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Multiphase bcc/B2-based alloy systems have recently received considerable attention because their mi-
crostructures are often remarkably similar to the γ /γ ′ microstructure of Ni-based superalloys. The underlying
plastic deformation mechanisms of bcc-based intermetallics, however, are not well understood across the
composition space where they are thermodynamically stable. Within this contribution, we analyze deformation
of B2 intermetallics to develop a reliable platform for efficiently predicting antiphase boundary energies and the
associated fault widths as a function of elemental substitution on a particular lattice site of the intermetallic.
To achieve this we extend the diffuse multilayer fault model to predict close packed structures that recreate the
bonding environment within the layers adjacent to the 1

2 〈111〉{110} antiphase boundary of the B2 intermetallic.
Specifically, the impact of elemental substitution on both antiphase boundary energy and fault width is presented
for Hf1−xTixRu and Hf1−xAlxRu and the implications of our findings are discussed. We also highlight a simple
bonding model for transition metal-based B2 intermetallics that explains their chemical stability and large
antiphase boundary energies. The results presented here offer insight into both the nature of plastic deformation
within the B2 intermetallic and the important underlying chemical concepts that can potentially be leveraged to
aid in the design of bcc-based alloy systems that rival Ni-based γ /γ ′ microstructures.
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I. INTRODUCTION

There has been a significant effort devoted to develop-
ing novel metallic alloys that exceed the thermomechanical
properties of conventional Ni-based superalloys. Consider-
ing the success of the γ \γ ′ microstructure, a particularly
enticing solution to the challenge at hand is to mimic this
microstructure within novel alloy systems. In particular, re-
fractory alloys (i.e., alloys containing Ti, V, Cr, Zr, Nb, Mo,
Hf, and/or W) are viewed as promising candidates for next
generation high temperature structural materials [1,2]. These
alloys form a disordered body centered cubic lattice (referred
to as the A2 phase) and their resulting microstructure also
frequently includes secondary phases consisting of the B2
or L21 intermetallic—both of which are particular orderings
upon a body centered cubic lattice [3]. Initial attempts to
recreate the γ /γ ′ microstructure via the addition of Al, Ti,
and/or Zr to a refractory alloy system typically result in coher-
ent “inverted” A2/B2 microstructures with the intermetallic
B2 phase forming the continuous matrix and the disordered
A2 phase forming the precipitates. However, there have been
several promising reports of coherent, or semicoherent, B2
precipitates embedded within a disordered A2 phase [4,5].
A particularly promising family of Ru-based B2 phases—
XRu, where X = Ti, Nb, Zr, Ta, or Hf—has also gained

considerable interest as a potential precipitate phase within
an A2 matrix because of its stability above 1200 ◦C [6].

As these microstructures reminiscent of the γ /γ ′ mi-
crostructure begin to emerge within novel body centered cubic
alloys, it is important to recall that the dislocation mechanisms
by which shearing occurs within the γ ′ phase of a Ni-based
superalloy are what governs their superior mechanical proper-
ties [7,8]. Therefore, there is a need to revisit the deformation
mechanisms of the intermetallics that will serve as an analog
to the γ ′ precipitate phase. Considering it is well documented
within the γ ′ literature that the planar faults of the precipi-
tate phase often dictate the observed deformation pathways
[9–11], it is expected this will also be the case for body
centered cubic derived intermetallics. Within this contribution
we therefore revisit the formation energies associated with the
potential planar faults that can occur via slip on a {110} plane
within the B2 intermetallic. Although stable intrinsic stacking
faults do not exist in body centered cubic lattices [12], the
B2 intermetallic is not itself a bcc lattice, but a bcc derived
lattice. The additional chemical ordering present within a B2
intermetallic therefore allows for new metastable extended
faults that are otherwise not possible within a bcc lattice.
These extended faults often correspond to regions wherein
a dislocation has dissociated into two partials bounded by
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FIG. 1. The formation of an antiphase boundary created via shear
within a {110} plane. (a) Orienting the pristine B2 structure, shown
on the left, along the [110] plane highlighted in purple, clearly reveals
the pristine stacking along the [110] direction. One can then imagine
shearing one half of the crystal relative to the other by an arbitrary
displacement vector shown in red. This, in general, leads to a fault
along the [110] direction. When comparing (b) the top down view
of the pristine stacking along the [110] direction to (c) the stacking
after a shear displacement vector of 1

2 [1̄11] (red arrow) is applied to
the top half of the crystal (with a unit cell outlined by the solid black
rectangle) relative to the bottom half of the crystal (with a unit cell
outlined by the dashed black rectangle), it becomes clear that nearest
neighbor bonds between A and B atoms have been formed that are
not present within the pristine ordering. This signifies the formation
of an antiphase boundary. Of course this process can occur in any
110 plane; the antiphase boundary of the B2 intermetallic is therefore
referred to as a 1

2 〈111〉{110} antiphase boundary.

an extended fault with a stacking that corresponds to the
atomic configuration of a 1

2 〈111〉{110} antiphase boundary.
This antiphase boundary, relative to the pristine ordering of
the B2 intermetallic, is a shear-type antiphase boundary pro-
duced by dislocation glide along a {110} plane within the B2
crystal structure and is described schematically in Fig. 1. This
particular atomic configuration occurs when one half of a B2
crystal is displaced by 1

2 〈111〉 relative to the other half of the
crystal along a {110} plane. Interestingly, slip on the {110}
plane within B2 intermetallics often involves dislocations with
a Burgers vector of either 〈001〉 or 〈111〉. The observed slip
direction is believed to be determined by the dissociation
of either the 〈001〉 or 〈111〉 Burgers vector into two partial
dislocations that bound an antiphase boundary described by
the atomic configuration shown in Fig. 1(c). Based on this
analysis, which has been discussed in detail by Lin et al.
[13], the antiphase boundary energy, along with the elastic
constants of a particular B2 intermetallic, may determine its
experimentally observed slip direction.

