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Interatomic potentials provide a means to simulate extended length and time scales that are outside the reach of
ab initio calculations. The development of an interatomic potential for a particular material requires the optimiza-
tion of the parameters of the functional form of the potential. We present a parametrization protocol for analytic
bond-order potentials (BOPs) that provides a physically transparent and computationally efficient description of
the interatomic interaction. The parametrization protocol of the BOP follows the derivation of the BOP along
the coarse-graining of the electronic structure from density-functional theory (DFT) to the tight-binding (TB)
bond model to analytic BOPs. In particular, it starts from TB parameters that are obtained by downfolding DFT
eigenstates of two-atomic molecules to an sd-valent minimal basis. This sd-valent Hamiltonian is combined
with a pairwise repulsion to obtain an initial binding energy relation. The s electrons are then removed from
the Hamiltonian and instead represented by an isotropic embedding term. In the final step, the parameters
of the remaining d-d interaction, the pair repulsion, and the embedding term are optimized simultaneously.
We demonstrate that the application of this parametrization protocol leads to a basic BOP for Re with good
transferability. We discuss different strategies to refine the basic BOP towards global transferability or towards
local accuracy. We demonstrate that homogeneous samplings of the structural phase space in a map of local
atomic environments can be used to systematically increase the global transferability. We also demonstrate the
influence of training data weighting on local accuracy refinements with a Pareto-front analysis, and we suggest
further requirements to select a final BOP. The local accuracy and global transferability of the final BOP is also
shown and compared to DFT.
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I. INTRODUCTION

Quantum-mechanical calculations on the basis of density-
functional theory (DFT) allow computational materials scien-
tists in principle to predict all properties of structural and func-
tional materials. In practice, however, the computational cost
of DFT calculations limits this approach typically to system
sizes of only a few hundred atoms. This limitation puts many
material phenomena out of reach for DFT calculations, e.g.,
plastic deformation, melting, and phase transitions. One of the
central goals of computational materials science at the atom-
istic scale is therefore to complement DFT calculations with
computationally more efficient approaches. The two main ap-
proaches are to represent the DFT potential energy surface by
numerical interpolation of a large number of data points and
by physics-inspired models of the interatomic interaction.

The physics-inspired models require orders of magnitude
fewer parameters to be adjusted in their construction. This
leads to a significantly lower demand on the training data but
also to less flexibility with regard to optimization to a set of
training data. The robustness with regard to the predictions,

*These authors contributed equally to this work.

therefore, depends on the physical ground of the functional
form, the training data, and the parametrization strategy. Their
subtle interplay is the core of the challenge of developing
reliable parametrizations of physics-inspired models of the
interatomic interactions [1–7].

The different models are formulated either as an ex-
plicit function of atomic positions for specific types of
interactions, e.g., metals [8,9] or semiconductors [10,11],
or as more flexible coarse-grained electronic-structure meth-
ods like tight-binding (TB) [12–15] or bond-order potentials
(BOPs) [16–19]. Many published models exhibit quantitative
and often qualitative differences in their prediction for the
same material; see, e.g., Refs. [20–22] for extensive com-
parisons and benchmarks. Such comparative assessments are
often challenged by the different and not always fully trans-
parent choices of training data and parametrization strategy.

In this work, we propose a parametrization protocol for a
basic model and different strategies towards refined models
for the case of coarse-grained electronic-structure methods.
We focus on an analytic BOP [23] that is derived by a second-
order expansion of the energy functional from DFT to TB to
BOP [19] and that has been shown to provide a robust descrip-
tion of transition metals with bcc [24–32] and fcc/hcp [33–37]
ground-state structures.
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The parametrization is carried out along an analogous
coarse-graining route from downfolding DFT eigenstates of
dimers to a TB Hamiltonian [38], the addition of a simple
pairwise repulsion term, the replacement of s-electrons in the
Hamiltonian by a simple embedding function, and the approx-
imate solution of the TB Hamiltonian with an analytic BOP.
An approach is introduced to analyze the transferability to
other crystal structures in a transparent and intuitive way with
a recently established map of local atomic environments [39].
Different strategies are compared to refine the resulting basic
model obtained with few training data towards global transfer-
ability by adding a homogeneous coverage of phase space in
the map or towards local accuracy by adding specific training
data motivated by potential applications.

For the purpose of demonstrating our parametrization pro-
tocol, we choose Re with hcp as the ground state as the
example material in this work. Re is often added to Ni-based
superalloys to improve their creep properties [40]. In fact,
the aircraft industry accounts for almost 70% of the world’s
consumption of industrially produced Re [41]. It also plays a
role as product of nuclear transmutation of W under neutron
irradiation of plasma-facing materials for divertors in fusion
reactors [42]. In both applications, Re promotes the formation
of complex intermetallic phases, particularly topologically
close-packed (TCP) phases [40,43–46], that deteriorate the
mechanical properties. There are only two existing models for
Re based on the embedded-atom method (EAM) [47,48].

In Ref. [47], the model is fitted mainly to the elastic con-
stants, the equation of state data for the ground-state hcp
structure, along with the cohesive energies and lattice parame-
ters of bcc, fcc, and hcp crystal structures. The resulting model
describes the elastic constants well, but the self-interstitials
were poorly described as shown in Ref. [48]. In Ref. [48],
the Re model is explicitly fitted to several defect, liquid, and
other crystal structures. This model performs very well for
point defects but poorly describes the elastic constants with
differences to reference experimental values reaching as high
as 270 GPa for some elastic constants. In this regard, we show
that our model for Re balances all the properties of interest
satisfactorily.

