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The transition between necking-mediated tensile failure of glasses, at elevated temperatures and/or low strain
rates, and shear-banding-mediated tensile failure, at low temperatures and/or high strain rates, is investigated
using tensile experiments on metallic glasses and atomistic simulations. We experimentally and simulationally
show that this transition occurs through a sequence of macroscopic failure patterns, parametrized by the
ultimate tensile strength. Quantitatively analyzing the spatiotemporal dynamics preceding failure, using large
scale atomistic simulations corroborated by experimental fractography, reveals how the collective evolution and
mutual interaction of shear-driven plasticity and dilation-driven void formation (cavitation) control the various
macroscopic failure modes. In particular, we find that, at global failure, the size of the largest cavity in the loading
direction exhibits a nonmonotonic dependence on the temperature at a fixed strain rate, which is rationalized in
terms of the interplay between shear- and dilation-driven plasticity. We also find that the size of the largest
cavity scales with the cross-sectional area of the undeformed sample. Our results shed light on tensile failure
of glasses and highlight the need to develop elastoplastic constitutive models of glasses incorporating both
shear- and dilation-driven irreversible processes.
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Glasses subjected to sufficiently large tensile stresses, like
any other materials, inevitably fail. At elevated temperatures
and/or low strain rates, deformation is essentially homoge-
neous and failure is known to be mediated by necking [1,2],
where spatially extended plastic deformation geometrically
localizes at a radially symmetric, shrinking cross-sectional
area [3,4]. At low temperatures and/or high strain rates, de-
formation is highly localized and failure is mediated by shear
banding [1], where plastic deformation strongly localizes at an
oblique (symmetry-breaking) plane, before transforming into
a catastrophic crack [3,4]. While progress has been made in
understanding these two end members of tensile failure modes
of glasses, our understanding of the transition between them
as a function of the temperature and strain-rate significantly
lags behind. In this study, using tensile experiments performed
on well-controlled metallic glasses and large-scale molecu-
lar dynamics simulations of model glasses, we investigate
the transition between necking- and shear-banding-mediated
tensile failure in glasses. We focus both on the macroscopic
tensile failure patterns and on the spatiotemporal elastoplas-
tic dynamics that accompany them, paying special attention
to the interplay between shear-driven plasticity and dilation-
driven void formation (cavitation) [5–9].

We performed uniaxial tension tests on cylindrical rods
made of a Zr44Ti11Cu10Ni10Be25 metallic glass (Tg = 625 K)
of diameter D0 = 1.8 mm, over a range of temperatures T and
strain rates ε̇. The rods were prepared such that the as-cast
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state is statistically similar between samples (i.e., featuring
the same fictive temperature [10]), see Supplemental Material
for details [11], ensuring that all of the observed variations in
the failure dynamics are due to variations in the control pa-
rameters T and ε̇, and not different nonequilibrium histories.
The rods were clamped in a universal testing machine and
maintained at a temperature T (both below and above Tg, in
the range of T = 529–659 K), before being loaded in tension
at a strain rate ε̇ (in the range ε̇ = 0.2–1.3 s−1); see [11] for
details.

For any uniaxial test with prescribed T and ε̇, we measured
the applied stress σ as a function of the strain ε. For each
stress-strain curve σ (ε), we extracted the peak value, i.e., the
ultimate tensile strength (UTS), σUTS. In Fig. 1(a), we present
the observed macroscopic, postmortem failure patterns as a
function of increasing σUTS, independent of whether its vari-
ation has been achieved by varying T or ε̇. At small σUTS,
corresponding to high T and low ε̇, necking-mediated failure
is observed. At large σUTS, corresponding to low T and high
ε̇, oblique, shear-banding-mediated failure is observed. In be-
tween, a sequence of macroscopic failure patterns is observed,
apparently parametrized by σUTS.

