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Elucidating the roles of chemistry, compositional complexity, and short-range order
in the dislocation energetics of body-centered-cubic concentrated solid solutions
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Dislocation-mediated deformation mechanisms in body-centered-cubic solid solutions are expected to be
influenced by spatial fluctuations in screw dislocation core energies. In refractory high-entropy alloys, the
formation of chemical short-range order has been demonstrated to decrease the heterogeneity of this energy
landscape, narrowing the distribution of dislocation core energies. It is, however, unclear if multicomponent
compositionally complex systems display any unique effects or if these results are more generally applicable. To
answer this question, this study computationally investigates how system chemistry, compositional complexity,
and the presence of various degrees of chemical short-range order affect the distribution of screw dislocation en-
ergies in binary and ternary subsystems of the NbMoTaW alloy. We report the calculated averages and variances
for the diffuse antiphase boundary energy and the dislocation core energy with various degrees of chemical
short-range order. While short-range order negligibly affects the average core energies, their distributions are
notably narrowed in some, but not all, systems, primarily depending on chemistry rather than the number of
components.
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I. INTRODUCTION

Body-centered-cubic (bcc) refractory high-entropy alloys
(RHEAs) have attracted extensive interest over the past
decade for potential structural materials applications due to
their retention of yield strength at elevated temperatures. For
high-temperature applications, particular attention has been
given to alloys containing Nb, Mo, Ta, and W as princi-
pal elements, as originally proposed by Senkov et al. [1].
However, the application of many of these materials may
be limited by their lack of ductility at ambient conditions
[2], in addition to concerns regarding oxidation resistance [3]
and high-temperature creep behavior [4,5]. For this reason,
the room-temperature damage tolerance of alloys such as
NbMoTaW remains as important as their intriguing strength
in refractory conditions.

The mechanical properties of bcc metals are traditionally
understood to be dictated by the mobility of 1

2 〈111〉 screw
dislocations [6], although recent work has also highlighted a
role of edge dislocations in certain concentrated systems [7,8],
especially at elevated temperatures at which the barriers to
screw dislocation motion experience significant thermal soft-
ening [7]. Deformation at ambient conditions is nonetheless
expected to be influenced by screw dislocation glide, which, in
pure bcc metals, involves the nucleation [9] and propagation
of pairs of kinks in the dislocation line [10–12]. In RHEAs,
screw dislocation motion may be particularly inhibited by the
large lattice distortion present in a mixture of variously sized
elements [13,14].

*mdasta@berkeley.edu

The mobility of individual screw dislocations is influenced
by the spatial distribution of effective core energies, i.e.,
the Peierls energy landscape, with additional strengthening
expected to arise from locking of the dislocations by cross-
kink formation [15]. Theoretical Peierls landscapes can be
calculated by considering pathways among distinct 1

2 〈111〉
screw-core configurations using density functional theory
(DFT) or computationally more efficient interatomic poten-
tials. For pure elements, including Nb, Mo, Ta, W, and V,
DFT predicts a nondegenerate compact core as the equilib-
rium structure [16–18], and a Peierls landscape with local
minima corresponding to the high-symmetry core structures
[19–21]. While the pathways among locally stable core struc-
tures provide important information about the shape of the
energy landscape [22], their rigorous determination in many-
component systems is challenging due to the computational
cost of determining transition barriers for even a representa-
tive sample of highly variable local chemical environments. It
is nonetheless insightful to assess the distribution of minima,
or valleys, in the Peierls landscapes of complex alloys. For
example, Yin et al. [23] predicted a highly heterogeneous dis-
tribution of equilibrium 1

2 〈111〉 dislocation core DFT energies
in NbMoTaW.

Although HEAs are traditionally approximated as solid so-
lutions with random compositional disorder (and hence ideal
configurational entropy), a certain amount of local chemical
rearrangement will inevitably occur in most systems, as de-
termined by the balance of thermodynamic driving forces and
diffusion kinetics. Real refractory alloys will be exposed to a
range of elevated temperatures for various amounts of time,
with the local ordering of a specific sample likely depen-
dent on its precise thermal history. The kinetics of forming
short-range order (SRO) in NbMoTaW alloys are estimated in
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Sec. IV in light of present and previous [24] thermodynamic
calculations.