The present paper aims to develop a computationally ef-
ficient ab initio model that can rapidly assess antiphase
boundary energies as a function of composition within the
B2 intermetallic. Specifically, we adopt the diffuse multi-
layer fault model (DMLF) initially proposed by Vamsi and
Karthikeyan for L12 compounds [14] and further extended by
the work of Vamsi and Pollock [15]. The diffuse multilayer
fault model, which identifies proximate structures that best
capture the bonding environment within the layers adjacent to
an antiphase boundary of interest, can then be used to predict
the planar fault energies of multicomponent B2 intermetallics
that may be found in experimentally relevant multicompo-
nent alloy systems. Upon validating the proximate structures
identified for the B2 intermetallic, we study the influence of
composition on (i) the antiphase boundary energies within
Hf1−xTixRu and Hf1−xAlxRu and (ii) the expected fault width
of an antiphase boundary for each of the compositions studied.
Finally, due to the large number of material systems that are
studied here, we also present a brief discussion on how the
d-d orbital interactions within a number of B2 intermetallics
influence their relative chemical stability.

II. METHODS

As outlined in Fig. 1, one can mathematically construct
an antiphase boundary as a union between two semi-infinite
single crystals (of a particular intermetallic) that are trans-
lational variants of one another. There are two noteworthy
consequences of this fact.

(i) The resulting atomic configuration is a distinct ordering
on the lattice upon which the intermetallic is “derived.”

(ii) Any changes in the energetics of this atomic
configuration—relative to a pristine infinite single crystal of
the intermetallic—are short range.

Therefore most of the chemical environments present
within this faulted crystal remain unchanged and, in theory,
the energy penalty associated with the formation of the an-
tiphase boundary can be captured by the change in bonding
environment within the first few layers adjacent to the fault.
Therefore, identifying proximate structures which have sim-
ilar bonding to the bonding found within planes adjacent to
an antiphase boundary should reasonably approximate the
energetics of the antiphase boundary.

Since an antiphase boundary within the B2 intermetallic
is a distinct ordering on the bcc parent lattice upon which
it is derived, proximate crystal structures for each layer of
the antiphase boundary can be identified via a “least-squares”
metric. Specifically, to identify the proximate structure for
the Lith layer adjacent to the antiphase boundary, our metric
evaluates the bonding environment in the Lith layer relative
to a particular bonding environment of a symmetrically dis-
tinct atomic ordering upon a bcc lattice that preserves the
stoichiometry of the B2 intermetallic. This metric, termed
�t , evaluated for layer Li relative to a symmetrically distinct
atomic ordering, Sq, is defined as

�t (Li, Sq ) =
√

�M
j=1

1

2d2
j

�u,v�Nuv
j (Li, Sq ) (1)

where �Nuv
j is defined as a dot product between the difference

in the number of uv bonds present at the interatomic distance
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FIG. 2. The workflow used to identify each proximate struc-
ture. (a) The atomic configuration that corresponds to the antiphase
boundary is generated and each layer adjacent to the fault is la-
beled. Note that the layers come in pairs, i.e., L1 ≡ L−1. (b) Each
symmetrically distinct atomic ordering, Sq, is enumerated with the
help of CASM and is evaluated against the bonding environment of
a particular layer, in this case, L1, based on the metric �t . For
L1, there is in fact one atomic configuration (red arrow) within the
database that is identical to the L1 bonding environment up to the
tenth nearest neighbor labeled β ′

a. (c) The proximate structure for L1,
β ′

a, is compared to the pristine ordering of the B2 structure along
the {110} plane. The β ′

a structure is a simple one atom permutation
relative to the B2 ordering.

j within the atomic configuration of the bcc lattice being
considered:

�Nuv
j (Li, Sq ) = [

Nuv
j (Li ) − Nuv

j (Sq)
]2

(2)

where u and v therefore range over the distinct elements
present within the intermetallic (specifically for the B2 in-
termetallic u, v ∈ [A, B]) and j ranges over pairwise
interactions up to the Mth next nearest neighbors. Each �Nuv

j
is weighted by its respective jth interatomic distance, d j ,
in order to ensure that the proximate structure identified for
each layer adjacent to the fault preferentially minimizes the
�Nuv

j ’s with the smallest interatomic distances. The Clusters
Approach to Statistical Mechanics (CASM) software package
[16,17] was used to enumerate a complete database of sym-
metrically distinct orderings, with up to 40 atomic sites, for
the B2 intermetallic. The maximum number of Mth nearest
neighbors to be considered when computing �t is then chosen
to be 10 so that it is sufficiently large enough to capture all
pairwise interactions that may significantly contribute to the
energy penalty associated with the formation of an antiphase
boundary. The general workflow of this method applied to the
B2 intermetallic is summarized within Fig. 2.

The diffuse multilayer fault model developed via the
workflow outlined above is then validated against the an-
tiphase boundary energies predicted by antiphase boundary
containing supercells that were generated with the software
package MULTISHIFTER [18] for a number of experimentally

relevant B2 intermetallics that, according to the Open Quan-
tum Materials Database [19,20], are stable at T = 0 K.