A brief summary of methodology and reference data is
given in Sec. II. In Sec. III, we outline the parametrization
along the same coarse-graining route by downfolding DFT
eigenstates of dimers to a TB Hamiltonian, which is then
simplified and solved approximately with an analytic BOP.
In Sec. IV, the resulting basic BOP is refined with different
strategies towards global transferability and local accuracy.
The compromise between the two strategies is worked out by
identifying the Pareto front for different weighting of training
data and by determining the transferability across a broad
range of local atomic environments. Using additional tests, a
final BOP for Re is selected in Sec. V and compared to DFT
reference data.

II. METHODOLOGY

A. Analytic bond-order potentials

The analytic bond-order potentials are derived by coarse-
graining the description of the electronic structure from DFT

to the tight-binding (TB) bond model [13] to the BOP [19,23].
For a nonmagnetic, charge-neutral system, the most basic
form of the total binding energy (Ebind) in the TB bond model
is written as

Ebind = Ebond + Erep, (1)

where Ebond and Erep are bonding and repulsive energy,
respectively. Further terms due to magnetism and charge
transfer [19,49] are not required for the application to Re in
this work.

The bond energy Ebond is calculated by integrating the local
density of states niα (E ) of orbital α on atom i up to the Fermi
level EF as

Ebond = 2
∑

iα

∫ EF

−∞
(E − Eiα )niα (E )dE (2)

with the energy of the atomic on-site level Eiα . In the BOP
formalism, niα (E ) is not obtained by diagonalization of the
TB Hamiltonian Ĥ but by using the moments theorem [50]
that relates the local electronic structure in terms of niα (E ) to
the local atomic structure. The N th moment of niα (E ) given
by

μ
(N )
iα =

∫
EN niα (E )dE (3)

can also be written as a product of pairwise Hamiltonian
matrices along self-returning paths that start and end on atom
i orbital α,

μ
(N )
iα = 〈iα|ĤN |iα〉

=
∑
jβ···

〈iα|Ĥ | jβ〉 〈 jβ|Ĥ |kγ 〉 〈kγ |Ĥ | · · ·〉 〈· · · |Ĥ |iα〉

= Hiα jβHjβkγ Hkγ ···H···iα, (4)

where Hiα jβ is the orthogonal TB Hamiltonian that describes
the interaction between atom i orbital α and atom j orbital
β. Details of the computation of Ebond from Hiα jβ are given
elsewhere [49]. The construction of Hiα jβ is a central part
of the TB/BOP parametrization. For most BOP models, the
values of Hiα jβ are derived from DFT calculations and kept
fixed in the parametrization [29,30,35]. The TB Hamiltonians
for sd-valent systems are often simplified by replacing the s
contribution in the Hamiltonian with an additional attractive
embedding energy Eemb [26,28], as described in detail below.

The attractive bond energy of a TB/BOP model is bal-
anced by repulsive contributions Erep that represent the
overlap repulsion of atomic orbitals and higher-order terms.
The simplest form of Erep is a repulsive pair potential.
More sophisticated forms of Erep such as a Yukawa-like
term [51,52] account for environment-dependent many-body
repulsion [29,35]. The interaction range of the TB/BOP model
is limited by multiplying bond integrals and pair repulsion
with a cosine-shape cutoff function [49] in the range of
[rcut − dcut, rcut]. For Re in this work, we use rcut = 6 Å and
dcut = 0.5 Å.

The further settings of the analytic BOP model de-
veloped in this work follow previous parametrizations for
transition metals [30–32,36,37]. In particular, we use nine
calculated moments, higher moments estimated up to 100,
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and a square-root terminator with a Jackson kernel to ensure
a strictly positive DOS. The calculations are performed self-
consistently with numerically enforced charge-neutrality as
described, e.g., in Ref. [19]. The calculations are carried out
with BOPFOX software [49], which provides a linear scaling
of the computational effort with the number of atoms.

B. Parametrization setup

The parametrization of an interatomic potential in general,
or a TB/BOP model in particular, requires us to adjust the
free parameters such that the chosen set of training data is re-
produced with sufficient accuracy. The underlying numerical
procedure uses a cost function that measures the discrepancy
between the predictions of the potential and the reference data.
A natural choice for the cost function is the root-mean-square
(RMS) error

c(θ) =
√∑Nref

k e2
k

Nref
, (5)

where

ek = wk (Epred,k (θ) − Eref,k ). (6)

Nref is the number of reference data points, θ is a vector of
model parameters, and Epred,k (θ) is the model prediction for
structure k for given model parameters. Eref,k is the corre-
sponding reference, and wk is a weight factor to balance the
relative importance of structure k. We use a local minimiza-
tion procedure, the Levenberg-Marquardt algorithm [53–55],
to minimize the cost function c(θ). The minimization is
implemented in the BOPCAT software [7] that drives BOP
calculations with the BOPFOX software. The parametrization
of the BOP model is carried out in two steps. In the first step,
a basic BOP model is constructed with a small set of training
data. In the second step, the basic BOP model is refined and
validated against the full set of reference data.

C. Reference data

The reference data for the parametrization of the ana-
lytic BOP for Re in this work are total energies obtained
from DFT calculations. These energies are computed using
non-spin-polarized DFT calculations with VASP [56–58]. The
projector augmented-wave (PAW) [59] method is used with
the generalized gradient approximation [60]. A high accuracy
of the calculations is obtained by a plane-wave cutoff energy
of 400 eV and Monkhorst-Pack [61] k-point meshes with a
linear density of 0.125 Å−1.