The presence of SRO contributes to the strengthening of
solid solutions in two ways. On one hand, when a disloca-
tion overcomes the Peierls energy barrier and starts to glide,
it disturbs any favorable local ordering, creating a diffuse
antiphase boundary (DAPB) [25,26]. This DAPB introduces
extra energy into the crystal [27], which serves as an athermal
strengthening mechanism. On the other hand, SRO alters the
stress required for a kink pair to propagate through the solute
obstacles, which can be captured by a modified Suzuki model
for substitutional solid solution strengthening [28]. In this
model, the activation energy for kink propagation is dependent
on fluctuations of the local chemical environment, where the
prevalence of high-energy regions is reduced by the formation
of SRO, and thus softening of the material. The overall effect
of SRO is governed by the balance between these two com-
peting mechanisms, which precisely depends on the chemical
composition and degree of chemical order [28].

While the effect of local chemical environments on edge
dislocation energies is dominated by volumetric interactions
that may be efficiently parameterized by misfit volumes [7],
for screw dislocations it is generally necessary to consider
explicit core-solute interactions [28], which may be at least
qualitatively represented by the distribution of Peierls valley
energies. In this manner, Yin et al. [23] investigated the effects
of SRO on NbMoTaW, finding that the presence of SRO can
notably decrease the spatial heterogeneity of Peierls minima.
It is not clear, however, how these “smoothing” effects depend
on the number or type of constituent species in the alloy sys-
tem. Therefore, the focus of the current paper is to investigate
the role of SRO on the dislocation core structures, DAPB
energetics, and the core-energy distribution in the ternary and
binary subsystems of the NbMoTaW RHEA. The construction
of simulations cells for the determination of these systems’
Peierls valley distributions and the calculations of core en-
ergies are described in Sec. II and the effects of chemistry,
chemical complexity, and short-range order are presented in
Secs. III and IV. Our results suggest that SRO decreases the
spatial heterogeneity of Peierls valley energies, to a degree
that is affected primarily by chemistry rather than the number
of alloy components.

II. METHODS

A. Interatomic potential model

To investigate the effects of SRO on the Peierls energy
distributions in NbMoTaW and its subsystems, we employ the
moment tensor potential (MTP) for NbMoTaW described by
Yin et al. [15]. This potential, implemented in the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
[29], was trained using the unary, binary, ternary, and quater-
nary data of NbMoTaW reported by Li et al. [30]. The MTP
potential provides near ab initio accuracy, while maintaining
a reasonable computation cost [31].

B. Estimating order-disorder transition temperatures

To examine the effects of SRO on dislocation energy
landscapes, it is important to first establish the equilibrium

ordering temperatures, below which SRO gives way to
long-range order. The intent is then to produce states of
SRO at various temperatures above the ordering transition
temperature Ttr . Hence we perform simulations to estimate
Ttr from simulated heat-capacity calculations, as described
below. To estimate the order-disorder transition temperature
of each subsystem, we calculated the configurational
contribution to the heat capacity (Cv) at various temperatures
using on-lattice canonical Monte-Carlo (MC) sampling
(Fig. S4 in the Supplemental Material [32]).

It has been shown that lattice relaxation significantly al-
ters the order-disorder transition temperature of NbMoTaW
[24,33], but has limited effects on the ordering at temperatures
above the order-disorder transition [24]. To assess the poten-
tial effects from atomic displacements (lattice distortions) and
thermal expansion on the state of SRO, we conducted ad-
ditional hybrid Molecular-Dynamics/Monte-Carlo (MD/MC)
simulations for each of the systems at a temperature of 1.1 ×
Ttr (where Ttr is derived from the on-lattice simulations). The
magnitudes of the Warren-Cowley (WC) parameters obtained
from the hybrid MD/MC simulations were found to differ
from those derived in the on-lattice MC simulations by less
than 10% (Fig. S6 in the Supplemental Material [32]). Addi-
tionally, the signs of these parameters for the different bond
types were in agreement for the two types of simulations.
Thus, we employ on-lattice MC simulations to generate rep-
resentative states of SRO for the current studies.