Upon validation of the diffuse multilayer fault model,
further studies are performed wherein a third element is sub-
stituted onto one of the sublattices of the B2 intermetallic to
create pseudobinary intermetallics with a general composition
of A1−xA′

xB. Specifically, we choose to study Hf1−xTixRu and
Hf1−xAlxRu because of their recently reported promise as
precipitate phases within an A2 refractory alloy matrix above
1200 ◦C [6]. We assume complete disorder on the A site of
the intermetallic and therefore employ special quasirandom
structures [21], generated via a Monte Carlo simulated an-
nealing algorithm [22] that is included in the ATAT software
package [23], to model the properties of these pseudobinary
alloys. Special quasirandom structures are identified for both
the B2 structure and the proximate structures required for the
diffuse multilayer fault model at compositions of x = 0.25,
0.50, and 0.75.

For each B2 intermetallic, elastic constants are also com-
puted from first principles in order to predict fault widths
found within these material systems. The elastic constants
C11, C12, and C44 are determined via the energy-strain method
provided in AELAS [24] using the primitive cell of the B2 crys-
tal structure. Additionally, to investigate trends in chemical
stability, crystal orbital Hamilton populations are calculated
via the software package LOBSTER based on self-consistent
static calculations on a subset of B2 intermetallics [25–28].

Both the antiphase boundary energy calculation based
on the diffuse multilayer fault model and the supercell
method are performed within VASP [29] using projector-
augmented-wave pseudopotentials [30,31] and the Perdew-
Burke-Ernzerhof generalized gradient approximation [32].
The equilibrium lattice parameter of each intermetallic is first
determined by a complete structural relaxation where the unit
cell shape, unit cell volume, and ion positions are permitted
to vary. The energy of each proximate structure required for
the calculation of the antiphase boundary energy based on
the diffuse multilayer fault model is then calculated based
on proximate structures with the lattice parameter determined
from the structural relaxation. In this calculation only ion
positions are permitted to relax. The diffuse multilayer fault
model antiphase boundary energy is then calculated as

γ APB
DMLF = ρ�[E (Si ) − E (P)] ≈ ρ�i�1[E (Si ) − E (P)] (3)

where the sum is over all layers adjacent to the fault with a
bonding environment that is captured by a proximate struc-
ture, Si, that differs from that of the pristine structure, P. The
term ρ corresponds to the number of atoms within the plane of
the fault per unit area. For the B2 intermetallic ρ = 2/

√
2a2

0
where a0 is the lattice parameter of the particular B2 inter-
metallic being studied.

For the supercell calculations, periodic images of an
antiphase boundary were separated by greater than 16 Å
and only structural relaxation normal to the plane of the
fault was allowed. The antiphase boundary energy is then
calculated as

γ APB
supercell = 1

2
√

2a2
0

[E (supercell) − E (pristine)]. (4)
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FIG. 3. A comparison of the number of each bond type present within the first three layers adjacent to the 1
2 〈111〉{110} antiphase boundary

of the B2 intermetallic and each layer’s corresponding proximate structure. (a) The structure β ′
a best approximates the bonding environment of

L1 with an identical bonding environment up to tenth nearest neighbor. (b) β ′
a2

best approximates the bonding environment of L2 with nearly
identical bonding that leads to a �t value of 0.746. (c) The third layer, and therefore all layers further from the fault, are best approximated by
the pristine B2 stacking. While there are noticeable differences in bonding environment the �t metric is only 1.05.

Spin polarization was included within all calculations and a
Monkhorst-Pack scheme was used to construct the Brillouin
zone [33]. A 15 × 15 × 15 k-point grid was used for the initial
structural relaxation of the pristine intermetallics; all further
calculations then use grids that are scaled accordingly in order
to preserve this k-point density.

III. RESULTS AND DISCUSSION

A major incentive for developing, and validating, the
diffuse multilayer fault model for the B2 intermetallic is
the fact that this model can be used to predict the change
in antiphase boundary energy within multicomponent inter-
metallics [15,34]. In the following section we demonstrate
that the diffuse multilayer fault model successfully predicts
the 1

2 〈111〉{110} antiphase boundary energy of numerous bi-
nary B2 intermetallics. We then use the diffuse multilayer
fault model to explore the effect of elemental substitution
on antiphase boundary energetics. The fault widths within
Hf1−xTixRu and Hf1−xAlxRu are also approximated based on
the computed elastic constants and antiphase boundary ener-
gies. We conclude with a brief discussion on the correlation
between B2 stability and antiphase boundary energies within
this material class.