We roughly identify three intermediate failure patterns,
sketched on the top row of Fig. 1(b), between necking-
mediated failure (leftmost) and shear-banding-mediated fail-
ure (rightmost). To better describe and understand the
sequence of observed macroscopic failure patterns, we pol-
ished the postmortem samples that feature a vanishingly
small cross section at failure—characterizing predominantly
necking-mediated failure [the two leftmost sketches on the
top row of Fig. 1(b)]—along the rod’s long axis and imaged
it using a scanning electron microscope (see [11] for details).
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FIG. 1. (a) Side view of the tensile samples after failure sorted by increasing ultimate tensile strength σUTS, which is varied either by
varying T or ε̇. σUTS varies by roughly a factor of 6.5, approximately from 250 MPa to 1600 MPa as indicated, but note that the presented
samples are not placed at equal σUTS intervals. (b) Sketches of the macroscopic failure modes (top row), ranging from necking-mediated failure
on the left (low σUTS, corresponding to high T or low ε̇) to shear-banding-mediated failure of the right (high σUTS, corresponding to low T or
high ε̇); see text for details. (Bottom row) Vertical sample polishing (two leftmost parts) and fractographic images (the rest), corresponding to
the sketches above (scale bars are added); see extensive discussion in the text. The stated scale bars apply to each set of adjacent micrographs,
respectively. (c) Dimple area fraction vs σUTS, for a fixed ε̇ and varying T (green squares) and a fixed T and varying ε̇ (orange circles); see
legend. The range of observed necking, dimples, and veins is indicated by horizontal colored bars. (d) The maximum dimple size vs σUTS for
800–1200 MPa, the range over which dimples are observed on the fracture surface [see also panel (c)].

For the lowest σUTS, where the neck is long, the bulk of the
sample is homogeneous [see leftmost image on the bottom
row of Fig. 1(b)], not revealing clear mesoscale structures and
hence indicating homogeneous plastic deformation. At some-
what larger σUTS, for which samples still neck (yet the neck is
shorter), the bulk of the sample reveals mesoscopic structures
in the form of cavities [see the bottom row of Fig. 1(b) and the
inset therein], indicating void formation and coalescence that
leads to mesoscopic cavities in the bulk.

For postmortem samples that feature a finite cross sec-
tion at failure, corresponding to the three rightmost sketches
on the top row of Fig. 1(b), we imaged the fracture surfaces
using a scanning electron microscope and performed a frac-
tographic analysis. We identified two distinct fractographic
patterns [10,12–17]: veins that are characteristic of localized
shear plasticity and dimples that are characteristic of cavi-
ties. For intermediate σUTS, necking interrupted by cuplike
structures appears in the macroscopic failure pattern [middle
sketch on the top row of Fig. 1(b)], which corresponds to dim-
ples covering the entire fracture surface; see the two images
below the middle sketch on the top row of Fig. 1(b), where
the blue boundary encircles dimples (here the entire surface).
For yet higher σUTS, a cup-and-cone-like macroscopic pattern
emerges [next-to-rightmost sketch on the top row of Fig. 1(b)],
which corresponds to the coexistence of veinlike patterns at
the periphery (“cone” part; see red encircling lines in the two
images below) and dimples at the center (“cup” part; see blue

encircling lines therein). Finally, for shear-banding-mediated
failure at high σUTS, shown on the rightmost part of Fig. 1(b),
veinlike patterns dominate the fracture surface.

The experimental results discussed above indicate that the
various observed macroscopic failure modes emerge from
the interplay between shear-driven plasticity and dilation-
driven void formation/cavitation. These irreversible processes
manifest themselves on the fracture surface, respectively, but
generally also take place inside the bulk of the glass. To
further quantify the fractographic manifestations of these ir-
reversible processes, we present in Fig. 1(c) the percentage of
the fractured area that is covered by dimples [see also panel
(b)] as a function of σUTS, controlled either by varying ε̇ for a
fixed T (orange circles) or by varying T at a fixed ε̇ (green
squares); see the legend. While for small σUTS the dimple
fraction is 100% by construction (it is simply the tip of the
neck, which involves intensive plastic deformation), at higher
σUTS the fraction drops, corresponding to the coexistence of
dimples and veinlike patterns, until the latter dominate at the
highest σUTS. Interestingly, the two curves appear to overlap,
further substantiating the central role played by σUTS(ε̇, T ).
Finally, in Fig. 1(d) we present the maximal dimple size vs
σUTS > 800 MPa (on a log-linear scale), revealing a decreas-
ing function.

The experiments described above span the entire spectrum
of tensile failure modes in a glass as a function of a continuous
control parameter and provide insight into the deformation
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FIG. 2. (a) σ (ε) for various T ’s and a fixed ε̇ = 9 × 106 s−1, with D0 = 11.8 nm (all in simulational units; see [11]). (b) Postmortem
global failure patterns for various T ’s (red particles represent shear-driven plasticity; see [11]). (c) Rod’s diameter at failure dF (left y axis) for
various D0’s and the relaxation time σ 2/D (right y axis; the solid line is a Vogel-Fulcher-Tammann fit) vs T ; see text for discussion. The red
vertical bar provides an estimate for the computer glass transition. (d),(e) The same as panels (a),(b), but for various ε̇’s and a fixed T = 0.1.
(f) Fractography at two different temperatures (T = 0.01 and 0.135) for D0 = 23.5 nm and ε̇ = 5 × 107 s−1, where the colors represent the
depth from green to brown. A zoom in indicates small dimples.