The reference data cover ideal crystal structures including
the basic structures hcp, dhcp, fcc, bcc as well as the topo-
logically close-packed (TCP) phases A15, C14, C15, C36,
σ , μ, and χ that are known to form as Re-compounds (see,
e.g., Refs. [43,62]) or as Re-containing precipitates in Ni-
based superalloys (see, e.g., Ref. [40]). The energy-volume
curves for the different crystal structures are computed for
20 structures within ±20% of the equilibrium volume and
fitted to fifth-order polynomials for obtaining the equilibrium
volume, energy, and bulk modulus. For the hcp ground state,
we additionally include the elastic constants (using 14 struc-
tures within strain rates of up to ±2% along each elastic

FIG. 1. Defects in hcp crystal structures: Self-interstitial atoms
in crowdion (C), octahedral (O), split dumbbell (S), tetrahedral (T),
basal crowdion (BC), basal octahedral (BO), basal split dumbbell
(BS), and basal tetrahedral (BT) configuration (red atoms); vacancy
(red circle) and vacancy diffusion paths (red arrows); and basal
(0001) and prismatic (101̄0) surfaces (shaded in gray). Adapted from
Ref. [48].

deformation). The energy-volume curves for all the crystal
structures along with the elastic constants for the ground-state
hcp structure were obtained using pyiron [63]. To assess the
transferability of the BOP model, we furthermore consider
the defects shown in Fig. 1: (i) vacancies and the differ-
ent self-interstitial atom (SIA) configurations, (ii) vacancy
diffusion-paths within the basal plane and perpendicular to it
computed with the nudged-elastic-band method [64,65], (iii)
basal (0001) and prismatic (101̄0) surfaces, as well as (iv) the
basal intrinsic stacking fault and the extrinsic stacking fault
that are related to plastic deformation [66–68].

III. PARAMETRIZATION OF THE INITIAL BOP MODEL

A. Initial guess

The parametrization of the BOP model, as of many other
interatomic potentials, corresponds to a nonlinear optimiza-
tion problem. One can therefore expect multiple local minima
of the cost function [Eq. (5)] in the space of model pa-
rameters. Searching the global minimum usually involves
prohibitive computational cost, and therefore local minimiza-
tion algorithms are common practice. This leads, however, to
a potential dependence of the optimized model parameters on
the initial guess of their values that is needed to start the local
minimization. A physically sound initial guess is therefore
required as it more likely leads to a physically meaningful
local minimum.

For BOP models, we can construct a physically motivated
initial guess for the Hamiltonian Hiα jβ by utilizing down-
folded DFT eigenstates of Re-Re dimers to a minimal basis
with sd orbitals [38]. The ssσ , sdσ , ddσ , ddπ , and ddδ

matrix elements of the orthogonal sd-valent Hamiltonian are
computed for different bond lengths and parametrized as

H (R) =
∑

i

ciexp(−λiR
ni ), (7)
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with R the distance between the two atoms of the Re-Re
dimer. The on-site matrix elements are taken from the values
of the free atom computed from the asymptotic values of the
parametrizations for large dimer bond-lengths R. The down-
folded Hiα jβ show good ad hoc transferability to different
crystal structures [26,28,32,37,38] and will be further opti-
mized during the parametrization process in this work. This
work focuses on Re, but the approach is general and the down-
folded Hiα jβ are available in a database for all homovalent and
heterovalent dimers across the Periodic Table [38].

Further parameters to be set are the number of s and d
valence electrons of the BOP model. We estimate the number
of electrons with s and d character by projecting the DOS
obtained from DFT calculations for hcp-Re on s and d or-
bitals, respectively. The resulting values are 0.77 s-electrons
and 5.30 d-electrons. During the optimization procedure we
adjust the number of d-electrons to 5.70. The total number of
valence electrons in the BOP model, Ne = 6.47, is in close
agreement with the 5d56s2 electronic configuration of the Re
pseudopotential of the DFT calculations.

B. Parametrization protocol

The BOP methodology is a coarse-grained description of
the electronic structure and thereby provides a certain degree
of intrinsic robustness and transferability. The goal of the
parametrization protocol in this section is to construct a basic
BOP parametrization with minimal model complexity and
minimal training data. Due to the underlying physics, the basic
BOP reaches good robustness and transferability already at
this low level of parametrization. From this level, the basic
BOP can be further refined by increasing model complexity
and training data as shown in the next section or serve as
a common starting point for the development of compound
models. The parametrization protocol is summarized in Fig. 2
and explained step-by-step in the following. The only train-
ing data used for the basic BOP are the energy-volume data
of hcp, fcc, and bcc crystal structures. The parametrization
progress in describing this minimal set of training data dur-
ing execution of the parametrization protocol is compiled in
Fig. 3.

1. Step 1: Initial sd-valent Hamiltonian

In the first step of the parametrization protocol, the BOP
model includes only the bond energy [Eq. (2)] computed with
the initial sd-valent Hamiltonian H ini,sd

IJ from the down-folded
DFT eigenstates. In the absence of a repulsive counterpart,
the energy-volume curves exhibit no minimum and cannot
be compared directly to DFT, as shown in Fig. 3(a). The
differences in the BOP and the DFT energy-volume curves
are comparable, however, by using the structural energy-
difference theorem [69,70]. For the development of BOP
models, this is particularly useful for verification of the num-
ber of valence electrons (see, e.g., Refs. [30,71]) in an early
stage of the parametrization.