A. Diffuse multilayer fault model validation

Figure 3 summarizes the diffuse multilayer fault model
corresponding to the 1

2 〈111〉{110} antiphase boundary that
can form within a B2 intermetallic. Following the nomen-
clature of Vamsi and Pollock for the antiphase boundary of
the γ ′ L12 intermetallic [15], the two proximate structures
for the first and second layers adjacent to the 1

2 〈111〉 B2
antiphase boundary have been termed β ′

a and β ′
a2

, respectively.
As shown in Fig. 3, only two proximate structures are needed
because the bonding environment of all other layers adjacent
to the fault is best captured by the pristine B2 crystal structure.
The bonding environment of β ′

a is summarized in Fig. 3(a),
demonstrating that the bonding environment of this proxi-
mate structure is identical to the bonding environment of the
first layer of the antiphase boundary up to the tenth nearest
neighbor pairwise interaction—suggesting that this structure
will provide a reliable evaluation of the energy penalty as-
sociated with the first term of the summation in Eq. (3).
The bonding environment of the second layer adjacent to the
antiphase boundary is best captured by β ′

a2
, as summarized

within Fig. 3(b). While β ′
a2

does contain differences in the
number of particular chemical interactions at each of the first
three nearest neighbors, �t is near zero with a value of 0.746.
For the third layer adjacent to the antiphase boundary—and
therefore all layers further from the fault as well—the proxi-
mate structure is identified as the bonding environment found
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within the pristine B2 structure. Similar to layer 2, the bonding
environment in the pristine B2 intermetallic (β ′) is not iden-
tical to that of layer 3, but a �t of 1.05 reflects the minor
changes in bonding environment that are tabulated in Fig. 3(c).

Upon inspection of Fig. 3 as a whole, several characteris-
tics of the diffuse multilayer fault model become apparent.
The first is that when identifying a proximate structure for
layers further from the fault, larger nearest neighbor distances
articulate the presence of an antiphase boundary within the
crystal structure that is being approximated by the diffuse
multilayer fault model. This is advantageous because if the
bonding environments that differ from the pristine B2 struc-
ture occur at larger nearest neighbor distances for larger Li’s,
then the ith energy contribution computed via Eq. (3) becomes
smaller. However, the importance of larger nearest neighbor
distances also means that the best proximate structure for
higher order Li’s will require proximate structures with a
larger number of atomic sites. Even so, the goal of the diffuse
multilayer fault model is to compute the antiphase boundary
energy of compositionally complex B2 intermetallics in a
computationally efficient manner; therefore, as discussed in
the methods, only symmetrically distinct atomic configura-
tions with up to 40 atomic sites are considered as candidate
proximate structures. This database is searched, and based
on �t a reasonably sized structure is identified as the best
proximate structure for layer Li. Figure 3 demonstrates that
once L3 is reached there is no candidate structure better at cap-
turing the bonding environment of this layer of the antiphase
boundary than the pristine B2 intermetallic ordering—this is
therefore the critical layer (at least when considering only
symmetrically distinct atomic configurations with up to 40
atomic sites) where the layer, and all Li > 3, appear to have
a local atomic configuration nearly identical to that of the B2
intermetallic. Of course it will take several layers beyond L3

for the number of A-A, A-B, and B-B bonds within the pristine
B2 intermetallic to match the true bonding environment of
the layer being considered, but as previously discussed, the
ith energy contribution computed via Eq. (3) for Li � L3

is significantly smaller than the energy contribution of L1

and L2.
Ultimately, if the diffuse multilayer fault model of Fig. 4

reliably reproduces the antiphase boundary energies com-
puted via the density functional theory (DFT) supercell
method, then it can be applied to compositionally complex
B2 intermetallics. The proximate structures provided within
Fig. 3 have therefore been employed to estimate antiphase
boundary energies of a number of experimentally relevant B2
intermetallics that, according to the Open Quantum Materials
Database [19,20], are stable at T = 0 K and have been vali-
dated against the antiphase boundary energy determined via
the DFT supercell method. The correlation between the dif-
fuse multilayer fault method and the DFT supercell method is
shown in Fig. 4. While the best fit line, γ APB

supercell = Aγ APB
DMLF +

γ0 (A = 0.85, γ0 = 47.08 mJ/m2), is not the “unity line”
γ APB

supercell = γ APB
DMLF, the energies of the diffuse multilayer fault

model are strongly correlated (R2 = 1, RMSE = 52 mJ/m2)
to the energies computed by the supercell method. The pre-
dictive power of the diffuse multilayer fault model for the
1
2 〈111〉{110} antiphase boundary is therefore clear and allows

FIG. 4. Validation of the diffuse multilayer fault model against
DFT supercell calculations. While the (solid) line does not have
a slope of unity (dashed), there is a clear correlation between the
antiphase boundary energies predicted by the diffuse multilayer fault
model and that of DFT supercell calculations. This confirms the
predictive power of the diffuse multilayer fault model which can now
be used to study the impact of elemental substitution on antiphase
boundary energies.

for a computationally efficient estimation of the antiphase
boundary energy for a wide range of multicomponent B2
intermetallics.

B. Evaluating antiphase boundary energies and fault
widths in B2 intermetallics

As previously mentioned, the diffuse multilayer fault
model provides a computationally efficient approach to
evaluating antiphase boundary energies for multicomponent
intermetallics. This enables us to determine to what extent ele-
mental substitution impacts both antiphase boundary energies
and fault widths within experimentally relevant B2 inter-
metallics. We approximate antiphase boundary fault widths
using anisotropic elasticity theory—similar to the process dis-
cussed by Lin et al. [13]. In short, assuming that a dislocation
lying on a {110} plane within a B2 intermetallic with a Burgers
vector of either 〈001〉 or 〈111〉 can dissociate into two partial
dislocations with Burgers vectors of 1

2 〈111〉 and 1
2 〈1̄1̄1〉 or

two 1
2 〈111〉 Burgers vectors, respectively, one can evaluate the

fault width of the resulting antiphase boundary by balancing
the elastic forces created by the dissociated Burgers vector
against the attractive force generated by the formation of
an energetically unfavorable antiphase boundary between the
two partials. The analytical form of the stress field due to a
straight dislocation within an anisotropic medium with cubic
crystal symmetry was originally worked out by Eshelby et al.
who noted that there exist simple solutions to this problem
when the plane normal to the dislocation line is of evenfold
symmetry [35]. When this plane is of evenfold symmetry,
the stress field created by the dislocation of interest can be
separated into edge and screw components, ultimately allow-
ing for an analytical prediction of the fault width between
partial dislocations, assuming a dissociation event will occur.
Interestingly, if the dislocation line lies along the 〈111〉 or
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TABLE I. Expected fault widths in pristine B2 intermetallics. Ar = 2C44
C11−C12

is the Zener ratio.