processes involved. Yet, they offer only indirect evidence for
the spatiotemporal dynamics that actually determine failure.
To start closing this gap, we performed large-scale molec-
ular dynamics simulations of tensile failure of computer
glasses, over a wide range of temperatures and strain rates,
allowing access to atomistic deformation processes preced-
ing failure inside the glass. We employed computer glasses
composed of a 50:50 binary mixture of particles interacting
through a modified Lennard-Jones type potential [18] (see
[11] for the rationale behind this choice), forming cylindrical
rods of length L0 = 35.3 nm and various diameters D0 =
11.8, 23.5, 35.3, and 47 nm (see [11] for unit conversion
rules). The latter correspond to a number of particles N rang-
ing from 300 K to 5 M. In order to minimize surface effects,
we followed the casting procedure of [19]. Tensile test simu-
lations were carried out using a massively parallel LAMMPS

package [20], and details regarding the tensile loading and
thermostatting procedures are provided in [11].

While atomistic simulations offer unique and powerful
possibilities to resolve the spatiotemporal dynamics on the
way to material failure, they are still limited in size and ac-
cessible timescales compared to macroscopic glasses (though
the employed temperature range is fully consistent with lab-
oratory experiments, including those reported in Fig. 1). For
example, the lowest strain rate probed in our simulations is
about 105 s−1, significantly larger than in typical experiments.
Consequently, our first goal is to understand whether atomistic
simulations can recover the sequence of experimental failure
modes presented in Fig. 1(a), albeit over different length and
timescales. In Fig. 2(a), we present stress-strain curves σ (ε)
for computer tensile tests performed on rods of diameter
D0 = 11.8 nm, over a broad range of T ’s at a fixed ε̇. The

corresponding failure modes are presented in Fig. 2(b), where
the red regions indicate shear-driven plasticity. The results
clearly demonstrate that our atomistic simulations span the en-
tire range of the experimentally observed failure modes, from
oblique, shear-banding-mediated failure at low T to necking-
mediated failure at higher T . These encouraging results give
hope that atomistic simulations can offer fundamental insight
into the spatiotemporal physics that accompany glass failure.

At the same time, as stressed above, the computer rods are
much smaller than the experimental ones, and it is established
that small glass samples exhibit enhanced plasticity compared
to their macroscopic counterparts [21–26]. Consequently, we
expect computer samples to exhibit necking-mediated failure
at temperatures that are smaller than the corresponding ones
for laboratory samples, when measured relative to the glass
temperature Tg. For the experimental results of Fig. 1(a),
necking-mediated failure emerges for T > Tg. In Fig. 2(c)
(right y axis), we first estimate Tg for the computer samples
by plotting the inverse diffusion coefficient (providing a mea-
sure of the structural relaxation time) as a function of T . By
estimating the divergence of the relaxation time (solid line
going through the red circles), we estimate the computer glass
temperature as Tg � 0.35 (in simulational units), marked by
the red vertical bar.

In Fig. 2(c) (left y axis), we also plot the rod’s diameter
at failure, dF, as a function of T for different initial rod’s
diameters D0. The limit dF →0 corresponds to the necking
limit, i.e., to a vanishingly small cross section at failure. For
the smallest D0 [D0 = 11.8 nm, blue circles, corresponding to
the results shown in Figs. 2(a) and 2(b)], the necking limit is
reached for T < Tg, unlike the laboratory experiments. With
increasing D0 [see arrow; different values of D0 correspond
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FIG. 3. (a) Sketch of a deformed rod, where shear-driven plasticity and voids are rendered in red and blue, respectively (see [11] for
details). (b) The largest cavity size λ in the tensile direction vs ε for various T ’s, ε̇ = 5 × 107 s−1, and D0 = 47 nm. See text for discussion,
including the meaning of the black circle and various arrows. λF and λR denote the values of λ at and after global failure, respectively. (c) λF vs
T/Tg for various rod’s diameters D0 (see legend). See text for extensive discussion. (d) λF and λR vs D0 (see legend). The solid lines indicate
a linear behavior. (e) Side view snapshots at failure for various T/Tg (as indicated), with D0 = 23.5 nm. The arrows in the T/Tg = 0.571 case
indicate residual cavities inside the bulk.

to different symbols and colors in Fig. 2(c)], the necking
limit is pushed to higher T ’s, clearly above Tg (while the
actual dF →0 limit is not fully resolved due to computational
power constraints), making it consistent with the experimental
observations.