On-lattice MC simulations were performed with supercells
that are 5 × 5 × 5 repetitions of the conventional bcc unit cell
containing 250 atoms for each composition. The equilibrium
lattice constants were determined for orthogonal supercells
with random compositional arrangements for each subsystem
employing zero-temperature energy relaxation calculations
in which the shape and dimension of the simulation cell is
optimized under zero external pressure. From the equilibrium
dimension and shape of the resulting relaxed structure, the lat-
tice constant was calculated as a0 = (2v0)1/3, where v0 is the
equilibrium atomic volume. The calculated equilibrium lattice
constants so obtained are as follows: NbMoTaW 3.2376 Å,
NbMoTa 3.2634 Å, NbMoW 3.2159 Å, MoTaW 3.2128 Å,
NbMo 3.2361 Å, MoTa 3.2323 Å, and TaW 3.2384 Å.

On-lattice MC simulations were used to equilibrate the
systems and calculate heat capacities at temperatures between
2000 and 350 K. In these MC simulations, the cell shape was
constrained to remain cubic with the volume fixed at values
corresponding to the lattice constants given above. Attempted
swaps of two atoms of different types, sampled randomly,
were accepted or rejected based on the Metropolis algorithm.
At each temperature, the total length of the simulation was
2000 MC passes, where a pass consists of N attempted swaps,
with N the number of atoms. Simulations were performed
initially at 2000 K starting from a random bcc configuration,
and subsequently at a consecutive set of lower temperatures
reduced in 50 K intervals; the ending configuration of the prior
simulation was used to seed the next at each subsequent lower
temperature.

At all temperatures, the total energy of every subsystem
was judged to be equilibrated after 500 MC passes. After
500 MC passes, the heat capacity (CV ) was calculated from
the energy (E ) fluctuations: CV = [〈E2〉 − 〈E〉2]/kBT 2. The
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FIG. 1. Supercell setup with a dislocation dipole, where the DAPB is marked by the light-blue line and the dislocation cores with opposite
Burgers vectors are highlighted with yellow circles. The left panel is viewed along the C3 direction (corresponding to the dislocation line
direction), and the right panel is viewed from the perpendicular C1 direction, where C1 = [1̄1̄2], C2 = [11̄0], and C3 = [111]. The supercell is
repeated along the C3 direction once, giving a thickness of two Burgers vectors. This thickness is given for all systems considered in the text.
The example shown in this figure is for the NbMoTaW quaternary system containing only 1848 atoms for better illustration, and the chemical
species are indicated by the different colors. The supercell where the statistical analysis is made in this paper contains 7392 atoms.

value of Ttr was then identified from peaks in CV versus
temperature (Fig. S4 in the Supplemental Material [32]).
Neglecting atomic relaxations and vibrations, seven systems
were found to undergo an order-disorder transition above
500 K: NbMoTaW 850 K, NbMoTa 950 K, NbMoW 550 K,
MoTaW 900 K, NbMo 1050 K, MoTa 1750 K, TaW 800 K.
SRO was considered to be minimally relevant in other sys-
tems, which were not examined further.

C. Dislocation relaxation

To investigate the spatial distribution of screw dislocation
core energies, a simulation cell was constructed to contain
a dislocation dipole, as illustrated in Fig. 1. In this setup, a
quadrupolar cell arrangement [35,36] was used to maximize
the distances between the dislocations and its periodic im-
ages, while minimizing image stress. The simulation supercell
contained 7392 atoms and was oriented with the periodic
directions along the vectors of C1 = a0[1̄1̄2], C2 = a0[11̄0],
and C3 = a0[111], where a0 is the equilibrium lattice con-
stant determined for each subsystem. The periodic length of
the C3 dislocation line direction is two Burgers vectors. This
value is fixed for all systems considered in the text, and it
is important to note that the distributions and their variances
specifically hold for this value of the dislocation line length.
Five representative states of SRO were then derived for each
composition, from on-lattice MC simulations at temperatures
of 1.1 Ttr , 1.4 Ttr , 1.7 Ttr , 2.0 Ttr , and 2.3 Ttr . For each temper-
ature, the SRO was derived from the final state resulting from
a MC simulation with 500 passes. With this procedure, the
state resulting from the simulation at 1.1 Ttr corresponds to
the maximum level of SRO, those at 2.3 Ttr the least, and those
from the temperatures in between giving intermediate degrees
of local order.