Material C11 (GPa) C12 (GPa) C44 (GPa) Ar γ APB(mJ m−2) rFW
001/a0 rFW

111/
√

3a0

TiCo 222.4 135.6 61.7 1.42 496 0 2.05
PdCu 174.9 146.3 91.6 6.4 118 1.35 3.51
CuZn 127.3 104.1 77.8 6.73 55 2.06 4.02
FeAl 254.5 136.7 140.1 2.38 433 0.09 5.15
FeCo 265.2 151.5 129.5 2.28 57 0 12.64
FeGa 226.2 145.8 120.0 2.98 211 0 6.34
TiFe 380.4 97.0 73.8 0.52 620 0 3.30
HfRu 374.3 108.1 78.7 0.59 883 0 2.84
VMn 488.8 120.2 93.2 0.51 325 0 8.55
NiAl 206.2 134.7 118.0 3.30 485 0.16 2.07
TiNi 178.4 139.9 50.3 2.61 318 0 1.97
PdAl 189.9 136.6 75.0 2.82 365 0 2.09
RuAl 316.5 147.1 125.7 1.48 486 0 3.53
TiRu 422.6 112.8 88.7 0.57 686 0 3.93
YCu 112.1 51.5 37.2 1.23 187 0 1.51
YMg 53.1 36.0 39.2 4.60 778 0.72 1.90

〈121〉 direction (which are the crystallographic dislocation
line directions relevant for screw and edge dislocations lying
on a {110} slip plane with a Burgers vector of 〈111〉, respec-
tively) the plane normal to the dislocation line is not a plane
of evenfold symmetry. The analysis then proves to be slightly
more cumbersome, but an analytical solution does exist for
the 〈111〉 dislocation line based on work by Stroh [36] and
Head [37]. For this reason, we limit ourselves to the prediction
of fault widths of screw dislocations within the {110} plane
with Burgers vectors of either 〈001〉 or 〈111〉. Based on the
intuition that can be gained from isotropic elasticity theory,
fault widths for screw dislocations should be smaller than
their edge counterparts and therefore provide a lower bound
on the fault width that can be expected to be observed in an
experimental study. The complete analyses used for each of
the dislocation configurations studied here are included within
the Appendix.

The results for the pristine B2 intermetallics studied within
this contribution are summarized within Table I. Perhaps the
most notable finding of these calculations is the fact that the
expected fault widths for both 〈001〉 and 〈111〉 screw disloca-
tions in YCu and YMg are near zero—if not exactly zero. This
is very interesting considering that these material systems are
known to demonstrate significant ductility [38]. In fact, it is
often argued that a significant fault width is required to ensure
that the dislocation core of a 〈111〉 screw dislocation within a
bcc-based material is planar, and therefore more mobile, than
an otherwise nonplanar 〈111〉 screw dislocation that spreads
onto the three {110} planes that intersect one another [13,39].
This thought process has been used to rationalize both the ob-
served slip systems within a particular B2 intermetallic as well
as whether the intermetallic is expected to be ductile. While
this explanation seems promising, and particularly reasonable
because of the role fault widths play in the plastic response
of conventional fcc and hcp metals, the results shown here
suggest that the explanation for why certain B2 intermetallics
slip along the 〈001〉 direction and others slip along the 〈111〉 is
more subtle. While it is beyond the scope of the current paper
to provide a more satisfactory explanation, ongoing efforts

by several of the authors are focused on understanding which
slip modes can be expected to be active within particular B2
intermetallics across specific temperature regimes. Even so, it
is important to stress that dislocations with an 〈001〉 Burgers
vector should, in general, not be expected to dissociate. This
can be explained by the fact that the attractive edge compo-
nents of the potential 1

2 〈111〉 and 1
2 〈1̄1̄1〉 partial dislocations

outweigh the repulsive screw components in all but PdCu
and CuZn. A more detailed discussion is provided within the
Appendix.

C. Evaluating antiphase boundary energies and fault widths
in pseudobinary B2 intermetallics

We also use the proximate structures identified for the
1
2 〈111〉{110} antiphase boundary of the B2 intermetallic to
model the pseudobinary B2 intermetallics Hf1−xAlxRu and
Hf1−xTixRu. As previously discussed in the methods section,
special quasirandom structures, based on the layer 1 and layer
2 proximate structures identified in Sec. III A, are used to
determine the expected antiphase boundary energy for each
multicomponent B2 intermetallic. Special quasirandom super-
cells of the conventional B2 ordering are generated because
the energy and corresponding elastic constants of this atomic
configuration are necessary inputs for Eq. (3) and the pre-
diction of fault widths. The number of atoms required for
each special quasirandom structure is determined based on the
requirement that the first ten nearest neighbor pair-correlation
functions recreate these correlations within random alloys of
the same composition. For conventional B2 ordering within
these pseudobinary intermetallics, this requirement resulted
in special quasirandom structures of eight atoms for a com-
position of x = 0.25 and 0.75 and 12 atoms for a composition
of x = 0.50. The layer 1 proximate structure (β ′