In Figs. 2(d) and 2(e), we present results indicating that
a similar sequence of failure modes [shown in Figs. 2(a)
and 2(b)] is observed in our simulations for a fixed T and
variable ε̇, in line with the experimental results presented
in Fig. 1. In view of this correspondence, we focus on the
variation with T hereafter. It is important to note that, in the
snapshots presented in Figs. 2(b) and 2(e), we marked shear-
driven plasticity (in red), but did not visualize dilation-driven
plasticity in the form of void formation (to be considered
below). In Fig. 2(f), we present the fractography of D0 =23.5
nm rods at two temperatures (one in the predominantly shear-
banding-mediated failure regime, left, and the other in the
predominantly “cup” failure regime, right); see figure caption
for details. Small dimples are observed, as highlighted in the
zoom in on the right, which are reminiscent of the experi-
mental fractographic observation of Fig. 1(b) (middle part),
though on much smaller length scales.

It is important to note, however, that we do not observe
veinlike patterns during shear banding in our simulations.
Veins are commonly attributed to meniscus instabilities
caused by a local increase of the temperature and the ac-
companying reduced viscosity inside the shear band [13–15].
While we do observe a local temperature rise inside the shear
band (both when the system is coupled to a thermostat of a

finite relaxation time, as in the simulations reported in this
work, and in simulations without thermostatting, not reported
here), veinlike patterns do not emerge. We suspect that this
is the case due to the limited size of our computer samples.
Indeed, the heat generated during failure is expected to be
proportional to the elastic energy stored (and subsequently re-
leased) in the system and thus finite size effects are expected.

Our next goal is to investigate the spatiotemporal interplay
between shear-driven plasticity and dilation-driven void for-
mation inside the glass prior to—and approaching—material
failure. In Fig. 3(a), we present a sketch of a rod under tension,
illustrating the coexistence of shear-driven plastic events (red)
and dilation-driven void formation (blue); see also sketches
in the rectangles on the right. As material failure is accompa-
nied by decohesion and the creation of internal free surfaces
that cannot sustain stress, we focus on the largest cavity (a
cluster of coalesced voids) as a representative indicator of
material decohesion under tension, in particular on its size λ

in the tensile direction [see bottom-right panel of Fig. 3(a)].
Shear-driven plasticity is monitored based on the best fit of the
nonaffine displacement using the common D2

min field defined
in [27]. We detect the nucleation of voids by inserting ghost
particles such as done, e.g., in [28,29]. Details are provided in
[11].

In Fig. 3(b), we present the evolution of λ with strain
ε for various T ’s. Focusing first on the largest T presented
[corresponding to the next-to-rightmost sample in Fig. 3(e)],
we observe that λ increases with ε rather smoothly until a
large, discrete/discontinuous jump takes place (marked by the
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two arrows). This jump corresponds to the coalescence of two
(or more) mesoscopic cavities (see [11]), yet it does not lead to
global failure. Instead, λ continues to increase rather smoothly
until global failure occurs, defined by λ=λF (marked on the
figure by a black circle). We associate the smooth increase in
λ with void growth facilitated by shear-driven plasticity, i.e.,
the plastic expansion of a single cavity within the glass [6,30].
Interestingly, after failure, cavities of finite size λR remain
locked-in inside the glass, exactly as observed experimentally
in Fig. 1(b) (next-to-leftmost panel). As T is decreased, λ(ε)
features similar properties, yet it is pushed to lower strains
and smaller values of λF. At the lowest T , failure becomes
very abrupt, associated with a rapid (in strain ε) formation of a
system-spanning (in the diameter direction) cavity, essentially
a crack.

In Fig. 3(c), we focus on λF as an important quantifier of
the overall failure process. In particular, λF is plotted as a
function of T , for different D0’s. For all D0’s, λF(T ) is non-
monotonic, featuring low values of λF for both low and high T
(approaching Tg), reaching a maximum at an intermediate T .
To shed additional light on this result, we present in Fig. 3(e)
snapshots of samples deformed at different T ’s, at their failure
strain [i.e., corresponding to the strain defining λF in panel
(b)]. In these snapshots (and in the tensile test simulations
leading to them), we spatiotemporally tracked shear-driven
plasticity (red) and dilation-driven void formation (blue) at the
particle level (as explained in [11]), to gain insight into their
collective evolution and mutual interactions.