For each dislocation supercell, the positions of the atoms
were initialized using displacements from anisotropic elastic-
ity theory for the dipole configuration, using the BABELcode
[37]. The atomic positions were subsequently relaxed using
a conjugate-gradient algorithm in LAMMPS until the energy
difference between two successive iterations divided by the

magnitude of total energy is less than 1 × 10−9, which ap-
proximately corresponds to an energy convergence criteria of
1.2 × 10−5 eV/atom.

The above procedure was repeated for a random configura-
tion, and five configurations with SRO, for each composition.
The SRO configurations were derived from MC simulations
using the approach and temperatures based on the values of
Ttr listed in the previous section. To gather a statistical distri-
bution of dislocation core energies, the dislocation dipole was
initialized at each independent Peierls valley position for each
of the configurations. Figure 2 shows representative relaxed
dislocation core structures in the (a) random, (b) 1.4 Ttr , and
(c) 1.1 Ttr configurations of NbMoTa. Similar dislocation core
structures are also observed in other systems, indicating that
the nondegenerate compact core remained the equilibrium
structure for the configurations that were examined, irrespec-
tive of the composition or degree of SRO.

To compute core energies for each relaxed supercell, we
followed the procedure described by Yin et al. [23]. Specif-
ically, we computed the excess energy as the difference
between the relaxed energy for a given configuration with
and without the dislocation dipole. From this excess energy
(Eexcess), the core energy (Ecore) is derived from the following
formula:

Eexcess = Ecore + Eelas + EDAPB, (1)

where Eelas is the elastic energy contribution and EDAPB is the
DAPB energy in configurations with SRO.

The elastic energy is calculated using the method described
in Ref. [37], as implemented in the BABEL code. In computing
these quantities, we assumed that they varied negligibly with
SRO. We computed their values for systems with local order
at each composition for a configuration corresponding to the
equilibrium state of SRO at 1.1 Ttr . The values of the elastic
constants required to compute elastic energies were calculated
for each refractory subsystem with random and SRO config-
urations using LAMMPS and the MTP potential. For each
configuration, uniaxial (εxx, εyy, εzz) and simple shear (εxy,
εxz, εyz,) deformation were applied with a strain ε = 1 × 10−6,
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(a) (b) (c)

FIG. 2. The differential displacement map [34], viewed along the dislocation line (i.e., [111]) direction, for the relaxed dislocation core
structures in the (a) random, (b) 1.4 Ttr , and (c) 1.1 Ttr configurations of NbMoTa. The black squares, and the black and gray plus signs,
represent the different stacking layers along the [111] direction. Note that only the displacements that are larger than 0.1 × 1

2 〈111〉 are
shown.

followed by atomic relaxation with the same minimization
criteria as described in the paragraphs above. From the cal-
culated stresses for each simulation cell, the corresponding
elastic moduli are derived. Since the method in Ref. [37]
requires elastic constants of the single-crystal elastic constants
with cubic symmetry, we further reduced the calculated elastic
modulus tensor into three cubically symmetrized values (C̃11,
C̃22, and C̃33),

C̃11 = C11 + C22 + C33

3
,

C̃12 = C12 + C13 + C23

3
,

C̃44 = C44 + C55 + C66

3
,

where the Ci j denote elastic constant values in a given random
or SRO configuration. The symmetrized elastic constants are
also used to generate the initial displacement fields for insert-
ing the dislocation dipole into the supercell.