a) required 32
atoms for a composition of x = 0.25 and 0.75 and 16 atoms
for a composition of x = 0.50 while the layer 2 proximate
structure (β ′

a2
) required 56 atoms for a composition of x =

0.25 and 0.75 and 28 atoms for a composition of x = 0.50.
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FIG. 5. Antiphase boundary energies (a) and average elastic con-
stants pertaining to cubic symmetry (b) within multicomponent B2
intermetallics. While elemental substitution does not appear to sig-
nificantly impact the elastic properties of the intermetallic, antiphase
boundary energies can vary by up to almost 200 mJ/m2.

All special quasirandom structures are provided within the
Supplemental Material [40].

The impact of elemental substitution on the antiphase
boundary energies, as well as the elastic constants for each of
the pseudobinary B2 intermetallics, are shown within Fig. 5.
Interestingly, a maximum in the antiphase boundary energy
occurs at x = 0.75 for Hf1−xTixRu while a minimum occurs
within Hf1−xAlxRu at this same composition. While the un-
certainty based on the RMSE value of the diffuse multilayer
fault model suggests that the antiphase boundary energy of
Hf0.25Al0.75Ru may overlap with that of RuAl, it does appear
that elemental substitution of Hf into TiRu significantly in-
creases the antiphase boundary energy. As will be discussed
further in the next section, it is expected that the ordering
tendency in HfRu is stronger than that of TiRu. This fact
may explain why adding Hf to TiRu leads to a significant
increase in the energy penalty associated with a stacking fault
relative to the pristine order of the multicomponent intermetal-
lic. Specifically, the initial incorporation of Hf into the TiRu
antiphase boundary may lead to energetically unfavorable Hf–
Ti interactions that destabilize the antiphase boundary atomic
configuration relative to the multicomponent B2 ordering.
However, as more Hf is introduced into the fault, the antiphase
boundary energy decreases relative to Hf0.25Ti0.75Ru because,
on average, there are more Hf-Ru interactions than the ener-
getically unfavorable Hf-Ti interaction. The same behavior is
not observed for the elastic constants because Hf is isoelec-
tronic to Ti. Therefore, when Hf is substituted onto the Ti
sublattice of TiRu, there are no abnormal Hf-Ti interactions
analogous to those found within the atomic configuration of

TABLE II. Energy of formations, and expected fault widths in
pseudobinary B2 intermetallics. Ar = 2C44

C11−C12
is the Zener ratio.

Material �Ef (meV/atom) γ APB(mJ m−2) rFW
111/

√
3a0

TiRu 686 3.93
Hf0.25Ti0.75Ru 22.6 1040 1.87
Hf0.50Ti0.50Ru 29.5 840 2.38
Hf0.75Ti0.25Ru 20.9 814 2.38
HfRu 883 2.84
Hf0.75Al0.25Ru −16.3 701 2.85
Hf0.50Al0.50Ru −10.2 686 2.76
Hf0.25Al0.75Ru 4.1 468 4.21
AlRu 486 3.53

the antiphase boundary. As a result, the nature of the bonding
within Hf0.25Ti0.75Ru remains relatively unchanged in relation
to TiRu and the elastic constants are not impacted signifi-
cantly. Therefore, as a rough estimate—particularly when the
sole purpose of computing the elastic constants is to predict
fault widths—Vegard’s law should suffice.

The predicted antiphase boundary energies, along with the
elastic constants of each pseudobinary intermetallic, can then
be used to understand whether elemental substitution can be
expected to lead to notable changes in the fault width of
the antiphase boundary that is bounded by two partial dis-
locations. The results for the fault widths of an antiphase
boundary bounded by two 1

2 〈111〉{110} partial dislocations in
Hf1−xTixRu and Hf1−xAlxRu are summarized within Table II.
While it is beyond the scope of the current paper to identify
composition windows of each intermetallic system that are
stable at elevated temperatures, all alloy compositions stud-
ied prove to be mechanically stable and possess either low
formation energies or slightly negative formation energies,
with respect to their end members. This suggests that these
alloy systems provide a reasonable platform for exploring
the main goal of this paper: To develop a reliable platform
for efficiently predicting antiphase boundary energies and the
associated fault widths as a function of elemental substitu-
tion on a particular lattice site of the intermetallic. Based on
these results it seems that a change in antiphase boundary
energy of approximately 25%, coupled to the slight changes
in elastic constants that occur upon elemental substitution,
does not play a major role in impacting the experimen-
tally observed fault width. Whether a significant fault width
should be expected within a particular multicomponent sys-
tem can therefore be gauged by the fault width predicted
by anisotropic elasticity theory within the end member inter-
metallics.

