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Solving the electronic structure problem for over 100 000 atoms in real space
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Using a real-space high-order finite-difference approach, we investigate the electronic structure of large
spherical silicon nanoclusters. Within Kohn-Sham density functional theory and using pseudopotentials, we
report the self-consistent field convergence of a system with over 100 000 atoms: a Si107,641H9,084 nanocluster
with a diameter of 16 nm. Our approach uses Chebyshev-filtered subspace iteration to speed up the convergence
of the eigenspace, and blockwise Hilbert space-filling curves to speed up sparse matrix-vector multiplications,
all of which are implemented in the PARSEC code. For the largest system, we utilized 2048 nodes (114 688 cores)
on the Frontera machine in the Texas Advanced Computing Center. Our quantitative analysis of the electronic
structure shows how it gradually approaches its bulk counterpart as a function of nanocluster size. The band gap
is enlarged due to quantum confinement in nanoclusters, but decreases as the system size increases, as expected.
Our work serves as a proof of concept for the capacity of the real-space approach in efficiently parallelizing
very large calculations using high-performance computer platforms, which can straightforwardly be replicated
in other systems with more than 105 atoms.
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Calculating the electronic structure of materials has been
a primary aim for the theory of condensed matter physics,
as well as the starting point for understanding and predicting
materials properties. The development of density functional
theory (DFT) [1,2] and pseudopotential methods [3] has made
it possible to treat the problem as an effective one-electron
problem, rather than the much more difficult interacting
many-electron problem.

Over the past few decades, rapid improvements in compu-
tational capabilities allowed researchers to solve the electronic
structure problem for larger and larger systems using various
software packages. Currently, the most common available
packages use a plane-wave basis in which to expand the
Kohn-Sham wave functions. Despite the practical success of
this approach, a few disadvantages exist: (1) the requirement
of extensive global communications hindering massive par-
allelization; (2) the inability to directly calculate aperiodic
structures such as nanoclusters and instead having to construct
large supercells; and (3) the inability to calculate charged sys-
tems without a compensating background charge that might
alter their properties.

An alternative approach utilizes a real-space grid to cir-
cumvent these shortcomings [4–7]. In our approach, which
has been implemented in the software package PARSEC

(“pseudopotential algorithm for real-space electronic struc-
ture calculations”), the Kohn-Sham equations are solved via
high-order finite difference in real space [8,9]. The reduced
need for global communication makes parallelization easier,
and periodic simulation cells are not required (overcoming the
latter two aforementioned issues), though they are also im-
plemented. Various other implementations in real space have
also been developed, e.g., multigrids [10–12], multiwavelets

[13], finite-element [14–17], as well as other finite-difference
implementations [18–23]. Achieving convergence within the
finite-difference formalism is straightforward if the Coulomb
singularity of the all electron potential is removed using
pseudopotentials [24]. Additionally, the Hamiltonian matrices
obtained on the real-space grid are large, but very sparse,
enabling an efficient diagonalization [25].

Achieving self-consistency in large systems often involves
handling a bottleneck associated with the solution of the
eigenvalue problem. If there were a way to approximate the
solution of the eigenvalue problem for the first few self-
consistent field (SCF) steps without attempting full accuracy
for individual eigenstates, that would result in a significant
speedup. This idea has been realized by the Chebyshev-
filtered subspace iteration (CheFSI). The focus of CheFSI is
on improving the subspace (and as a result, the charge density)
and the potentials simultaneously over successive SCF steps
[26–29]. Rather than searching for individual eigenstates, the
CheFSI method searches for an invariant subspace, which
approaches the SCF eigensubspace. The CheFSI method
provides a significant speedup (up to tenfold) compared to
standard diagonalization techniques [26,29], which has led to
its widespread use in real-space DFT packages [21–23,30,31].
The details of our current implementation of CheFSI in
PARSEC can be found elsewhere [29].