2. Step 2: Addition of a repulsive pair potential

In the second step, the BOP model is extended to include
a repulsive part that counteracts the purely attractive bond

FIG. 2. Parametrization protocol for constructing a basic BOP
model for sd-valent systems.

energy of the sd Hamiltonian. With the explicit treatment
of s-electrons in the Hamiltonian, we add only a pairwise
term with flexible functional form similar to the Hamiltonian
matrix elements [Eq. (7)] as a repulsive part

Epair =
∑
I �=J

crep exp
(−λrepR

nrep

IJ

)
(8)

with the distance Ri j between atoms i and j. The parameters
crep, λrep, and nrep are adjusted by optimizing the cost function
[Eq. (5)] for the hcp, fcc, and bcc crystal structures while
H ini,sd

IJ is kept fixed. In this step and in step 3, we performed
optimizations with different random initialization in order to
verify that the optimization converges to the same minimum.

At this level, the BOP model is able to capture the overall
character of the interatomic interaction. This manifests in
the correct qualitative energetic ordering of the three crystal
structures [see Fig. 3(b)] and the correct range of formation
energies. The quantitative performance will be improved in
step 4.
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FIG. 3. Parametrization progress of the basic BOP model with
minimal complexity and minimal reference data. Starting from
(a) the initial sd Hamiltonian H ini,sd

IJ , (b) the pairwise repulsion E ini
rep

is added and optimized to the DFT reference data, (c) the energy
contribution of s-electrons is replaced by an embedding term E ini

emb,
and (d) all parameters are optimized to the basic BOP model with
Hd

IJ , Erep, and Eemb.

3. Step 3: Removal of s-orbitals in Hamiltonian

Step 3 of the parametrization protocol is devoted to a sim-
plification of the sd Hamiltonian by removing the s-electrons
that do not play a significant role for a transition metal like
Re. Other chemical elements may require an explicit treatment
of the s-electrons, particularly if the interatomic interaction is
governed by sd-hybridization. This step is computationally at-
tractive not only with regard to the size of the Hamiltonian, but
it also allows a lowering of the cutoff if only the less extended
d orbitals participate in the interaction that directly translates
to an increase in computational efficiency. The s-electrons are
removed from the BOP model by taking out the correspond-
ing ss and sd matrix elements from the Hamiltonian and by
adjusting the number of valence electrons to Ne = 5.70. The
cutoff of the BOP model is reduced from rcut = 6.0–4.45 Å.
The missing contributions to the bond energy are compensated
by adding an additional attractive term. Here, we use an em-
bedding term

Eemb,s = −
∑

I

√∑
J �=I

(aemb)2 exp
(−bembR2

IJ

)
(9)

FIG. 4. Comparison of (a) matrix elements HIJ and (b) pair re-
pulsion Erep of initial BOP (dashed) and basic BOP (full) obtained
by the parametrization protocol for Re hcp, fcc, and bcc reference
data.

motivated by the attractive part of embedded-atom models.
The parameters of the embedding term aemb and bemb are
optimized to the hcp, fcc, and bcc crystal structures while all
other parameters are kept fixed.

The comparison of Fig. 3(c) with Fig. 3(b) shows clearly
that the contribution of s-electrons in Re-Re interactions can
be replaced by a simple embedding term without a sizable loss
of model quality. This point of the parametrization protocol
concludes with the initial BOP model with a first parametriza-
tion of the complete functional form.

4. Step 4: From initial BOP to basic BOP

In this last step, the parameters of all terms, i.e., H ini
IJ , E ini

rep,
and E ini

emb, are optimized simultaneously to the hcp, fcc, and
bcc training data. The resulting orthogonal d-valent analytic
BOP is referred to as the basic BOP. The optimization of
all BOP parameters leads to very good agreement with the
DFT data, as shown in Fig. 3(d). The quality of the initial
BOP model becomes apparent by realizing that the parameters
change only slightly in this last optimization step, as shown
for the matrix elements and the repulsive energy in Fig. 4. The
effective decrease of the range of the matrix elements may
be attributed to screening effects that play a role in the bulk
reference data but were absent in the downfolding for dimers.

C. Transferability analysis of the basic BOP

The basic BOP obtained by the parametrization protocol is
optimized for a minimum set of reference data, and it calls for
an assessment of the transferability to other crystal structures
and other properties. Here, we use 300 random structures that
cover the full space of local atomic environments of one-atom
unit cells in a homogeneous sampling. These structures were
identified earlier in the construction of a map of local atomic
environments that is spanned by descriptors based on BOP
moments [39].

The comparison of the equilibrium energy and equilibrium
volume of the random structures predicted by the basic BOP
model and the DFT reference data is compiled in Figs. 5(a)
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FIG. 5. Transferability of basic BOP to (a) equilibrium energy
and (b) equilibrium volume of 300 random structures with one-atom
unit cells as compared to DFT reference data. Variation of equilib-
rium energy across the complete range of local atomic environments
in one-atom unit cells computed with (c) DFT and (d) basic BOP.
The black dots indicate the training data of the basic BOP, i.e., hcp,
fcc, and bcc crystal structures.

and 5(b). The agreement across the entire range of structures
can be considered excellent given that only the energy-volume
curves of hcp, fcc, and bcc were used in the parametrization.