The DAPB energy results from the “cut” plane between
the dislocation cores, which results in a relative displacement
of the lattice planes by a Burgers vector, thus disrupting the
SRO (see Fig. 1). The DAPB energy was computed following
the approach described by Yin et al. [23], as illustrated in
Fig. S1 in the Supplemental Material [32]. In this approach,
one layer of atoms with the same length as the planar cut
is shifted by one Burgers vector in a configuration without
a dislocation dipole (Fig. S1 in the Supplemental Material
[32]). From half the difference between the relaxed energy
of this configuration, and the corresponding reference bulk
configuration, the value of the DAPB energy (EDAPB) is
derived (the factor of a half accounts for the two DAPBs
created by the procedure). This calculation of EDAPB was per-
formed at every possible atomic layer to maximize statistical
sampling.

To quantify the effect of SRO on the roughness of the
Peierls energy landscape, we report values for the variance
(σ 2

core) of the core energy. To compute this value for a given
configuration, it is necessary to separate the variance of excess
energy into the variances from its contributing factors. By
assumption, the elastic energy is constant in a given atomic
configuration and hence does not contribute to the variance
(σ 2

excess) of the excess energy. Assuming that the core energy
and DAPB energy are uncorrelated, their contributions to the

variance of the excess energy are additive,

σ 2
excess = σ 2

core + σ 2
DAPB, (2)

where σ 2
DAPB is the variance of the DAPB energy. In what

follows, we will examine how the dislocation core-energy dis-
tribution is affected by the equilibrium ordering, and chemical
composition.

III. RESULTS

A. Short-range order parameters

The SRO derived from the on-lattice MC simulations de-
scribed in Sec. II B is plotted in Fig. 3 considering first- and
second-nearest-neighbor Warren-Cowley (WC) SRO parame-
ters [38,39]. For a pair of types i and j, the WC parameter is
defined as

αi j = 1 − P( j|i)/c j, (3)

where the P( j|i) is the probability of finding the species j
as a neighbor to a site occupied by species i, and c j is the
relative concentration (mole fraction) of species j. A neg-
ative WC parameter indicates an enhancement of bonds of
type i − j in the neighbor shell relative to the random state,
while a positive value indicates a reduction in pairs of this
type.

The WC parameters plotted in Fig. 3 are significant in
magnitude and display values consistent with tendencies to
form long-range-ordered phases. Within the nearest-neighbor
shell, the most dominantly preferred bonding pairs are Mo-Ta
(in NbMoTaW, NbMoTa, MoTaW, and MoTa), Mo-Nb (in
NbMoTaW, NbMoW, and NbMo), and Ta-W (in NbMoTaW
and TaW), while the main unfavorable pairs are Mo-Mo (in
every Mo-containing system), Ta-Ta (in every Ta-containing
system), and Nb-Ta (in NbMoTaW and NbMoTa). The quali-
tative trends in the SRO are preserved up to 2.3 Ttr (Fig. 3). At
300 K, the equilibrium configurations of the binaries (NbMo,
MoTa, and TaW) and the NbMoTaW system are consistent
with an ordered B2 structure, where in the quaternary alloy,
Mo and W occupy one sublattice while Nb and Ta occupy the
other. Though the ordering structure for the ternary alloys is
less obvious, the general bonding preferences, including B2
phase formation in the binaries and the NbMoTaW system,
qualitatively agree with previous studies [23,24,40–42].
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FIG. 3. First- (solid) and second- (hatched) nearest-neighbor Warren-Cowley SRO parameters for each atom pair in NbMoTaW and its
ternary and (some) binary subsystems. For each panel, and each pair type, the values from left to right correspond to temperatures of 1.1 Ttr ,
1.4 Ttr , 1.7 Ttr , 2.0 Ttr , and 2.3 Ttr , where the values of Ttr for each system can be found in Sec. II.