The efficiency of the CheFSI method relies on sparse
matrix-vector multiplications arising from the Hamiltonian
and the wave functions. In order to parallelize these mul-
tiplications, one needs to partition the calculational domain
and distribute calculations among processors, which has the
potential of being very inefficient when thousands of pro-
cessors are involved. We have recently investigated the most
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TABLE I. The silicon NCs studied in this Letter. For each system, the corresponding grid spacing (h), the machine on which the calculation
was run, the number of computing nodes, the diameter of the NC, the number of grid points, the number of computed states, the number of
SCF steps to reach convergence, and the wall time for the calculation are tabulated.

h (bohr) Machine No. of nodes Diameter (nm) No. of grid points No. of states No. of SCF steps Wall time (h)

Si1,947H604 0.7 Cori 2 4.2 1,575,600 4800 17 2.5
Si4,001H1,012 0.7 Cori 8 5.3 2,707,504 9216 19 4.0
Si10,869H1,924 0.7 Cori 64 7.5 6,377,184 24,576 17 8.4
Si23,049H3,220 0.7 Cori 256 9.6 15,180,904 61,440 18 27.9
Si51,071H5,484 0.9 Frontera 512 12.5 15,522,368 114,688 15 28.6
Si107,641H9,084 0.9 Frontera 2048 16.0 31,901,640 245,760 14 46.8

efficient ways of domain partitioning based on space-filling
curves (SFCs) [32]. SFCs are continuous curves that traverse
a three-dimensional (3D) domain and pass through every grid
point once. This presents a straightforward way to access data
on each point, while the self-similarity of SFCs preserves the
locality of the grid points on the curve [33–36]. We have found
that using blockwise Hilbert SFCs can provide an over sixfold
speedup of sparse matrix-vector multiplications compared to
simple Cartesian ordering [32].

Here, we present a large Kohn-Sham DFT calculation with
SCF convergence (a silicon nanocluster made up of over
100 000 atoms or 400 000 electrons) using the Chebyshev-
filtered subspace iteration and blockwise Hilbert space-filling
curves implemented in the real-space code PARSEC. We also
compare this system (Si107,641H9,084) to smaller nanoclusters
to investigate the evolution of the electronic structure as a
function of the system size. This achievement demonstrates
the robust scalability and parallelizability of the real-space
method.

The calculations presented here were run on two supercom-
puters: the National Energy Research Scientific Computing
Center’s (NERSC) Cori machine, and the Texas Advanced
Computing Center’s (TACC) Frontera machine. On Cori,
we used Knights Landing (KNL) nodes, each of which is
equipped with one Intel Xeon Phi 7250 processor, which has
68 CPU cores. On Frontera, each node is equipped with two
Intel Xeon Platinum 8280 processors and has 56 CPU cores.
We used norm-conserving pseudopotentials, constructed by
the Troullier-Martins method in the Kleimann-Bylander form
[37,38]. The cutoff radii for hydrogen and silicon atoms are
1.8 bohrs for 1s1 and 2.78 bohrs for 3s2, 3p2, and 3d0,
respectively. We employed the local density approximation
(LDA) to approximate the exchange-correlation functional
as determined numerically by Ceperley and Alder [39], and
parametrized by Perdew and Zunger [40]. We note that some
newly developed functionals such as meta-GGA (generalized
gradient approximation) can provide more accurate energy
gaps without sacrificing the calculation speed, and thus for fu-
ture simulations concerned with comparisons with optical ex-
periments, those functionals can be used [41,42]. We applied
four iterations of CheFSI during the first SCF step, and then
one iteration for each following step. Our SCF convergence
criterion is SRE < 0.0001 Ry, where SRE (self-consistent
residual error) is defined as the integral of the square of
the difference between the last two self-consistent poten-
tials, weighted by electron density and taken squared root.

All further details regarding the CheFSI algorithm can be
found in Refs. [25,29,32].