At all T ’s, shear-driven plasticity takes place first and
dilation-driven void formation follows in spatial locations
where shear-driven plasticity already took place, suggesting
a causal relation between the two basic processes. These
observations indicate that shear-driven plasticity leads to the
softening of glassy structures [31–33], which in turn appar-
ently reduces typical barriers for void formation [33]. The
microscopic mechanism for this coupling between shear-
driven plasticity and void formation might be the (transient
or persistent) creation of free volume. That is, shear-driven
plasticity is known to be accompanied by free-volume cre-
ation (see, for example, the recent experiments on colloidal
glasses [34,35], which echo similar observations in metallic
glasses [36]), and regions of higher free volume might be
more susceptible to void formation.

Yet, free-volume creation should be distinguished from
void formation, and in particular from cavitation, as the lat-
ter involves the formation of new surfaces within the glass
(i.e., it involves surface energies) and is influenced by the
hydrostatic tension (i.e., the trace of the stress tensor) [37–40].
The hydrostatic tension, in turn, is also reduced through stress
relaxation mediated by shear-driven plasticity. Yet another
factor at play is the geometric reduction in the cross section of
the rod, driven by shear-driven plasticity (which gives rise to
the development of a neck at relatively high T ), leading to an
increase in the local tensile stress. With these interrelated and
intrinsically coupled physical processes in mind, we now aim
at rationalizing the main observations in Figs. 3(c) and 3(e).

At low T , shear-driven plasticity is localized into a narrow
shear band, without any appreciable reduction in the rod’s
cross section [cf. Fig. 2(c)] and without significant stress
relaxation, leading to high tensile stresses [cf. Fig. 2(a)].

Consequently, voids form inside the shear band and rapidly
transform into a catastrophic crack under the high tension
[41–44], without significantly growing in the tensile direction;
hence λF is small in this low T regime [cf. Fig. 3(c)]. Note,
however, that the number of independent cavities grows with
the volume of the shear band and thus scales with D2

0 (see
[11]). We find that the cluster distributions are consistent with
the picture provided by homogeneous nucleation theory, with
cavitation barriers of only a few kBT (see [11]), as already
pointed out in [45].

With growing T , shear-driven plasticity is more diffused.
Moreover, it evolves over larger strain intervals and leads to
the reduction in the tensile stress, allowing voids to nucleate,
grow, and coalesce. This leads to larger cavities at failure;
hence λF increases with T in Fig. 3(c). The larger λF val-
ues manifest themselves as “cup” structures on the fracture
surface; see Figs. 2(b) and 2(f) for the relevant simulational
results and Fig. 1(b) for the corresponding experimental ob-
servations. The larger λF values are also accompanied, in this
T regime, by residual cavities within the glass; cf. the finite
value of λR in Fig. 3(b) and the arrows in Fig. 3(e). Finally,
while shear-driven plasticity is more diffused in this T regime,
shear localization still takes place [possibly along two major
orientations; cf. Fig. 3(e) with T/Tg = 0.386], leading to a
“cone” structure close to the periphery of the failed samples.

As T is further increased, shear-driven plasticity becomes
spatially extended, leading to a reduction in both the overall
tensile stress and in the rod’s local cross section as global
failure is approached. The reduction in the tensile stress leads
to decreasing values of λF, making λF(T ) nonmonotonic. The
geometric reduction of the cross section as a neck is formed
apparently maintains the local tensile stress sufficiently large
to keep λF finite. The spatially extended, even more dif-
fused, nature of shear-driven plasticity in this regime also
leads to the disappearance of the cone structure. As T is
further increased, stress relaxation by shear-driven plasticity
accompanying necking is so efficient that cavities cannot grow
anymore and λF becomes vanishingly small, consistent with
the absence of bulk cavities in the experimental data shown
on the leftmost part of Fig. 1(b).

The nonmonotonic behavior of λF(T ) is fully consistent
with the decrease in the dimple area fraction with increasing
σUTS—corresponding to decreasing T —in the experimental
data of Fig. 1(c) and with the decrease in the maximal dimple
size with increasing σUTS in Fig. 1(d). In fact, it predicts that
fractographic measurements of the maximal dimple size for
σUTS below 800 MPa will reveal a peak, before dropping.
To further connect our simulational findings to the experi-
mental data, which feature significantly larger length scales
as discussed above, we present in Fig. 3(d) both λF and λR

as a function of the rod’s diameter D0. Both quantities fol-
low a linear relation with D0, where for the former we have
λF � D0/10. Extrapolating this result to the experimental
length scale, where D0 is in the mm range, we expect λF to
be in the 10−1 mm range, in the right ballpark of the data
presented in Fig. 1(d).