The assessments in Figs. 5(a) and 5(b) provide a relation
between the basic BOP and the DFT reference data across
the range of energies or volumes that is, however, agnostic
of the corresponding atomic environments. Therefore, we ad-
ditionally present the equilibrium energies obtained by DFT
and the basic BOP as a color code in the structure similarity
map in Figs. 5(c) and 5(d), respectively. The coordinates in
the map correspond to descriptors based on the moments of
the DOS [Eq. (4)] from the BOP that discriminate different
crystal structures [72,73] and local atomic environments [39].
The direct relation between the distance of two points in the
map that correspond to different crystal structures and the
difference in the formation energy of these crystal structures
has also been used successfully in machine-learning appli-
cations [74]. This analysis shows clearly that the basic BOP
captures the equilibrium energy very well across the complete
space of local atomic environments of one-atom unit cells. It
is transferable in the region of close-packed crystal structures
where it was parametrized but also in regions of open struc-
tures with high energies (e.g., simple cubic, 2D square lattice,

FIG. 6. Refinement of the basic BOP model towards global trans-
ferability. The RMS error (a) after optimization to hcp, fcc, and bcc
improves systematically by homogeneous samplings of the space of
local atomic environments using (b) 20 and (c) 40 random structures,
and it shows saturation of the (d) learning curve at an RMSE of about
65 meV/atom.

and linear chain at a(1) = 0; see Ref. [39] for more details).
This analysis underlines the intrinsic transferability of even
simple BOP models from minimal sets of training data. In the
next section, we will discuss different strategies to refine this
basic BOP to a final BOP for Re.

IV. REFINEMENT OF THE BASIC BOP

A. Strategy 1: Towards global transferability

In the present parametrization, we deliberately kept the
complexity of the BOP model to a minimum. This allows
us to perform a transparent analysis of the balance between
global transferability and local accuracy that is an inherent
compromise in many developments of interatomic potentials.
With strategy 1, we demonstrate a route to a refinement of
the basic BOP towards global transferability. To this end, we
use the map of local atomic environments and analyze the
RMS error in the equilibrium energy that we obtain having
used only hcp, fcc, and bcc structures in the training data.
The distribution of the RMSE shows that the basic BOP has
less transferability for structures with large distance to the
training data; see Fig. 6(a). In other words, the map quantifies
and confirms graphically the expectation that larger errors in
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energy are to be expected for further extrapolations from the
training data used in the parametrization.

An apparent strategy to improve the global transferability
is to extend the set of training data. The map of local atomic
environments offers access to systematically carry out homo-
geneous and extensive samplings of the full range of local
atomic environments. The basic BOP is refined by optimizing
all parameters to extended sets of training data. In particular,
we add the energy-volume curves of random structures that
are selected to achieve homogeneous samplings of the atomic
environments with increasing density. In Figs. 6(b) and 6(c),
we see that the RMS error computed for all 300 structures is
systematically reduced by successively extending the training
data to 20 and 40 random structures. Repeating the refine-
ments of the BOP for homogeneous samplings with up to
200 random structures leads to the learning curves shown in
Fig. 6(d). We find that 40 random structures are already a
good representation of the range of atomic environments of
one-atom unit cells. The unusual behavior of a crossing of
the two curves and a higher RMS error in the training data
than in the total set of structures is an artefact of the special
choice of the reference data. The learning curve converges
to an RMS error of about 65 meV/atom, which corresponds
to 1.8% of the energy range of the considered structures.
These results demonstrate the iterative optimization of trans-
ferability to one-atom unit cells by systematic samplings of
local atomic environments. Despite its benefits, this approach
requires further work towards sufficiently complete sets of
complex unit cells to cover the atomic environments relevant
for other crystal structures (e.g., TCP phases), defects (e.g.,
vacancies), and property calculations (e.g., displacements for
elastic constants).

B. Strategy 2: Towards local accuracy

With the second strategy, we demonstrate a refinement of
the basic BOP towards the description of specific properties
without actively enforcing global transferability as in the first
strategy. Here, we choose the target properties as TCP phases
and elastic properties motivated by typical applications of Re.
The training data consist of hcp, fcc, bcc, A15, C15, and σ

phases that ensure a certain variety of local atomic environ-
ments in terms of the 12-, 14-, 15-, and 16-fold coordination
polyhedra of the nearest-neighbor shells in these structures.
They also contain the energies of elastic deformations of
the ground-state hcp structure. The remaining reference data
(cf. Sec. II C) are used for testing the model.

An integral part of this optimization strategy is an appro-
priate balancing of the weights of target properties in the cost
function [Eq. (5)]. For the energy-volume data of different
crystal structures, we allow higher errors for structures that are
energetically less favorable than the hcp ground state using

wstruc = exp

(
E (0)

hcp − E (0)
struc


E

)
(10)

with the respective equilibrium energies per atom E (0)
struc. The

denominator of 
E = 0.1 eV is chosen empirically and cor-
responds to a temperature of about 1200 K. For the elastic

FIG. 7. RMS errors of bulk structures and of elastic properties
of different BOP models (points) optimized with different weights
aela of Eq. (11) (different colors), each starting from a set of different
initial guesses (points of same color). The Pareto front (black line)
indicates the balance of capturing these different properties.

properties, we introduce weights of

wela = aela

E struc


E ela
(11)

to adjust the order of magnitude of the largest energy dif-
ference of the energy-volume curves 
E struc (≈ 1 eV/atom)
and the largest energy difference of the elastic deformations

E ela (≈50 meV/atom). Without this adjustment, the relative
accuracy of the energy-volume curves will be higher than the
elastic deformations due to their different range of energy.

For our assessment of the balance between global transfer-
ability and local accuracy, we use different values of aela in
Eq. (11) that range from 0 (elastic deformations disregarded)
to 100 (elastic deformations dominate optimization). For each
value, we perform a set of optimizations to the 190 data
points of the training data that start from 30 different initial
guesses. The latter are generated by randomly changing the
23 parameters of the basic BOP model within a Gaussian
distribution with a width of 5% of the initial parameter value.
With the sets of randomized initial guesses, we enable the
downhill optimization algorithm to detect more than only one
local minimum in the high-dimensional parameter space.

