
the GPR-dimer successfully locates the saddle point. How-
ever, as shown in Fig. 7, the force evolution is smoother for
r f = 3 Å compared to larger active regions. The force exhibits
an early peak and a monotonic decrease as the GPR-dimer
progresses towards the saddle point. In contrast, for r f = 5 Å
and r f = 7 Å, the force demonstrates significant oscillations
throughout the GPR-dimer progression, with r f = 7 Å dis-
playing two force peaks before reaching the saddle point.
The smooth evolution of the GPR-dimer observed at r f = 3 Å
provides valuable insights into achieving an optimal balance
between the number of atomic pairs incorporated in the GPR’s
covariance function and the captured physical information. By
setting r f = 3 Å, the covariance function effectively captures
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FIG. 8. Effect of GPR-dimer tail size (or the number of preceding dimer translation steps incorporated in the training set) on the GPR-dimer
performance. The DFT-calculated total force and diffusing atom force are shown for a tail size of (a) 5, (b) 10, and (c) all preceding dimer
steps. The x-axis shows the GPR-dimer translation steps at which the GPR is updated. The atomic configuration around the diffusing atom is
shown for the last GPR-dimer step for each case.

variations in the pair distance between the diffusing atom
and its first nearest neighbors throughout the progression of
the GPR-dimer. Constraining the pair distance information
to the first nearest neighbors proves to be the most effective
approach for constructing a surrogate model. This is because
the pair distances among the nearest neighbors contain the
most relevant physical information while maintaining a rel-
atively low number of pairs. Consequently, this results in a
smaller size of the lφ vector, reducing the risk of overfitting
and improving the model’s performance.

Last, we investigate the influence of the GPR-dimer’s train-
ing data history on its performance. The GPR-dimer’s tail size
is defined as the last nt translation steps preceding the current
step, which are used as training data for updating the GPR
surrogate model. We consider three tail sizes: nt = 5, nt = 10,
and nt including all preceding DFT-sampled steps. The trans-
lation hop is set to nh = 10, indicating 10 dimer translations
between consecutive DFT-sampled steps. The active region
radius is fixed at 3 Å (r f = 3 Å). Figure 8 presents the GPR-
dimer evolution for different tail sizes nt . The DFT-calculated
total atomic force magnitude and diffusing atom force magni-
tude are shown as a function of the GPR-dimer progression.
The GPR-dimer successfully locates the saddle point only
when all preceding DFT-sampled steps are included in the
training set. This observation aligns with our previous analysis
of the translation-hop frequency. Limiting the GPR training
data to the last 5 or 10 preceding steps results in a surrogate
model representing a local view of the energy surface, caus-
ing the walker to bypass the saddle point and move towards
high-energy ridges. This is evident from the large force mag-
nitudes observed in Figs. 8(a) and 8(b). Conversely, updating
the GPR using the entire history of the dimer walker allows
the model to capture a broader view of the energy surface.
Our examination reveals that excluding atomic configurations
with large repulsive forces (force peaks in the early steps
of the GPR-dimer) prevents the GPR from gaining a com-
prehensive understanding of the energy surface. Therefore,
updating the GPR with a diverse set of low- and high-energy

points sampled along the walk is necessary for the successful
identification of the saddle point by the GPR-dimer.

E. Assessing computational efficiency

To assess the potential computational efficiency gains
achievable by employing a GPR surrogate model with the
dimer method, we compare the computational efforts required
to locate the saddle point for self-diffusion in bcc Mo using
three different approaches: the standard dimer as implemented
in our work, the GPR-dimer as implemented in our work,
and the dimer implementation of the transition state tools
for VASP (VTST) [7]. Table I presents a comparison of the
total number of DFT calculations of energy and forces nec-
essary for each method to converge to the saddle point. In
the standard dimer method (both in our implementation and
the VTST code), DFT calculations are performed at every
dimer step—during both the translation and rotation steps. For
the GPR-dimer, however, forces are obtained from the GPR
surrogate model during rotations, and DFT force calculations
are only carried out at every six dimer translation steps, when
the GPR is updated (nh = 5). The GPR surrogate model is
initially trained on three DFT-calculated configurations (i.e.,
ni = 3). Table I also includes the number of node-hours re-
quired for the DFT calculations by each method, conducted
on 2 AMD EPYC 7742 CPUs with 64 cores. As illustrated

TABLE I. The number of DFT calculations and computational
effort for standard dimer versus GPR dimer for vacancy diffusion in
bcc Mo. For GPR-dimer, the active region cutoff radius is 3 Å and
the translation hop is set to 5 (r f = 3 Å and nh = 5).

DFT
calculations

Computational time
(node-hour)

Dimer (our code) 54 20.81
GPR-dimer (this work) 44 17.89
Dimer (VTST code) 60 23.1

013804-9



FATTAHPOUR AND KADKHODAEI PHYSICAL REVIEW MATERIALS 8, 013804 (2024)

in Table I, the GPR-dimer approach needs 44 DFT calcula-
tions (equivalent to 17.89 node hours), compared to 54 (20.81
node hours) in standard dimer (our code), showing around
15% enhancement in computational effort. The computational
enhancement provided by GPR-dimer compared to the stan-
dard dimer becomes more pronounced with larger atomic
systems (further details are provided below). As shown in Ta-
ble I, the VTST implementation needs higher number of DFT
calculations (60 calculations equivalent to 23.1 node hours)
compared to our implementation of the standard dimer. This
is because our implementation utilizes the more efficient con-
jugate gradient algorithm. Specifically, while the VTST code
utilizes the original conjugate gradient (CG) algorithm [8], our
code adopts a more efficient version of CG [6]. Supplemental
Tables S1 and S2 [36] show the computational effort for
the GPR-dimer method for different translation hops, nh, and
active region radii, r f , respectively.