In summary, by combining extensive experiments on
metallic glasses and large-scale molecular dynamic simu-
lations of computer glasses, we provided physical insight
into the transition in tensile failure modes of glasses, from
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necking-mediated failure to shear-banding-mediated failure,
as a function of the applied strain rate ε̇ and the temperature
T . At the macroscopic level, we showed that the sequence
of global failure modes depends in a unified manner on the
ultimate tensile strength σUTS(ε̇, T ). At the mesoscopic level,
using experimental fractography and postmortem sample pol-
ishing, as well as particle-scale quantification of computer
simulations, we showed that the interplay between shear-
driven plasticity and dilation-driven void formation controls
the global failure mode.

More specifically, we showed that the spatiotemporal
evolution of shear-driven plasticity and dilation-driven void
formation—and their intrinsic coupling in space and time—
account for the temperature and strain-rate dependence of
tensile failure modes in glasses. Our large-scale computer
simulations demonstrate that the above mentioned interplay
can be quantified through the size of the largest cavity (a
cluster of coalesced voids) in the tensile direction, which ex-
hibits a nonmonotonic temperature dependence. Furthermore,
we show that the latter scales linearly with the glass sample’s
diameter, which upon extrapolation offers a possible way to
bridge the vast difference in length scales between computer
and laboratory glasses.

Our results also pose various questions for future investi-
gations. Among these, we would like to highlight the need to
determine whether the transition between the various macro-
scopic failure modes as a function of temperature and strain
rate is continuous or discontinuous and the need to understand
the effect of the initial nonequilibrium glass state (fictive tem-
perature), which was kept fixed in this study, on the failure
mode. Finally, our results highlight the pressing need to de-
velop elastoplastic constitutive models of glassy deformation,
which self-consistently account for both shear- and dilation-
driven spatiotemporal, dissipative dynamics.

D.R. acknowledges support from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No. 101024057.
This work was performed using HPC resources from GENCI-
IDRIS (Grant 2022-AD010913428). E.B. acknowledges sup-
port from the Ben May Center for Chemical Theory and
Computation and the Harold Perlman Family. E.L. acknowl-
edges support by the National Science Foundation Graduate
Research Fellowship under Grant No. 2139841. The experi-
mental work was supported by the Office of Naval Research
under Grant No. N00014-20-1-2200.

[1] F. Spaepen, A microscopic mechanism for steady state inhomo-
geneous flow in metallic glasses, Acta Metall. 25, 407 (1977).

[2] J. Lu, G. Ravichandran, and W. L. Johnson, Deformation behav-
ior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over
a wide range of strain-rates and temperatures, Acta Mater. 51,
3429 (2003).

[3] G. Wang, J. Shen, J. Sun, Z. Lu, Z. Stachurski, and B. Zhou,
Tensile fracture characteristics and deformation behavior of a
Zr-based bulk metallic glass at high temperatures, Intermetallics
13, 642 (2005).

[4] A. H. Vormelker, O. Vatamanu, L. Kecskes, and J.
Lewandowski, Effects of test temperature and loading condi-
tions on the tensile properties of a Zr-based bulk metallic glass,
Metall. Mater. Trans. A 39, 1922 (2008).

[5] J. Schroers and W. L. Johnson, Ductile Bulk Metallic Glass,
Phys. Rev. Lett. 93, 255506 (2004).

[6] E. Bouchbinder, T.-S. Lo, I. Procaccia, and E. Shtilerman,
Stability of an expanding circular cavity and the failure of
amorphous solids, Phys. Rev. E 78, 026124 (2008).

[7] E. Bouchaud, D. Boivin, J.-L. Pouchou, D. Bonamy, B. Poon,
and G. Ravichandran, Fracture through cavitation in a metallic
glass, Europhys. Lett. 83, 66006 (2008).

[8] M. Jiang, Z. Ling, J. Meng, and L. Dai, Energy dissipation
in fracture of bulk metallic glasses via inherent competition
between local softening and quasi-cleavage, Philos. Mag. 88,
407 (2008).

[9] E. Bouchbinder, T.-S. Lo, and I. Procaccia, Dynamic failure in
amorphous solids via a cavitation instability, Phys. Rev. E 77,
025101(R) (2008).

[10] J. Ketkaew, W. Chen, H. Wang, A. Datye, M. Fan, G. Pereira,
U. D. Schwarz, Z. Liu, R. Yamada, W. Dmowski et al.,

Mechanical glass transition revealed by the fracture toughness
of metallic glasses, Nat. Commun. 9, 3271 (2018).

[11] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevMaterials.7.L032601 for technical details
about both the experiments and the simulations, along with
some additional supporting results, which includes Refs.
[10,18–20,25,27,37,43,45–51].