Each of these optimizations leads to a BOP model that we
assess with respect to the RMS errors of bulk structures and
elastic properties comprising the training data as shown in
Fig. 7. Overall, we observe the expected existence of a Pareto
front. This marks the limit of optimizing one set of properties
without compromising the other set, here bulk structures ver-
sus elastic deformations or vice versa. The close proximity
of nearly all BOP models to the Pareto front demonstrates
the overall robustness of the minimization procedure. The
remaining scatter at the Pareto front confirms the existence
of multiple local minima in the high-dimensional parameter
space. The excellent capturing of bulk structures or elastic de-
formations for low or high values of aela, respectively, shows
the effect of our training data weighting with Eq. (11). The
minimum RMSE for bulk structures is less than 5 meV/atom,
and for elastic deformations it is less than 0.1 meV/atom.
The comparably high quality for bulk structures and elastic
deformations across the whole Pareto front is an indicator of
the intrinsic transferability of the BOP models. This analysis
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shows that the refinement of the basic BOP model can be sys-
tematically targeted to a specific balance of the local accuracy
for specific properties. The selection of one final BOP model
from this set of candidate BOP models by additional criteria
is discussed in the following.

V. SELECTION OF THE FINAL BOP

A. Selection criteria

For the selection of one model from the different optimiza-
tions in Fig. 7, we specify further criteria that are formulated
as tests motivated by the material system Re. The numerical
values of the quantitative tests are chosen empirically so as to
minimize the number of models that pass all tests. We empha-
size that different material systems and different applications
will need qualitatively and quantitatively different tests. For
Re in this work, the following tests are performed:

Test 1: Error in bulk structures below 0.05 eV or error in
energy difference to hcp below 40%.

Test 2: Error in elastic constants below 90 GPa.
Test 3: hcp and dhcp structures correctly ordered.
Test 4: Error in c/a ratio of hcp below 0.01.
Test 5: Error in vacancy formation-energy below 0.8 eV.
Test 6: Error in vacancy diffusion-barrier within and in

between basal planes below 0.5 eV.
Test 7: ISF formation energy larger than 20 mJ/m2.
Test 8: Error in SIA formation energies below 2.2 eV.
The performance of all BOP models of Fig. 7 on the indi-

vidual tests is compiled in Fig. 8. Test 1 on the bulk structures
is passed for models near the Pareto front with RMS error on
bulk structures of less than about 10 meV/atom. Test 2 on
elastic constants is passed by the majority of models across a
broad range of RMSE values. Test 3 of the dhcp/hcp energy
difference is passed by fewer models than test 2 on bulk struc-
tures as it requires resolving the hcp/dhcp energy difference
of only 1.76 meV/atom in DFT. Test 4 on the c/a ratio is
passed if the elastic deformations around the equilibrium are
captured with sufficient accuracy. Test 5 on vacancy formation
is passed for several models over a broad range of weights.
Test 6 is passed by fewer models than test 5 as it additionally
samples the different local atomic environments at the tran-
sition states of the diffusion paths. Tests 7 and 8 on defect
formation show that the ISF can be captured by most models,
while the SIA requires in most cases a high weight on bulk
structures. Only two models near RMSE (bulk) = 0.005 eV
and RMSE (elastic) = 0.001 eV pass all tests. The model with
smaller RMSE (bulk) is selected as the final BOP for Re and
assessed in the following. The optimized parameters of the
final BOP model are given in Table I.

B. Assessment of the final BOP

To assess the local accuracy and the global transferability
of the selected final BOP, an analysis is performed for the elas-
tic constants and phonon spectrum of the hcp-Re ground state
for point defects, stacking faults, and surfaces, as well as for
the structural stability of TCP phases and random structures,
and the BOP predictions are compared to DFT. The lattice
parameters of the hcp ground state are very well captured
by all potentials as shown in Table II. The elastic constants

FIG. 8. Performance of BOP models from Fig. 7 on test 1–8 with
green/red signaling passed/failed tests. The points marked in blue
correspond to the calculations that exceeded a maximal run time with
respect to atomic relaxation.

predicted by BOP are overall in good agreement with DFT
with the largest deviations for C12 and C33.
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TABLE I. Parameters of final BOP for Re used in the assessment
in Sec. V B. The corresponding BOP functional form is given in
Secs. II and III.

H (R) c0 λ0 n0 c1 λ1 n1

ddσ −25.6844 1.2112 0.9128 −0.0545 0.0022 5.8615
ddπ 45.9185 1.5209 1.0781 1.3012 0.1368 2.8633
ddδ −11.8617 1.5604 0.9132 −9.7241 1.2671 1.7076
Epair crep λrep nrep

65538.09 4.7264 0.8626
Eemb aemb bemb

2.4338 0.1382

As one of the indicators of the performance in finite-
temperature simulations, we compute the phonon spectrum of
Re-hcp, see Fig. 9, that was not included in the optimization
procedure. The phonon density-of-states predicted by the final
BOP is in good agreement with similar width but a small
shift to higher frequencies. The phonon branches are overall
in good qualitative agreement aside from the shift to higher
frequencies.

The formation energies of points defects, stacking faults,
and surfaces compiled in Table III sample the transferability
to local atomic environments that were not included in the
training data for optimizing the potential. The BOP correctly
predicts the vacancy as the lowest-energy point defect. The
energy barrier for vacancy diffusion in the basal plane is spot
on, while the perpendicular path is less favorable in the BOP.
The energetic ordering of SIA configurations is reproduced
by the BOP except for the highest-energy basal tetrahedral.
The absolute values of the formation energies are consistently
overestimated by the BOP, which we expect to be improved
by adding more training data with short interatomic distances.
The formation energies of the stacking faults are in the correct
order of magnitude and slightly underestimated by the BOP.
The formation energies of the surfaces are accurate to ∼10%
of the DFT values, showing that the BOP model can be ap-
plied to calculations of surfaces, where the local environment
is different from the bulk.