While the diffuse multilayer fault model does not explicitly
consider the impact of temperature on the antiphase boundary
energies, it is possible to gain insight into whether chemi-
cal segregation to the antiphase boundary within a particular
candidate alloy system can be expected. If, for example, a
candidate pseudobinary B2 intermetallic demonstrates a fairly
constant antiphase boundary energy as a function of com-
position, then one could anticipate that the composition at
the fault would simply reflect the average composition of the
specimen being studied experimentally, but if the antiphase
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FIG. 6. Projected crystal orbital Hamilton populations (pCOHPs) for TiFe (a), TiRu (b), and HfRu (c). Bonding within these material
systems is clearly due to d-d orbital interactions between the two transition metals. All three of these material systems, upon bonding, possess
a fully occupied set of d orbitals, which explains their significantly large energy penalties associated with disordered atomic configurations
such as the 1

2 〈111〉{110} antiphase boundary. The energy penalty associated with antiphase boundary formation increases from left to right as
the d orbitals become more chemically active within the larger elements that are isoelectronic to either Ti or Fe.

boundary energies are sensitive to composition, then the com-
position at the antiphase boundary may differ from the average
composition of the specimen. As a result, the fact that an-
tiphase boundary energies within both of the pseudobinary
systems studied are indeed sensitive to composition suggests
that chemical segregation to the antiphase boundary can be
expected within both Hf1−xTixRu and Hf1−xAlxRu. There-
fore, if B2 precipitates similar to the ones studied here are
embedded within an A2 matrix phase it can be expected that
the shearing of these precipitates at elevated temperatures may
be coupled to diffusion. In fact, chemical segregation at an
antiphase boundary within a complex, multicomponent B2
intermetallic containing Ti, Nb, Ta, Zr, Al, and V has been
reported experimentally by Couzinié et al. [5]. Unfortunately
the complexity of the phase reported by Couzinié et al. makes
it difficult to determine which of these particular elements
favor the A site or the B site of the B2 lattice. However, the
diffuse multilayer fault model developed in this paper for
the antiphase boundary of the B2 intermetallic now offers a
computationally efficient route that can be used to rational-
ize experimentally observed segregation effects observed in
multicomponent B2 intermetallics of the form A1−x−yA′

xA′′
y B

or A1−xA′
xB1−yB′

y.

D. B2 stability and its relation to antiphase boundary energetics

A brief discussion on the relative chemical stability of the
B2 structure and its relation to antiphase boundary energies is
warranted. It is rather noteworthy that within Fig. 4 the mate-
rial systems with the largest antiphase boundary energies are
B2 intermetallics composed of two transition metal elements:

HfRu, TiFe, and TiRu. Of course, a higher antiphase boundary
energy implies that the pristine B2 ordering is significantly
more stable relative to alternative disordered atomic configu-
rations. When the B2 is composed of two transition metals,
the reason for this high stability can be understood based on
the expected d-d orbital interactions between these two ele-
ments. In fact, this concept has been explored thoroughly by
Brewer [41,42] based on a metallic bonding theory originally
proposed by Engel [43]. In short, the theories of Engel and
Brewer lead to a generalization of the Lewis acid-base theory
to the covalent bonding of intermetallics. Using HfRu as an
example, one can see that the d2s2 electron configuration of
Hf along with the d76s1 electron configuration of Ru implies
that, upon reacting, Ru can utilize Hf’s empty d orbitals to
produce an extremely stable electron configuration that in-
cludes ten bonding d orbitals. Considering Fe is isoelectronic
to Ru and Ti is isoelectronic to Hf, this same schematic of the
bonding holds true for TiRu and TiFe. The only difference
in TiRu and TiFe is the fact that 3d transition metals will
have d orbitals that are much less exposed relative to their
4d or 5d counterparts. The stabilizing effect will therefore
be less than the effect present within HfRu—as reflected by
the lower antiphase boundary energies of TiFe and TiRu rel-
ative to HfRu. This phenomenon is beautifully captured by
the respective pCOHPs (see methods for calculation details)
of TiFe, TiRu, and HfRu shown in Fig. 6. Within all three
of these material systems the Fermi energy sits between a
set of “bonding/antibonding” orbitals created via d-orbital
hybridization of the two transition metals—implying all three
of these B2 intermetallics are highly stable. The gap between
the “bonding/antibonding” orbitals, which is largest for HfRu
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and smallest for TiFe, confirms that the d orbitals of Hf and
Ru are much more exposed than their 3d transition metal
analogs—prompting HfRu to be the most stable of the B2
compounds studied within this contribution.

IV. CONCLUSIONS

In this paper we have extended the diffuse multilayer
fault model to the B2 intermetallic by identifying proximate
structures that reliably predict the energy penalty associated
with the formation of a 1

2 〈111〉{110} antiphase boundary.
The model has been used to study the impact alloying has
on antiphase boundary energy within pseudobinary B2 inter-
metallics Hf1−xTixRu and Hf1−xAlxRu. Antiphase boundary
energies are sensitive to composition, thereby influencing the
plastic deformation within these B2 intermetallics. This is
particularly significant for elevated operating temperatures
where it is expected that chemical segregation at the fault will
prompt diffusion mediated deformation processes. We also
employ anisotropic elasticity theory to study fault widths of
antiphase boundaries bounded by either two 1

2 〈111〉 partial
dislocations (a total Burgers vector of 〈111〉) or a 1

2 〈1̄1̄1〉 and
1
2 〈111〉 partial dislocation (a total Burgers vector of 〈001〉).
While the fault width of an antiphase boundary appears to be
fairly insensitive to changes in composition for the systems
studied here, the fault width across composition space for B2
intermetallics highlights two key points.

(i) Dissociation of 〈111〉{110} dislocations into partials
separated by a large fault width does not seem to unambigu-
ously determine why the 〈111〉{110} slip mode is favored in
certain intermetallics.

(ii) 〈001〉 Burgers vectors should rarely be expected to
dissociate into well-defined partials because of the significant
attractive forces caused by the opposite signed edge compo-
nents of the expected 1

2 〈1̄1̄1〉 and 1
2 〈111〉 partials.

