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Two-dimensional Dirac semimetal based on the alkaline earth metal CaP;
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Using an evolutionary algorithm in combination with first-principles density-functional theory calculations,
we identify a two-dimensional (2D) CaP; monolayer as a new Dirac semimetal due to inversion and nonsym-
morphic spatial symmetries of the structure. This new topological material, composed of light elements, exhibits
high structural stability (higher than the phase known in the literature), which is confirmed by thermodynamic
and kinetic stability analysis. Moreover, it satisfies the electron filling criteria, so that its Dirac state is located
near the Fermi level. The existence of the Dirac state predicted by the theoretical symmetry analysis is also
confirmed by first-principles electronic band structure calculations. We find that the energy position of the Dirac
state can be tuned by strain, while the Dirac state is unstable against an external electric field since it breaks the
spatial inversion symmetry. Our findings should be instrumental in the development of 2D Dirac fermions based

on light elements for their application in nanoelectronic devices and topological electronics.
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I. INTRODUCTION

Electronic band structures are fingerprints of the crystal
symmetry of solids [1], determining their band degenera-
cies and band topologies. The crystal symmetry becomes
more prominent in accommodating the Dirac state in low-
dimensional systems, such as two-dimensional (2D) atomic
thick material like graphene [2]. As the Dirac state in the
graphene is guaranteed by crystal symmetry, spin-orbit cou-
pling (SOC) breaks the Dirac state. Resulting in a small band
gap [3,4], graphene becomes a topological insulator [5]. Many
other 2D materials such as silicene [6,7], germanene [6,8],
2D boron and carbon allotropes [9-14], group-VA phosphorus
structures [15-17], and 5d transition metal trichoride [18]
have similar properties to graphene.

Theoretical studies have so far predicted many 2D topo-
logical states [17,19-21]. Among the states of fundamental
interest are those protected by the interplay of different sym-
metries. For example, a 2D Dirac state is predicted to be
guaranteed if the system with nonsymmorphic space group
maintains both inversion and time-reversal symmetries (TRS)
[22]. Another interesting state is the 2D Dirac state for a
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system with two nonsymmorphic space group symmetries,
where the Dirac state is at the time-reversal invariant momenta
(TRIMs) [17]. One of the challenges in the field is to bring
the Dirac states close to the Fermi level (Er) so that the
topologically protected state can be observed and used in
experiments. In the pristine structure, the location of the Dirac
state is primarily determined by the electron filling [22,23].
Many of the 2D materials that stabilize the Dirac state do not
satisfy the partial filling state of the electrons, so their energy
levels are far from the Ep [16,17,24]. While the position of
the Fermi level can be controlled by mechanical strain [25] or
chemical doping [26], finding the desirable electronic proper-
ties of thermodynamically stable structures could be another
challenge.

Recently, there has been interest in a new family of the-
oretically proposed materials with high mobility [27], good
thermoelectrics [28], and defect properties [29]. In particular,
in the five years, since the prediction of a stable 2D CaP;3
phase, its existence has not been experimentally confirmed.
It is necessary to study the possibility of synthesizing this
material and its stability.

In this paper, we report a new 2D Dirac semimetal as a
result of inversion and nonsymmorphic spatial symmetries
of the structure. It is a new phase of 2D CaP; with the
Dirac state near the Fermi level. The structure is discovered
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by performing first-principles calculations combined with an
evolutionary algorithm. Our motivation for exploring the AB3
family of materials was to focus on the 1 and 5 groups among
the combinations of elements in the periodic table that sat-
isfy the aforementioned electron filling condition (4n + 2)
and Dirac states by nonsymmorphic and inversion symmetry,
which are two-dimensional and preferably composed of light
elements. Theoretical symmetry analysis agrees well with
the first-principles band structures and proves the existence
of two Dirac states protected by inversion and nonsymmor-
phic space symmetries at TRIMs in the Brillouin zone (BZ)
boundary. The new structure proves to be dynamically and
thermodynamically stable, as indicated by our phonon anal-
ysis and molecular dynamics (MD) simulations at high
temperatures (500 K). In addition, we investigate the stabil-
ity of the Dirac state by applying various symmetric lattice
strains, such as biaxial, uniaxial, and shear strains, and con-
firm that the properties of the Dirac state are intact under these
strains, but only its position in momentum space changes.
Therefore, we propose strain as an effective method to tune
the location of the Dirac state. Our results demonstrate how
crystal symmetry plays a role in stabilizing Dirac states in 2D
materials and the influence of external parameters to tune the
electronic properties to the desirable outcome.