TABLE II. Comparison of lattice parameters and elastic con-
stants of the hcp ground state between DFT and BOP.

DFT BOP

a (Å) 2.782 2.786
c/a 1.617 1.608
C11 (GPa) 625 627
C12 (GPa) 232 303
C13 (GPa) 213 240
C33 (GPa) 677 592
C44 (GPa) 170 142
C66 (GPa) 196 162
C12−C66 (GPa) 36 141
C13−C44 (GPa) 43 98
B (GPa) 364 361

FIG. 9. Phonon spectrum and phonon density of states obtained
by DFT and BOP.

The transferability to other bulk structures is quantified
by comparisons for structures that are not in the reference
data, particularly dhcp, TCP phases (C14, C36, μ, χ ), and
the random structures with one-atom unit cells (Fig. 5). The
energy-volume curves of the structures in the reference data
are reproduced very well [Fig. 10(a)] with bcc as the ground
state and the correct ordering of all other structures. The larger
deviations for the higher-energy structures A15 and C15 are
a consequence of the energy-based weighting of reference
structures with Eq. (10). The transferability of the BOP be-
comes apparent in the energy-volume curves of the structures
that were not included in the reference data in Fig. 10(b). The
dhcp structure is reproduced with high accuracy and all other
structures with good accuracy and correct energetic ordering.
The good transferability from the fitted TCP phases (A15,
C15) to the tested TCP phases (C14, C36, μ, χ ) can partly be
attributed to the similarity of the local coordination polyhedra
in this class of crystal structures.

The transferability of the BOP across the entire phase
space of one-atom unit cells introduced in Sec. IV A is shown
in Fig. 11. The transferability to close-packed structures is
very good while the RMS error is considerably larger for
open structures that are energetically less favorable for Re.

TABLE III. Comparison of planar and point defects for the
ground-state hcp structure between DFT and BOP.

DFT BOP

Point defects (eV)
Vacancy 3.22 3.91
Vacancy diffusion (basal plane) 2.02 2.02
Vacancy diffusion (perpendicular) 1.71 2.17
Tetrahedral SIA 6.76 8.93
Split dumbbell SIA 6.78 8.96
Octahedral SIA 8.16 9.46
Basal split dumbbell SIA 9.41 10.97
Basal tetrahedral SIA (BT) 10.17 10.44

Stacking faults (mJ/m2)
Intrinsic 55 21
Extrinsic 349 278

Surfaces (mJ/m2)
(0001) 2682 3005
(101̄0) 3904 4282
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FIG. 10. Energy-volume curves of structures (a) in the training
data set and (b) in the test set. DFT reference data are shown as
symbols.

Comparing the RMS error of the final BOP to the RMS error
of the basic BOP [Fig. 6(a)], we find a similar range of RMS
error but a different distribution across the phase space of
one-atom unit cells. The intrinsic transferability of the basic
BOP that could be further improved with the first refinement
strategy is apparently compromised in the second refinement
strategy. The reason is the bias of the second strategy to
the local atomic environments of elastic deformations and
TCP phases. These are located at the lowest values of the
phase space of one-atom unit cells (e.g., hcp at a(1) = −0.24)
or outside at even lower values of a(1) < −0.25 as shown
in Ref. [39]. The emphasis on high-precision for structures
in this region leads to the larger RMS for the more open
structures. The analysis with the RMSE in the map of local
atomic environments highlights this difference between the
two refinement strategies and provides transparent access to
the balance of target properties.

VI. CONCLUSIONS

A parametrization protocol for analytic bond-order poten-
tials is presented that is closely related to the underlying
coarse-grained description of the electronic structure. Start-
ing with an initial sd-valent Hamiltonian obtained by DFT
calculations, a pairwise repulsion is added to establish an
initial binding-energy relation. The Hamiltonian is simplified
by replacing the contribution of the s electrons by an isotropic
embedding term. A basic BOP is then obtained by all pa-
rameters to energy-volume data of hcp, fcc, and bcc. The
good transferability of this basic BOP is demonstrated by a
complete sampling of the phase space of one-atom unit cells
using a map of local atomic environments.

Different strategies of refining the basic BOP are presented
and compared. It is demonstrated that the global transfer-

FIG. 11. Transferability of final model to random structures.

ability across the phase space of one-atom unit cells can be
systematically improved by simple homogeneous samplings
with increasing density. An alternative strategy is presented
of including elastic constants and further crystal structures in
the optimization and shown to improve the local accuracy. The
combination of the Pareto front for different weightings of the
reference data with additional tests illustrates the balancing of
target properties and leads to a final BOP for Re. The final
BOP is shown to give robust predictions for elastic constants,
phonons, point defects, stacking faults, and the energetic or-
dering of various crystal structures. An analysis of the final
BOP with the RMS error across the entire phase space of
one-atom unit cells highlights the compromise between local
accuracy and global transferability.

Details of the parametrization protocol are specific to BOP
and Re but the overall concepts are generally applicable to
the parametrization of interatomic potentials. In particular, the
parametrization protocol has already been used to develop
analytic BOPs in order to study phase transitions in Ti [36],
to demonstrate the stabilizing effect of magnetism on ordered
Fe-Co alloys [32], and to rationalize the experimentally ob-
served segregation of Re to partial dislocations in Ni [37].
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Čák, E. R. Margine, D. G. Pettifor, and R. Drautz, BOPfox
program for tight-binding and analytic bond-order potential
calculations, Comput. Phys. Commun. 235, 221 (2019).