B. Average dislocation core and DAPB energy

Figure 4 plots the distributions of the excess energies of
the dislocation dipole supercells for each composition, and
each of the six states of SRO: random, 1.1 Ttr , 1.4 Ttr , 1.7 Ttr ,
2.0 Ttr , and 2.3 Ttr . The histograms of the calculated excess
energies are each well fit by a Gaussian distribution and can
be characterized by the mean and variance (σ 2

excess). Both of
these quantities vary based on the composition and state of
the SRO. To justify the assumption of Gaussian distributions,
we have analyzed higher-order moments, namely, the third-
and fourth-order moments defined through the skewness and
kurtosis, respectively. As shown in the Supplemental Material
[32], these analyses support the assumption that the excess
energies are well modeled by Gaussian distributions.

We consider next the average values of the core and DAPB
energies derived from these Eexcess distributions. Their contri-
butions to the average excess energies are plotted in Fig. 5,
where it should be emphasized that the core energies are
averaged over the two dislocations in the supercell. For the

average core energies for the NbMoTaW system, the values
derived in this study with the MTP potential agree to within
10% of the values derived in the ab init io studies by Yin
et al. [23]. This level of discrepancy likely arises due to the
differences between the descriptions of the potential energy
used here versus the DFT results, and/or the larger system size
used in the present study. It is important to note that the values
of the core energies presented in this manuscript depend on
the choice of core radius (rcore) used in the calculations of the
elastic energy. The value chosen was the default value used
in BABEL, namely, rcore= a0, where a0 is the lattice constant.
If this value is changed, the elastic energy will change ac-
cordingly, as well as the mean values of the core energy for
each system. For example, a change from rcore= a0 to rcore=
1.3a0 leads to an increase in the core energy by approximately
14–25% for the different systems considered in our study.
Importantly, however, the elastic energy, by definition, does
not vary with the position of the dislocations within the su-
percells, so that changes in this quantity will not influence
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FIG. 4. The supercell excess energy distributions for the NbMoTaW and its subsystems. In each panel, the bars indicate the calculated
histogram data and the solid lines indicate Gaussian fits. For each panel, results are plotted for random configurations (gray bars and solid
black lines) and configurations with different levels of SRO as indicated in the legend according to the equilibration temperatures, where the
values of Ttr for each system can be found in Sec. II.

the calculated variances of the core energy and conclusions
concerning the effect of SRO upon them.

The average core energies are plotted in Fig. 5 and listed
in Table I. These values are found to display larger variations
with composition than with the state of the SRO. Specifically,
for each of the subsystems that is considered, the largest
difference between the core energies for the random config-
uration and the state with the largest degree of SRO (i.e., at
1.1Ttr) is 9% (0.1 eV/b) for MoTa, with the state with the SRO
having lower core energy. This trend of smaller core energy
for the state with the largest degree of SRO compared to the
random configuration holds for all of the systems that are con-
sidered, although the magnitude of the change is smaller for
all of the other systems. By contrast, the variation of average

core energy with composition is larger, as can be seen from
a comparison of the values for the random configurations,
which span a range of approximately 0.3 eV/b (about 20% of
the maximum value). An interesting feature of the calculated
results for core energies is that there is no clear trend with the
number of components. The largest core energies are found in
the systems containing W atoms.

The contribution of the DAPBs to the average excess en-
ergies is plotted in Fig. 5, and in Table II the average values
of EDAPB are listed in the natural units of energy per unit area.
For all of the random systems that are considered, the average
value of EDAPB is zero within statistical sampling errors, and
the magnitudes increase with increasing degree of SRO (i.e.,
decreasing temperature), as is apparent from Table II. As
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FIG. 5. The average supercell excess energy decomposed into contributions (from bottom to top) corresponding to the core energy (Ecore),
the elastic energy (Eelas), and the DAPB energy (EDAPB). For each system, the results are plotted for random configurations (black and gray)
and configurations with varying degrees of SRO as indicated in the legend according to the different equilibration temperatures (the values of
Ttr for each system can be found in Sec. II). The average DAPB energy for the random cells is zero, and thus is not shown in this figure.

with the average core energies, there is no clear trend in the
magnitudes of EDAPB with number of components. The largest
values at 1.1 Ttr are calculated for the MoTa binary, and the
NbMoTa and MoTaW ternaries, where the values are over
90 mJ/m2.