II. CALCULATIONAL APPROACHES

To identify thermodynamically stable structures of 2D
CaP3;, we perform crystal prediction calculations using the
particle swarm optimization (PSO) algorithm implemented
in Crystal Structure Analysis by Particle Swarm Optimiza-
tion (CALYPSO) [30,31]. At the beginning of the simulation,
we start with 20 random structures within 2D space groups,
and the structural evolution proceeds up to six generations
based on the PSO scheme. At the end of the simulation,
111 2D configurations are identified, all containing a 60 A
vacuum layer. The total energies of the configurations are
calculated using the all-electron full-potential FHI-aims code
[32-34] with the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [35]. The tight numerical settings and
4 x4 x 1 k-point grids are used in these calculations. All
structures are fully optimized using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [36] algorithm, with a maximum
force component below 103eV/A.

For their structural, electronic, and vibrational proper-
ties, we carried out first-principles calculations based on
density-functional theory (DFT) using Vienna ab initio sim-
ulation package (VASP) [37,38]. Projector-augmented wave
potentials [39] were employed to describe the interaction be-
tween ions and valence electrons. The generalized gradient
approximation (GGA) of PBE [35] was used as the exchange-
correlation functional. The cutoff energy for the plane wave
basis was chosen to be 400 eV. The Brillouin zone (BZ) was
sampled using I'-centered 8 x8x 1 grid. To avoid the spurious
interlayer interaction, we introduced a vacuum region of 20 A
along the c axis perpendicular to the sheet. Atomic relaxations
were done until the Helmann-Feynman force acting on every
atom became smaller than 0.01 eV/A. SOC is considered
for all calculations. The vibrational property of CaP3; was
evaluated using the harmonic approximation implemented in

the PHONOPY package [40]. We used 3x3x 1 supercell struc-
tures for the optimized structure of CaP3. The dynamics were
studied via canonical ab initio molecular dynamics (MD)
simulations with 1 fs time steps. To confirm the stability at
a higher temperature than room temperature, we used 500 K
for 7 ps to reach thermal equilibrium with a 4 x4 x 1 supercell
(128 atoms).

III. RESULTS AND DISCUSSION

The evolutionary algorithm based on the first-principles
DFT calculations identified various stable crystal structures
of CaP3;. Among them, we compiled the first 50 most sta-
ble structures in the structural frequencies in Fig. 1(a) and
the energy distributions of the polymorphs in Fig. 1(b). The
most stable phase found in our study is a &1 eV band-
gap semiconductor with P1 symmetry, and the second most
stable phase is also a &1 eV band-gap semiconductor with
C2 symmetry with energy higher by 35 meV/atom (for
their atomic structures and band structure, see Supplemental
Material [41]). We confirm that these two lowest structures
have no interesting topological features. The next stable struc-
ture has P2/c symmetry with an energy 25 meV /atom higher
than the C2 structure, but it is even more stable than the
previously reported P1(2) phase with 75 meV/atom [27].
Among these phases, we found the P2/c phase to be the
most interesting—crystal symmetry exhibits both inversion
and nonsymorphic symmetries. From now on, we focus on
the P2/c phase and refer to it as the CaP3; unless otherwise
stated. The CaP; consists of a distorted hexagonal unit cell
with an angle of ~45° between the cell vectors as shown in
Fig. 1(c). Figure 1(d) analyzes the crystal symmetries, where
the orange star is an inversion center for the symmetry opera-
tion (indicated by the red arrows), and the blue arrows indicate
a nonsymmorphic symmetry consisting of mirror operation
of the xy plane with half translation along the x axis (for the
optimized atomic positions, see Supplemental Material [41]).

Next, we investigate the electronic properties of CaPj.
Figures 2(a) and 2(b) show the electronic band structures and
the Fermi surface of CaP3; with SOC along the high-symmetry
line in BZ as shown in Fig. 2(b). The CaP; exhibits a metallic
state with two bands crossing at the X and M points near the
Fermi level. The presence of both inversion (P) and time-
reversal (®) symmetries guarantees the twofold degenerate
band with SOC at all BZ. Therefore, the crossing points at the
X and M points are the locations where the fourfold degen-
erated Dirac state exists. The band structure also represents a
small SOC effect for light elements and yields essentially the
same eigenvalues regardless of SOC.