[12] F. Spaepen, On the fracture morphology of metallic glasses,
Acta Metall. 23, 615 (1975).

[13] A. Argon and M. Salama, The mechanism of fracture in glassy
materials capable of some inelastic deformation, Mater. Sci.
Eng. 23, 219 (1976).

[14] R. Qu, M. Stoica, J. Eckert, and Z. Zhang, Tensile fracture
morphologies of bulk metallic glass, J. Appl. Phys. 108, 063509
(2010).

[15] R. Qu and Z. Zhang, Compressive fracture morphology and
mechanism of metallic glass, J. Appl. Phys. 114, 193504
(2013).

[16] J. Pan, Y. Wang, and Y. Li, Ductile fracture in notched bulk
metallic glasses, Acta Mater. 136, 126 (2017).

[17] X. K. Xi, D. Q. Zhao, M. X. Pan, W. H. Wang, Y. Wu, and J. J.
Lewandowski, Fracture of Brittle Metallic Glasses: Brittleness
or Plasticity, Phys. Rev. Lett. 94, 125510 (2005).

[18] D. Richard, E. Lerner, and E. Bouchbinder, Brittle-to-ductile
transitions in glasses: Roles of soft defects and loading geome-
try, MRS Bull. 46, 902 (2021).

[19] Y. Shi, Size-independent shear band formation in amorphous
nanowires made from simulated casting, Appl. Phys. Lett. 96,
121909 (2010).

[20] S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comput. Phys. 117, 1 (1995).

L032601-6

https://doi.org/10.1016/0001-6160(77)90232-2
https://doi.org/10.1016/S1359-6454(03)00164-2
https://doi.org/10.1016/j.intermet.2004.10.011
https://doi.org/10.1007/s11661-007-9410-4
https://doi.org/10.1103/PhysRevLett.93.255506
https://doi.org/10.1103/PhysRevE.78.026124
https://doi.org/10.1209/0295-5075/83/66006
https://doi.org/10.1080/14786430701864753
https://doi.org/10.1103/PhysRevE.77.025101
https://doi.org/10.1038/s41467-018-05682-8
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.7.L032601
https://doi.org/10.1016/0001-6160(75)90102-9
https://doi.org/10.1016/0025-5416(76)90198-1
https://doi.org/10.1063/1.3487968
https://doi.org/10.1063/1.4830029
https://doi.org/10.1016/j.actamat.2017.06.048
https://doi.org/10.1103/PhysRevLett.94.125510
https://doi.org/10.1557/s43577-021-00171-8
https://doi.org/10.1063/1.3340908
https://doi.org/10.1006/jcph.1995.1039


BRIDGING NECKING AND SHEAR-BANDING MEDIATED … PHYSICAL REVIEW MATERIALS 7, L032601 (2023)

[21] H. Guo, P. Yan, Y. Wang, J. Tan, Z. Zhang, M. Sui, and E. Ma,
Tensile ductility and necking of metallic glass, Nat. Mater 6,
735 (2007).

[22] C. Volkert, A. Donohue, and F. Spaepen, Effect of sample
size on deformation in amorphous metals, J. Appl. Phys. 103,
083539 (2008).

[23] D. Jang and J. R. Greer, Transition from a strong-yet-brittle to a
stronger-and-ductile state by size reduction of metallic glasses,
Nat. Mater. 9, 215 (2010).

[24] D. Magagnosc, R. Ehrbar, G. Kumar, M. He, J. Schroers, and
D. Gianola, Tunable tensile ductility in metallic glasses, Sci.
Rep. 3, 1096 (2013).

[25] S. Bonfanti, E. E. Ferrero, A. L. Sellerio, R. Guerra, and
S. Zapperi, Damage accumulation in silica glass nanofibers,
Nano Lett. 18, 4100 (2018).

[26] Y. Shi, Size-dependent mechanical responses of metallic
glasses, Int. Mater. Rev. 64, 163 (2019).

[27] M. L. Falk and J. S. Langer, Dynamics of viscoplastic deforma-
tion in amorphous solids, Phys. Rev. E 57, 7192 (1998).

[28] G. Menzl, M. A. Gonzalez, P. Geiger, F. Caupin, J. L. Abascal,
C. Valeriani, and C. Dellago, Molecular mechanism for cavita-
tion in water under tension, Proc. Natl. Acad. Sci. USA 113,
13582 (2016).

[29] B. Galimzyanov and A. Mokshin, Cavity nucleation in single-
component homogeneous amorphous solids under negative
pressure, J. Phys.: Condens. Matter 34, 414001 (2022).