We list and summarize the calculations we ran in Table I.
Each calculation is a spherical silicon nanocluster (NC) gen-
erated from bulk silicon in the diamond crystal structure
with the optimized lattice constant 5.38 Å, within 1% of
the observed lattice constant of 5.43 Å. The dangling bonds
of the surface silicons are passivated by hydrogen atoms.
Among the six NCs listed, the second, third, and fourth
ones were previously reported in Ref. [32], and are included
here for comparison. For the larger NCs (Si51,071H5,484 and
Si107,641H9,084), we switched from the Cori machine to the
Frontera machine, which has a higher clock rate (2.7 GHz
vs 1.4 GHz) and memory per node (192 GB vs 96 GB).
For these NCs, we also increased the grid spacing h from
0.7 bohrs to 0.9 bohrs, which reduced the problem size by a
factor of (0.7/0.9)3 � 0.47. We have verified for the smaller
NCs that the grid spacing of 0.9 bohrs leads to well-converged
eigenvalues for the energy spectrum, leading to histograms
of energies hardly distinguishable from those resulting from
h = 0.7 bohrs. As an example, the as-computed eigenvalues
for highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) states for Si1,947H604

are −4.9997 (−5.0031) eV and −4.0459 (−4.0508) eV for
h = 0.7 (0.9) bohrs. We note that the largest NC studied
here required the use of 2048 nodes (114 688 cores), which
corresponds to a quarter of the full Frontera capacity. In
comparison, the only other Kohn-Sham DFT calculation of
a similar size to our knowledge, which is a single SCF
steps on a 107 292-atom silicon nanowire (also utilizing
high-order finite-difference real-space methods) was achieved
using 442 384 cores on the K Computer at Riken Advanced
Institute for Computational Science [43]. A more recent at-
tempt at a very large calculation was of a ∼10 000 atom Mg
system with ∼100 000 electrons, using 3800 GPU nodes on
the Summit Supercomputer at Oak Ridge Leadership Com-
puting Facility. This study utilized a real-space finite-element
method [44].

In real space, each state is a function of space in the whole
calculation domain. Therefore, the total number of degrees of
freedom in our largest calculation is 7.8 × 1012 (computed as
No. of grid points × No. of states read off Table I). The fact
that the Hamiltonian is sparse and we are only computing a
small low-energy subset of the eigenspace (0.77% of the total
number of eigenstates) greatly helps in making this problem
more tractable [45].
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FIG. 1. The density of states (DOS) for the six NCs investigated
in this Letter. The DOS for each case is obtained by plotting a
histogram of the eigenstates using 0.1 eV bins. The highest occupied
state (Fermi level) is set to zero in each case.

We present the density of states computed for each of
the six NCs in Fig. 1. In order to plot the DOS for a given
system, we first set the eigenvalue for the highest occupied
state (Fermi level) to zero, then create a histogram of eigen-
values using 0.1 eV bins, and finally normalize each plot so
that they all have the same total area below the Fermi level.
We observe that as the NC gets larger, the DOS becomes less
“noisy,” and the familiar features of the bulk DOS become
more discernible. The dip around −8 eV and the van Hove

FIG. 2. The density of states (DOS) for the Si107,641H9,084 NC
(blue bars) plotted together with the DOS of bulk silicon (green line),
both obtained from PARSEC using similar grid spacings. The NC DOS
is obtained by plotting a histogram of the eigenstates using 0.1 eV
bins, and then normalized to match the area under the valence-band
part of the bulk Si curve. The highest occupied state of the NC is set
to zero, and the valence-band edge of the bulk DOS is positioned to
minimize the rms difference between the two plots.

singularity around −7 eV become sharper for larger NCs [46].
We note that these sharp features which can be understood in
the context of band theory nevertheless arise in our real-space
calculation which does not invoke Bloch’s theorem.

In order to systematically study how the electronic struc-
ture of the NCs converge to the bulk, we performed a bulk
silicon calculation in PARSEC with h = 0.86 bohr using the
periodic boundary conditions [7,47]. and a 36 × 36 × 36
Monkhorst-Pack k-point sampling for the 8-atom simple cubic
cell [48]. To compare the bulk DOS and the DOS of the
Si107,641H9,084 NC, we first sample the bulk DOS on the same
energy values that are used to generate the DOS of the NC.
We then normalize the DOS of the NC such that the total area
under the valence-band part is equal to the bulk counterpart.
We then calculate the root mean square (rms) of the difference
between the two curves, which we self-consistently minimize
by horizontally shifting the bulk DOS plot. The resulting
comparison with a minimized rms is presented in Fig. 2. All
features of the bulk DOS are replicated in the NC DOS with
high precision. The deviation at the conduction-band edge is
an expected result of quantum confinement.