We then perform a symmetry analysis to explain the pro-
tection of the Dirac points at the X and M points. In the
following analysis, we include the electron spin and the SOC.
The crystal symmetries underlying the CaPj, characterized
by the inversion (P) and nonsymmorphic (M;) operations,
can be decomposed into products of point and translation
group operations as M, = M_T; > [22]. Here, M, is the mirror
operation about the xy plane and T.;/, is the translation by
half translation along the x axis, as shown in Fig. 1(d). For the
nonsymmorphic symmetry, the point-group operator should
commute with the translation-group operation. The represen-
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FIG. 1. Stable configurations and crystal structures of topological CaP; (P2/c). (a) The low-energy structures of 2D CaP; are found by
the PSO algorithm. The crystal structures are color coded and ordered according to the energy hierarchy, i.e., the first one is the most stable
structure. The y axis represents the number of occurrences of a structure with the same energy and a space group. The CaP; with P2/c
symmetry is the topological Dirac semimetal identified in this study. (b) The energy (AE) of the polymorphs with respect to the P2/c structure
(green arrow), with the red arrow indicating the previously reported structure [27]. The CaP; with P1 and C2 is more stable for P2/c, the
structure of this study. (c) Top and side views of the P2/c structure representing a distorted hexagonal lattice (highlighted by the unit cell of the
black line). (d) The circles and triangles represent Ca and P atoms, respectively, with the solids and hollows representing below and above the
mirror plane (M.) on the xy plane, respectively. The orange star is the inversion point, and the red and blue arrows denote atoms corresponding
to the inversion and asymmetric symmetry of certain atoms in the unit cell.

tation of T,z/> for a Bloch state with k, is Tyz/2 = €*/2, that
is, M, becomes M, = M,e™*%/2, To find the eigenvalues of M.,
we note that

(MZ)Z — MZZeian — _eikxu’

where e’ denotes the translation by one unit cell along x
directions and M.? is —1 from the 27 rotation on spin. The
spinor representation of M, is given by M, = io,®R, (7 )P,
where o, is the z component of the Pauli spin matrices
affecting only the spin parts of the wavefunction; R,(w)
and P are, respectively, a real space rotation around the
z axis by an angle mw and an inversion r — —r affecting
only the orbital parts of the wavefunction. We use that
the mirror operation is a multiple of two operations, an
inversion followed by a s rotation, and that the represen-
tation of an inversion in the spin-half space is the identity.
The eigenvalues resulting from the solution of M,y =
E. ¢y are E, = +ie®™*/2_ Now, we consider the inversion
symmetry (P) operation with the nonsymmorphic (M;) sym-
metry. These operations, represented as M : (x,y,z) = (x +
1/2,y,—z)and P : (x,y,z) = (—x, —y, —2), do not commute
each other. For the time-reversal symmetry operation with
M_P, PM; holds M. P® : (x,y,z) = (—x +1/2, —y, z) and
POM; : (x,y,z) = (—x —1/2, —y, z), respectively. There-
fore, M.P =e*“PM_, and M_P® = ¢*“POM, and, for

an eigenstate |E;) of with eigenvalue FE, it becomes
M.(PO |E) = e + ieh2(PO|E,)) = —E.(PO|E.)).
Due to P and ® symmetries under SOC, all bands are twofold
degenerate with |E;) and PO |E;) at the whole k points. For
ky =m/a, E; is £1 and the [M_, P] is 0. Two space group
(symmetric) operators that anticommute guarantee twofold
degeneracy [23]. Moreover, X and M points are TRIM points,
therefore all states |Ez) at the X point have another degen-
erate Kramer’s pair © |E;) with the same eigenvalue E,. The
four eigenstates such as |E;), ® |E,), PO |E;), and P |E,), are
degenerate at X and M points. Except for the TRIM points, X,
Y, and M points, it is not invariant with the ® operation, so
the fourfold degeneracy is broken by two doubly degenerate
bands. For the Y point, k, = 0 and k, = 7 /a, the anticom-
mute for ]\71Z and P is not satisfied, so it has only a twofold
degeneracy for the inversion symmetry.

Our symmetry analysis predicts the fourfold degenerate
Dirac states at the X and M points. To verify the theoreti-
cal prediction, we perform first-principles calculations of the
band structures. In particular, we break the inversion symme-
try of the CaP; by applying an electric field perpendicular
to the surface in Fig. 1(c). In principle, any field strength
breaks the symmetry, leading to the splitting of degenerate
states if present. In practice, however, the splitting is difficult
to detect if the field strength is too low. Therefore, we choose
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FIG. 2. Electronic structure of CaP;. (a) Orbital-projected band
structure featuring the Ca-s and P-p orbitals for pristine CaPs. (b)
The color-coordinated Fermi surface represents the Fermi velocity
of the bands, and the Brillouin zone illustrates the band paths along
the high-symmetry points. (c) Electronic energy bands of the pristine
CaP; (black line) compared to those with a +0.2 eV/A electric
field applied perpendicular to the surface (blue line). (d) The inset
corresponds to the red dotted rectangle in (c).

a large field strength, +0.2 eV /A, as an example. Figure 2(a)
compares the changes in the band structures due to the elec-
tric field. The E field indeed breaks the inversion symmetry,
leading to the splitting of two doubly degenerate bands in
the X and M points, which are protected by the time-reversal
symmetry. Figures 2(c) and 2(d) compare the changes in the
band structures due to the electric field. The E field indeed
breaks the inversion symmetry, leading to the splitting of two
doubly degenerate bands in the X and M points, which are
protected by the time-reversal symmetry. These results also
show the band structures of CaP; with full BZ and the other
alkaline earth metal trinictogenide such as SrP; and BaP; (see
Supplemental Material [41]).