To assess the scalability of the GPR-dimer method with
atomic system size and its computational efficiency, we
compare the computational effort between GPR-dimer and
standard dimer for the saddle-point search simulation of
vacancy diffusion in bcc Mo for 53-atom, 127-atom, and
249-atom supercells. As shown in Supplemental Table S3
and Fig. S6 [36], for both the standard dimer and GPR-
dimer, the number of required DFT calculations remains the
same for different numbers of atoms (see Supplemental Ta-
ble S3 [36]). However, the computational time associated
with each DFT calculation by VASP grows by supercell size
(see Supplemental Fig. S6 [36]). Additionally, the computa-
tional efficiency gain by GPR-dimer, compared to the standard
dimer, increases for larger systems: For a 53-atom super-
cell, GPR-dimer reduces the computation time by 15% and
22% compared to the standard dimer in our code and VTST,
respectively ( 20.81−17.89

20.81 ≈ 15% and 23.10−17.89
23.10 ≈ 22%). For

249-atom supercell, these computational enhancement grows
to 18% and 26% ( 459.32−375.31

459.32 ≈ 18% and 509.87−375.31
509.87 ≈

26%), respectively. Notably, the GPR-dimer method main-
tains approximately the same computational time for the
non-DFT calculations (around 1 node-hour as shown in
Supplemental Table S3 [36]) regardless of the size of the
supercell, showing an O(1) or constant time complexity.
This is also evident by the horizontal line in Supplemental
Fig. S6 [36]. The constant time complexity of the GPR-
dimer is because of the active region approach used in
defining the covariance function [see Eq. (1)]. The GPR
covariance function only depends on the size of atoms in
the active region surrounding the diffusing atom/vacancy
(e.g., first- or second-nearest-neighbor atoms) rather than
the full system. Therefore, the size of the active region
is independent of the size of the full system, making the
GPR-learning approach size-independent. Additionally, our
results show that the presented GPR-dimer method can han-
dle atomic systems of arbitrary sizes without any inherent
limitation.

IV. DISCUSSION

We present a methodology that leverages Gaussian process
regression (GPR) to develop a surrogate model for the ab
initio energy surface. By integrating the dimer method with

GPR in an iterative feedback loop, we simultaneously sample
the energy surface and converge to the saddle point. The ver-
satility of our proposed GPR-dimer method is demonstrated
through its successful application in identifying transition
states of vacancy-mediated diffusion in both bcc molybdenum
and hexagonal molybdenum disulfide. Our results indicate the
promising potential of the GPR-dimer method in enhancing
the efficiency of saddle-point search in solid-state materials
characterized by a large number of atoms.

The presented GPR-dimer method is specifically tailored
for efficient identification of transition states in solid-state
materials. It excels in accurately and rapidly locating saddle
points based on the regeneration of forces in the vicinity of
the dimer pathway, derived from only a few ab initio data
points (e.g., 40–50 data points as shown in Table I). Unlike
methods such as GDML [16], sGDML [17,18], and BIGDML
[19], which are designed for global force field generation
over a wide range of atomic configurations, the GPR-dimer
method focuses on local surrogate forces along the dimer walk
path. Therefore, while sGDML is adept at generating accu-
rate global force fields for molecular dynamics simulations,
derived from large data sets and diverse structures (e.g., in
the order of thousands), the GPR-dimer method is more suit-
able for detailed transition state analysis. Recognizing these
distinctions and trade-offs is essential for choosing the most
effective computational strategy in a given materials science
investigation.

To establish a robust and computationally efficient GPR-
dimer scheme, we introduced two key components: (1)
multitask GPR learning and (2) translation-hop sampling of
training data. The translation-hop sampling approach proves
to be essential in striking a delicate balance between explo-
ration and exploitation of the ab initio energy surface during
the search for the saddle point. This approach enables effec-
tive utilization of the available training data while efficiently
exploring the energy landscape. Furthermore, by applying the
GPR-dimer method to solid-state materials with a high degree
of atomic freedom, our findings offer valuable strategies to
tackle the challenge of high-dimensionality when employing
GPR.

The integration of a surrogate model, like GPR, with the
dimer method not only enhances computational efficiency,
as presented in this study, but also unlocks new avenues
for simulating various physical aspects associated with the
identification of transition states. Our ongoing research efforts
are directed toward expanding the scope of this approach by
incorporating temperature effects into the surrogate model for
solid-state processes. By extending the functionality of the
surrogate model, the presented GPR-dimer approach can be
readily applied to transition state studies in high-temperature
solid phases.

In summary, our methodology showcases the potential of
GPR-dimer as a powerful tool for enhancing saddle-point
search in solid-state materials. By integrating GPR with the
dimer method and incorporating novel strategies, we pave
the way for more efficient exploration of complex energy
landscapes in the search for transition states.

The GPR-dimer source code is accessible upon request
from the corresponding author.
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