By repeating the same analysis for the smaller NCs, we
have obtained Fig. 3, which shows the evolution of the band
gap and the rms deviation for each DOS from the bulk DOS.
We observe that the deviation from bulk electronic structure
monotonically decreases with the size of the NC, the decrease
being sharper up to ∼10 nm. The evolution of the band gap
(HOMO-LUMO gap) follows a power law, in accordance
with previous studies on quantum confinement [27,49–54].
By fitting the band gap versus diameter d to the expected
equation, we find

Egap(d ) = 0.46 eV + 4.64

(d in nm)1.56 eV,
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FIG. 3. The evolution of the band gap and the rms deviation for
each DOS from the bulk DOS for the six computed silicon NCs
considered in this Letter. The blue curve with square marks plots the
band gap (left axis), and the orange curve with round marks plots the
rms deviation from the bulk DOS (right axis). A best fit curve with
a power-law dependence and a vertical offset is also included for the
band-gap curve (dashed). The fit has R2 = 0.9998.

with a coefficient of determination of 0.9998 (plotted with a
blue dashed line in Fig. 3). The 0.46 eV value also agrees
with the band gap computed in our bulk Si calculation.
Previous studies into smaller Si NCs have found smaller ex-
ponents (between 1.08 and 1.39) [27,51–53]. The fact that
our exponent is larger is in agreement with the expectation
that in the bulk limit, the effective mass theory of quantum
confinement becomes valid, and the exponent approaches
2 [49–51].

As we previously mentioned, the real-space approach is
suitable for computing charged systems [55]. This allows
us to compare the HOMO-LUMO gap and the fundamental
gap, defined as the difference between the ionization potential
[Etotal(n) − Etotal(n − 1)] and electron affinity [Etotal(n + 1) −
Etotal(n)], where n is the number of electrons in the neutral
NC. In a previous study, we studied the evolution of these
two gaps for NCs up to a diameter of 7.0 nm (Si9,041H1,860)
[27], finding the fundamental gap for the largest NC to be
1.54 eV and the HOMO-LUMO gap to be 0.97 eV. In this
Letter, we have repeated these calculations for d = 7.5 nm
(Si10,869H1,924) and d = 9.6 nm (Si23,049H3,220). We find the

fundamental gap for these NCs to be 1.53 and 1.33 eV, re-
spectively, and the HOMO-LUMO gap to be 0.96 and 0.80 eV,
respectively. Therefore, the difference between these two gaps
goes from 0.57 to 0.53 eV from the smaller NC to the larger
NC, which is in line with the results from our previous
study [27].

In summary, we have presented the successful SCF con-
vergence of one of the largest systems to date (Si107,641H9,084

nanocluster with a diameter of 16 nm) in Kohn-Sham density
functional theory, achieved using a real-space finite-difference
approach implemented in the PARSEC code. Our method uti-
lizes Chebyshev-filtered subspace iteration to speed up the
convergence of the eigenspace, and blockwise Hilbert space-
filling curves to speed up sparse matrix-vector multiplications.
For this Letter, we executed highly parallelized runs with up
to 2048 nodes (114 688 cores) on TACC Frontera. We have
also systematically investigated the convergence of the elec-
tronic structure into its bulk counterpart as a function of the
nanocluster size. We have confirmed the predicted behavior
of the band gap as it is enlarged due to quantum confinement
in nanoclusters. Our work demonstrates the capabilities of
the real-space approach in achieving a very high level of
parallelization in modern supercomputers, delivering accurate
electronic structure results in unprecedented system sizes. As
our supercomputers continue to improve into the so-called
exascale era, the ever-growing electronic structure community
needs software that can scale up and meet the challenge. We
have shown that fully ab initio calculations in the (∼10 nm3)
scale can now be done, which will pave the way for further
applications in the exascale era.
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