[50] F. Cyrot-Lackmann, On the electronic structure of liquid transi-
tion metals, Adv. Phys. 16, 393 (1967).

[51] D. Nguyen-Manh, D. Pettifor, S. Znam, and V. Vitek, Nega-
tive cauchy pressure within the tight-binding approximation, in
Tight-binding Approach to Computational Materials Science,
edited by P. Turchi, A. Gonis, and L. Colombo (Materials Re-
search Society, 1998), pp. 353–358.

[52] M. Aoki and T. Kurokawa, A simple environment-dependent
overlap potential and Cauchy violation in solid argon, J. Phys.:
Condens. Matter 19, 236228 (2007).

[53] K. Levenberg, A method for the solution of certain non-linear
problems in least squares, Q. Appl. Math. 2, 164 (1944).

[54] D. W. Marquardt, An algorithm for least-squares estimation
of nonlinear parameters, J. Soc. Indust. Appl. Math. 11, 431
(1963).

[55] J. J. Moré, The Levenberg-Marquardt algorithm: Implementa-
tion and theory, in Numerical Analysis, edited by G. A. Watson,
Lecture Notes in Mathematics Vol. 630 (Springer, Berlin,
Heidelberg, 1978), pp. 105–116.

[56] G. Kresse and J. Furthmüller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using a
plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).

[57] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[58] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to
the projector augmented-wave method, Phys. Rev. B 59, 1758
(1999).

[59] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[60] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient
approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).

[61] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-
zone integrations, Phys. Rev. B 13, 5188 (1976).

[62] T. Hammerschmidt, A. F. Bialon, D. G. Pettifor, and R. Drautz,
Topologically close-packed phases in binary transition-metal
compounds: Matching high-throughput ab initio calculations to
an empirical structure map, New J. Phys. 15, 115016 (2013).

[63] J. Janssen, S. Surendralal, Y. Lysogorskiy, M. Todorova, T.
Hickel, R. Drautz, and J. Neugebauer, pyiron: An integrated
development environment for computational materials science,
Comput. Mater. Sci. 163, 24 (2019).

[64] G. Henkelman, B. P. Uberuaga, and H. Jónsson, A climbing
image nudged elastic band method for finding saddle points and
minimum energy paths, J. Chem. Phys. 113, 9901 (2000).

[65] G. Henkelman and H. Jónsson, Improved tangent estimate in
the nudged elastic band method for finding minimum energy
paths and saddle points, J. Chem. Phys. 113, 9978 (2000).

[66] D. Hull and D. Bacon, Introduction to Dislocations
(Butterworth-Heinemann, Oxford, 2011).

[67] Q.-M. Hu and R. Yang, Basal-plane stacking fault energy
of hexagonal close-packed metals based on the ising model,
Acta Mater. 61, 1136 (2013).

[68] B. Yin, Z. Wu, and W. Curtin, Comprehensive first-principles
study of stable stacking faults in hcp metals, Acta Mater. 123,
223 (2017).

[69] D. G. Pettifor, The structures of binary compounds: I. Phe-
nomenological structure maps, J. Phys. C 19, 285 (1986).

[70] D. G. Pettifor, Bonding and Structure of Molecules and Solids
(Oxford Science, 1995).

[71] B. Seiser, T. Hammerschmidt, A. N. Kolmogorov, R. Drautz,
and D. G. Pettifor, Theory of structural trends within 4d and 5d
transition metal topologically close-packed phases, Phys. Rev.
B 83, 224116 (2011).

[72] P. E. A. Turchi, Interplay between local environment effect
and electronic structure properties in close packed struc-
tures, MRS Symposium Proceedings No. 206 (MRS, 1990),
p. 265.

[73] T. Hammerschmidt, A. N. Ladines, J. Koßmann, and R. Drautz,
Crystal-structure analysis with moments of the density-of-
states: Application to intermetallic topologically close-packed
phases, Crystals 6, 18 (2016).

[74] C. Sutton, L. Giringhelli, T. Yamamoto, Y. Lysogorkiy,
L. Blumenthal, T. Hammerschmidt, J. Golebiowski, X.
Liu, A. Ziletti, and M. Scheffler, Crowd-source materials-
science challenges with the NOMAD2018 Kaggle competition,
npj Comput. Mater. 5, 111 (2019).

013803-12

https://doi.org/10.1103/PhysRevB.98.144102
https://doi.org/10.1016/S1359-6454(01)00265-8
https://doi.org/10.3103/S1067821207060089
https://doi.org/10.1088/0029-5515/51/4/043005
https://doi.org/10.1021/ja1091672
https://doi.org/10.1016/j.fusengdes.2014.04.035
https://doi.org/10.1016/j.jnucmat.2014.08.002
https://doi.org/10.1016/j.mtla.2022.101370
https://doi.org/10.1063/1.4982361
https://doi.org/10.1063/1.5030113
https://doi.org/10.1016/j.cpc.2018.08.013
https://doi.org/10.1080/00018736700101495
https://doi.org/10.1088/0953-8984/19/23/236228
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1088/1367-2630/15/11/115016
https://doi.org/10.1016/j.commatsci.2018.07.043
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1323224
https://doi.org/10.1016/j.actamat.2012.10.023
https://doi.org/10.1016/j.actamat.2016.10.042
https://doi.org/10.1088/0022-3719/19/3/002
https://doi.org/10.1103/PhysRevB.83.224116
https://doi.org/10.3390/cryst6020018
https://doi.org/10.1038/s41524-019-0239-3