C. Dislocation core-energy distribution

We consider next the effect of SRO on the distribution of
core energies, i.e., the extent to which local ordering flattens
the landscape of Peierls valley energies. Figure 6 decomposes
variances of the excess energies into the contributions from
core energies and DAPBs, for each composition and level
of SRO. Note that the nonzero variance for the DAPB
distribution for random cells is due to the finite size of the
sampled DAPB area, which was chosen to correspond to that
present in the dislocation supercells. Before discussing these
results, and the implication of SRO effects, it is important to
emphasize that the values plotted in Fig. 6 are obtained from
a single supercell. Therefore, it is necessary to determine the
degree to which these results are converged with respect to
sampling statistics.

To check the statistical uncertainties associated with these
results, we considered the four-component NbMoTaW system
and investigated the random sample and the system with the
highest degree of SRO (1.1 Ttr). For each of these two systems,

TABLE I. Average dislocation core energy for different com-
positions and levels of SRO. The first column lists the system
composition, and the second through seventh columns list the values
of the core energies (in units of eV/b) for different levels of SRO.

1.1 Ttr 1.4 Ttr 1.7 Ttr 2.0 Ttr 2.3 Ttr Random

NbMoTaW 1.3 1.3 1.3 1.3 1.3 1.3
NbMoTa 1.2 1.2 1.2 1.2 1.2 1.2
NbMoW 1.3 1.4 1.4 1.4 1.4 1.4
MoTaW 1.4 1.4 1.4 1.4 1.4 1.4
NbMo 1.1 1.2 1.2 1.2 1.2 1.2
MoTa 1.0 1.1 1.1 1.0 1.0 1.1
TaW 1.2 1.2 1.3 1.2 1.2 1.3

we generated 10 configurations and computed the distribution
of core energies. The error bars in Fig. 6 are centered on
the average values and reflect the standard deviation in the
variances of the 10 configurations. Assuming normal distri-
bution of the dislocation core variance, two 90% confidence
intervals, for random and 1.1 Ttr SRO configurations, were
constructed based on the above sampling. The random and the
1.1 Ttr SRO confidence zones do not overlap, indicating that
the variances in the random and the 1.1 Ttr SRO configurations
are statistically different. For the other systems considered in
this work, we will assume that the statistical sampling errors
derived for the NbMoTaW system are representative across
the different compositions and states of the SRO.

Based on the above assumptions, we interpret the results
presented in Fig. 6. For NbMoW and TaW, we find statistically
significant differences in the core-energy variances between
the random configuration and all of the samples with SRO
(i.e., for all samples equilibrated at T below 2.3 Ttr). By
contrast, the changes in core-energy variances with SRO for
NbMoTa and MoTa are sufficiently small that they cannot be
discerned with the level of sampling employed in this work.
For NbMoTaW, NbMo, and MoTaW, statistically significant
differences in the core-energy variances are found relative
to the random configuration, only for those systems where
the degree of SRO is sufficiently large (i.e., for T/Ttr less

TABLE II. Average DAPB energy (mJ/m2) for different com-
positions and levels of SRO. The average values of EDAPB for the
random simulation cells are zero within statistical sampling errors
and thus are not shown in this table.

1.1 Ttr 1.4 Ttr 1.7 Ttr 2.0 Ttr 2.3 Ttr

NbMoTaW 84 55 40 36 32
NbMoTa 93 68 50 39 34
NbMoW 59 44 34 25 20
MoTaW 97 74 62 51 38
NbMo 87 57 44 34 28
MoTa 130 85 54 51 34
TaW 94 67 46 38 30
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FIG. 6. The effect of SRO on the variances of core-energy distributions in subsystems of NbMoTaW. The solid and hatched bars indicate
contributions to the variances of excess energies arising from core energies and DAPB energies, respectively. The average DAPB energy for
the random cells is zero, and the nonzero variance for the DAPB distribution for random cells is due to the finite size of the sampled DAPB
area. For each system, the results are plotted for random configurations (black and gray) and configurations with varying degrees of SRO as
indicated in the legend according to the different equilibration temperatures (the values of Ttr for each system can be found in Sec. II). The
error bars plotted for NbMoTaW represent estimated uncertainties in the variances of core energies, estimated in the manner described in
Sec. III C.

than approximately 2.0 for the first two compositions, and
approximately 1.7 for the third).