Lastly, we point out the role covalent bonding can play
in stabilizing particular B2 intermetallics—specifically those
that are formed between two transition metal intermetallics
such as TiFe, TiRu, and HfRu. A set of fully occupied
d orbitals can be expected upon the reaction of the two
constituent elements within any three of these binary in-
termetallics via electron count, consistent with the theory
developed by Brewer and Engel. We believe these findings
will certainly prove useful in the pursuit of identifying a high
temperature, B2 strengthened, bcc refractory-based superalloy
that outperforms conventional Ni-based superalloys.
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APPENDIX

Within this Appendix we provide the coordinate systems,
and the corresponding expressions, that are required to de-
termine the potential splitting width between the two partials
that would bound an antiphase boundary for Burgers vectors
of 〈111〉 and 〈001〉 relevant to the plastic deformation of B2
intermetallics on the {110} plane. Both problems require the
dislocation line to be along the z axis of the coordinate system.
The solution for the stress fields of the 〈111〉 screw dislocation
can then be found based on the work of Stroh [36] and Head
[37]. The stress field for the 〈001〉 screw dislocation follows
from the work of Eshelby et al. [35].

1. Separation of the energy factor into a screw
and edge component

When the dislocation line of a general straight dislocation
is oriented along a coordinate axis that is of evenfold sym-
metry (conventionally the z axis) the stress fields generated
by the dislocation can be separated into an edge component
and a screw component. The potential splitting width between
partials bounded by a stacking-fault-like defect can then be
expressed as

r = 1

2πγ APB
(
bs1 · 
bs2Ks + 
be1x · 
be2x Kex + 
be1y · 
be2y Key )

(A1)

where γ APB is the energy penalty associated with forming the
stacking-fault-like defect and 
bsi are the vectors corresponding
to the portion of the two partials that are along the dislocation
line and 
bei correspond to the portion of the two partials that
are perpendicular to the dislocation line. The dot product is
used because dislocations of opposite direction attract while
dislocations that point in the same direction repel. Ks and
Ke are often called “energy factors” and they are a function
of the elastic constants within the coordinate system relevant
to the dislocation of interest. For dislocation lines that are
along an axis of evenfold symmetry these expressions take
the following form:

Ks = (C′
44C

′
55 − C′

45C
′
45)1/2, (A2)

Kex = (C̄′
11 + C′

12)

(
C′

66C̄
′
11 − C′

12

C′
22(C̄′

11 + C′
12 + 2C′

66)

)1/2

, (A3)

Key = (C̄′
11 + C′

12)

(
C′

66C̄
′
11 − C′

12

C′
11(C̄′

11 + C′
12 + 2C′

66)

)1/2

(A4)

where C̄′
11 = (C′

11C
′
12)1/2. The elastic tensor in the reference

frame of interest is generated based on a transformation matrix
Q where

C′ = QT CQ (A5)

and Q is built from the rotation matrix, R, that rotates from
conventional reference frame X to the relevant reference
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FIG. 7. Potential dissociation events for screw dislocations with a Burgers vector of either 〈001〉 or 〈111〉. For the 〈001〉 screw dislocation,

b1 = 1

2 〈111〉 and 
b2 = 1
2 〈1̄1̄1〉, leading to an attractive force between their edge components. For the 〈111〉 screw dislocation the dissociation

simply creates two partial screw dislocations with Burgers vectors of 
b1 = 
b2 = 1
2 〈111〉.

frame X ′:

R = X ′X −1. (A6)

Q in matrix form is then

Qmnkl = RkmRln (A7)

and C′
i jkl is

C′
i jkl = QT

i jghCghmnQmnkl . (A8)

2. Potential 〈001〉 screw dislocation dissociation

The reference frame relevant to the 〈001〉 screw dislocation
is simply the conventional reference frame used to describe
the cubic elastic constants which means Eqs. (A2)–(A4) sim-
plify to the conventional elastic constants of a cubic crystal.
The slip plane intersects the z axis and makes a 45◦ angle with
the x and y axes. A schematic of the dissociation is shown in
Fig. 7. Working through the geometry, the final expression for
the expected splitting width between partial dislocations is

r =
∣∣
b001

s

∣∣2

2πγ APB

(
Ks

4
−

[
Kex + Key

4

])
. (A9)

3. Potential 〈111〉 screw dislocation dissociation

The reference frame relevant to the 〈111〉 screw disloca-
tion, shown schematically in Fig. 7, has the z axis aligned

with the [111] direction, the x axis along [2̄11], and the y axis
along [1̄10]. The analytical form for the energy factor of a
screw component, based on the elastic constants rotated into
this reference frame [following Eq. (A8)], was worked out by
Head [37] based on work originally published by Stroh [36]
and is the following:

Ks = M

S44
, (A10)

M =
(

S11S44

S11S44 − S15S15

)1/2

, (A11)

S11 = C′
11C

′
44 − C′

15C
′
15

2(C′
11 + C′

12)(C′
44C

′
66 − C′

15C
′
15)

, (A12)

S15 = −C′
15

2(C′
44C

′
66 − C′

15C
′
15)

, (A13)

S44 = C′
66

C′
44C

′
66 − C′

15C
′
15

. (A14)

The expression for the expected splitting width between par-
tial dislocations is then

r = |
b111
s |2

8πγ APB
Ks. (A15)
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