[30] X. Tang, T. Nguyen, X. Yao, and J. W. Wilkerson, A cavita-
tion and dynamic void growth model for a general class of
strain-softening amorphous materials, J. Mech. Phys. Solids
141, 104023 (2020).

[31] J. Lewandowski and A. Greer, Temperature rise at shear bands
in metallic glasses, Nat. Mater. 5, 15 (2006).

[32] R. M. O. Mota, E. T. Lund, S. Sohn, D. J. Browne, D. C.
Hofmann, S. Curtarolo, A. van de Walle, and J. Schroers, En-
hancing ductility in bulk metallic glasses by straining during
cooling, Commun. Mater 2, 23 (2021).

[33] C. Liu, V. Roddatis, P. Kenesei, and R. Maaß, Shear-band thick-
ness and shear-band cavities in a Zr-based metallic glass, Acta
Mater. 140, 206 (2017).

[34] Y. Z. Lu, M. Q. Jiang, X. Lu, Z. X. Qin, Y. J. Huang, and
J. Shen, Dilatancy of Shear Transformations in a Colloidal
Glass, Phys. Rev. Appl. 9, 014023 (2018).

[35] X. J. Wang, Y. Z. Lu, X. Lu, J. T. Huo, Y. J. Wang, W. H. Wang,
L. H. Dai, and M. Q. Jiang, Elastic criterion for shear-banding
instability in amorphous solids, Phys. Rev. E 105, 045003
(2022).

[36] D. Klaumünzer, A. Lazarev, R. Maaß, F. H. Dalla Torre, A.
Vinogradov, and J. F. Löffler, Probing Shear-Band Initiation in
Metallic Glasses, Phys. Rev. Lett. 107, 185502 (2011).

[37] P. Murali, T. F. Guo, Y. W. Zhang, R. Narasimhan, Y. Li, and
H. J. Gao, Atomic Scale Fluctuations Govern Brittle Fracture
and Cavitation Behavior in Metallic Glasses, Phys. Rev. Lett.
107, 215501 (2011).

[38] C. H. Rycroft and E. Bouchbinder, Fracture Toughness of
Metallic Glasses: Annealing-Induced Embrittlement, Phys.
Rev. Lett. 109, 194301 (2012).

[39] P. Guan, S. Lu, M. J. B. Spector, P. K. Valavala, and M. L. Falk,
Cavitation in Amorphous Solids, Phys. Rev. Lett. 110, 185502
(2013).

[40] M. Vasoya, C. H. Rycroft, and E. Bouchbinder, Notch Fracture
Toughness of Glasses: Dependence on Rate, Age, and Geome-
try, Phys. Rev. Appl. 6, 024008 (2016).

[41] M. Falk, Molecular-dynamics study of ductile and brittle
fracture in model noncrystalline solids, Phys. Rev. B 60, 7062
(1999).

[42] P. Murali, R. Narasimhan, T. Guo, Y. Zhang, and H. Gao, Shear
bands mediate cavitation in brittle metallic glasses, Scr. Mater.
68, 567 (2013).

[43] J. Luo and Y. Shi, Tensile fracture of metallic glasses via shear
band cavitation, Acta Mater. 82, 483 (2015).

[44] Y. Shao, G.-N. Yang, K.-F. Yao, and X. Liu, Direct experimental
evidence of nano-voids formation and coalescence within shear
bands, Appl. Phys. Lett. 105, 181909 (2014).

[45] W. J. Wright, T. Hufnagel, and W. Nix, Free volume coales-
cence and void formation in shear bands in metallic glass,
J. Appl. Phys. 93, 1432 (2003).

[46] E. Lerner, Mechanical properties of simple computer glasses,
J. Non-Cryst. Solids 522, 119570 (2019).

[47] Y. Shi, Creating atomic models of brittle glasses for in silico
mechanical tests, Int. J. Appl. Glass Sci. 7, 464 (2016).

[48] K. Zhao, Y.-J. Wang, and P. Cao, Fracture universality in amor-
phous nanowires, J. Mech. Phys. Solids 173, 105210 (2023).

[49] Y. He, P. Yi, and M. L. Falk, Critical Analysis of an FeP
Empirical Potential Employed to Study the Fracture of Metallic
Glasses, Phys. Rev. Lett. 122, 035501 (2019).

[50] X. Tang, L. Shen, H. Zhang, W. Li, and W. Wang, Crack tip
cavitation in metallic glasses, J. Non-Cryst. Solids 592, 121762
(2022).
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