IV. DISCUSSION

Overall, the results in the current work suggest that the
effects of SRO on the variance of the distribution of core ener-
gies can be large (over 50% for MoTaW and TaW). However,
the degree of narrowing of core energies shows no clear trend
with composition or number of components.

Given the potentially significant effects of SRO on core-
energy distributions in the refractory concentrated alloys
investigated here, it is interesting to consider the conditions
under which this local order may form kinetically. For this
purpose, we estimate SRO relaxation times, i.e., the time for
SRO to form from an initially random configuration, using
concentration-wave kinetics theory [43]. A recent comparison
between this mean-field theory and kinetic Monte Carlo simu-
lations for model binary alloys demonstrated agreement at the
level of an order of magnitude [46]. For the present system,
we consider binary alloys and employ formulas presented by
Cook [43], who provides a simple method for assessing the
isothermal equilibration time of binary regular solutions based
on experimental interdiffusion measurements.

The theoretical diffusivity of NbMoTaW lies below that of
Nb and Ta, but well above that of Mo or W [47]. Thus, the
behavior of this class of alloys may be roughly gauged by
considering interdiffusion in the two distinct binary systems
for which experimental data are readily available, specifically,
NbMo [44] and TaW [45]. While none of these systems can be
realistically considered regular solutions [48], the approxima-
tion is nonetheless employed with some frequency [49,50] and
is assumed to be adequate for the purposes of these estimates.

The resulting expression for the relaxation time (τ ) is

τ = a2

32D̃

T + Tc

T − Tc
, (4)

where D̃ is the interdiffusion coefficient and Tc is the critical
temperature of ordering [43], which we approximate here

as the value of Ttr derived from the on-lattice Monte Carlo
simulations presented above.

Figure 7 plots the resulting values of τ for binary NbMo
and TaW alloys. If the values are also representative for re-
lated HEA compositions, they suggest that typically employed
thermal histories realized in the processing of these materials
may lead to the formation of SRO. Specifically, in Ref. [51],
NbMoTaW and NbMoTaWV alloys were annealed at 1673 K
(approximately 2 Tc) for 19 hours (68 400 s), and in Ref. [52],
NbMoTaW samples were annealed at 2073 K (approximately
2.44 Tc) for seven days (604 800 s). For both systems, these
annealing times are significantly longer than the relaxation
times plotted at the respective temperatures in Fig. 7, sug-
gesting that they may be sufficient to enable SRO to form
kinetically.

FIG. 7. The relaxation time, which approximates the time re-
quired for the equilibration of SRO, calculated using the expressions
from Cook [43], based on mean-field concentration-wave theory.
Results are plotted assuming a representative ordering temperature
of 850 K, and the interdiffusion coefficients measured for NbMo [44]
and TaW [45].
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V. CONCLUSION

We present an analysis of the effects of chemical SRO
on 1

2 〈111〉 screw dislocation core-energy distributions in bcc
RHEA NbMoTaW and its equimolar ternary and binary sub-
systems. In each of the systems that is considered, chemical
SRO equilibrated at temperatures lower than 2.3 Ttr does not
significantly change the average value of the core energy,
but its presence decreases the variance of the core energy
significantly in some, but not all, of these systems. Whether
SRO “narrows” the Peierls energy distribution depends on
both the chemistry and the equilibration temperature, rather
than being determined exclusively by the number of com-
ponents. In other words, the magnitude of the effect of
SRO on the variance of dislocation core energies depends
on the chemistry of the system, rather than being sim-
ply dictated by high configurational entropy. Based on the
estimation of ordering kinetics, certain experimental homoge-

nization and operating conditions could enable the formation
of appreciable SRO, such that the results presented here be-
come relevant for modeling of mechanical behavior in these
systems.
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