The number of electrons of CaP3 satisfies the electron
filling condition (4n + 2, n = 11) [22,23], leading to the Dirac
states near the Fermi level: +100 meV and —400 meV at X
and M points, respectively. To move the Dirac state closer to
the Fermi level, some external perturbations are required, such
as the application of an E field. However, the electric field is
not ideal since it breaks the spatial inversion symmetry. There-
fore, we focus on the strain to preserve the crystal symmetry
as shown in Fig. 3. Since the Dirac state of CaP; is guaran-
teed by the inversion symmetry, the time-reversal symmetry,
and the nonsymmorphic symmetry, the Dirac state cannot be
broken if these symmetries are preserved. In Fig. 3(a), we first
estimate the energy costs for different strains. The application
of strains up to about +5% increases the energy by 30 meV,
which corresponds to a thermal energy variation of 300 K.
Therefore, we assume that these structures are stable at room
temperature. The energy levels of the Dirac states at the X and
M points can be tuned by stretching as shown in Figs. 3(b)
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FIG. 3. The effects of strains on the stability and electronic prop-
erties of CaP;. (a) Changes in the total energy (eV/atom) of the
structure by applying strains, where the energy is given with respect
to the equilibrium structure. (b), (c) The energy level of the Dirac
state with respect to the Fermi level as a function of the strains at
X and M points, respectively. (d), (e) Band structures with uniaxial
compressive strain (X:0%, Y:-10%) and biaxial strain (X:+5%, Y:-
5%), respectively.

and 3(c). We find that the energy level of the Dirac state of
the X point is mobile and can find the Fermi level by strain,
whereas the energy level of the M point remains more than
250 meV below the Fermi level regardless of strain. The Dirac
state of the X point is pinned to the Ep at certain strains,
such as 10% compressive strain in the y direction and 5%
tensile strain in the x direction with 5% compressive strain
in the y direction in Fig. 3(b). In Figs. 3(d) and 3(e), it is
confirmed that the Dirac state is pinned to the Er; the sym-
metries protecting the Dirac state are robust against various
strains, such as biaxial, uniaxial, and shear deformation in
the plane.

Regardless of the cohesive energy, a structure can be
considered stable only if it does not change spontaneously.
The spontaneous structural change can be due to a negative
frequency in the vibrational band dispersion. To verify the
stability and structural rigidity for CaP3, we investigate the
vibration spectra of its structure as presented in Fig. 4(a). The
absence of a negative frequency in the phonon band means
that CaPs3 is dynamically stable. Since the slope of the longitu-
dinal acoustic (LA) branch near the I" is isotropic, the rigidity
in the I' — M direction and the I' — X direction is similar.
While phonon dispersion can predict structural stability in
the harmonic region, it cannot determine whether or not the
structure collapses at a finite temperature. To evaluate the ther-
modynamic stability of the new CaP; structure, we perform
canonical molecular dynamics (MD) simulations at a high
temperature, 500 K. Figure 4(b) presents the fluctuations of
the total potential energy for the 7 ps MD simulations and the
final snapshot of the structure. Our results show that the CaP3
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FIG. 4. The stability of CaP5. (a) Phonon band structures along the high-symmetry points are shown in Fig. 2(b). Total potential energy as
a function of time during canonical MD simulations at 500 K with the final structural at the end of the simulation time of 7 ps (inset).

structure fluctuates relative to the P2/c structure at 500 K,
but is thermodynamically stable as the structure does not
break or transition to another phase. The structure of the MD
results from 3 ps to 7 ps, which reached thermal equilibrium
at 500 K, is ensemble averaged over the MD time, showing
that the Dirac state is perfectly preserved (see Supplemental
Material [41]).

IV. CONCLUSION

We use an evolution algorithm in combination with first-
principles density-functional theory calculations and find a
new Dirac semimetal 2D CaP;, composed of light ele-
ments. The most intriguing feature of the new phase is
that a nonsymmorphic and inversion symmetry guarantees
symmetry-protected degeneracies in the electronic band struc-
tures, including a fourfold degenerate Dirac state that is intact
under small strains. The Dirac state near the Fermi level
is a result of satisfying the 4n + 2 electron filling criterion
with the location of the Dirac state controlled by strains. The

kinetic and thermodynamic stability of the new phase is con-
firmed by phonon dispersion analysis and MD simulations.
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