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Nico Unglert ,1 Jesús Carrete ,1,2 Livia B. Pártay ,3 and Georg K. H. Madsen 1,*

1Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
2Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain

3Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom

(Received 24 August 2023; accepted 17 November 2023; published 20 December 2023)

Nested sampling is a promising method for calculating phase diagrams of materials. However, if accuracy at
the level of ab initio calculations is required, the computational cost limits its applicability. In the present work,
we report on the efficient use of a neural-network force field in conjunction with the nested-sampling algorithm.
We train our force fields on a recently reported database of silicon structures evaluated at the level of density
functional theory and demonstrate our approach on the low-pressure region of the silicon pressure-temperature
phase diagram between 0 and 16 GPa. The simulated phase diagram shows good agreement with experimental
results, closely reproducing the melting line. Furthermore, all of the experimentally stable structures within the
investigated pressure range are also observed in our simulations. We point out the importance of the choice
of exchange-correlation functional for the training data and show how the r2SCAN meta-generalized gradient
approximation plays a pivotal role in achieving accurate thermodynamic behavior. We furthermore perform
a detailed analysis of the potential energy surface exploration and highlight the critical role of a diverse and
representative training data set.
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I. INTRODUCTION

Nested sampling (NS) is a powerful Bayesian method
that can efficiently sample high-dimensional parameter
spaces [1,2]. The applications of NS in materials science have
progressed steadily in the past decade. While early inves-
tigations mainly focused on simple model systems such as
Lennard-Jones [3] and hard-sphere models [4], more recent
work has used embedded-atom potentials to study a variety of
metallic systems, including elemental metals such as Fe, Zr,
and Li [5–7], as well as alloys like CuAu [8,9], AgPd [10],
and CuPt nanoparticles [11].

With the emergence of efficient machine-learned force
fields (MLFFs), the sampling of potential energy surfaces
(PESs) at a level of accuracy similar to the underlying ab
initio method becomes affordable for NS. In this context, it
has been applied in conjunction with Gaussian approxima-
tion potentials and moment tensor potentials to predict the
thermodynamic behavior of carbon [12], platinum [13], and
AgPd [14] alloys.

MLFFs use statistical learning techniques to approximate
the PES of a material [15]. Unlike classical interatomic po-
tentials, MLFFs do not require extensive parametrization.
Instead, they provide a highly flexible functional form that
has the ability to generalize across different chemical en-
vironments. Trained on datasets obtained from ab initio
calculations, MLFFs can thus capture the physics of the sys-
tem on par with the underlying method. However, two critical
factors are paramount for their successful application: first,
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the diversity and representativeness of the training dataset [16]
and, second, the quality of the selected ab initio method.

Concerning the ab initio method, Kohn-Sham density
functional theory (DFT) has been the method of choice for
calculating the properties of solid-state materials. A crucial
aspect of DFT is the exchange-correlation (xc) functional,
which incorporates electron-electron interactions within the
system [17]. As an exact formulation of this functional is
not available, various approximations are employed, and the
choice of approximation significantly impacts the accuracy of
DFT for a given problem. Traditionally, the suitability of xc
functionals has been assessed based on ground-state proper-
ties, such as lattice parameters, or cohesion energies [18–20].
Despite their importance for practically relevant predictions,
finite-temperature properties, such as the melting point, have
been less explored as target properties for evaluating the suit-
ability of functionals due to the computational complexity of
obtaining them [21,22]. Using NS together with MLFF-based
models to conduct an exhaustive exploration of the PES and
give access to finite-temperature thermodynamic behavior can
bridge this gap and thus open the door for a much more com-
prehensive evaluation of functional performance in a broader
range of conditions.

Here we demonstrate this aspect in a NS study of the low-
pressure silicon p-T phase diagram. We show how the choice
of a suitable xc functional crucially influences the predicted
melting temperature of Si over a large pressure range. In
contrast to simple metallic systems, silicon stands out because
of its variability in chemical bonding. In its low-pressure
allotrope, strong directional bonds lead to the character-
istic tetrahedral coordination of the semiconducting cubic
diamond phase. At higher pressures the system transitions
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to more closely packed structures like the well-known β-Sn
phase. These circumstances complicate the use of classical
interatomic force fields. Due to their rigid functional form
these models are usually very poorly transferable and thus
work only for the specific phases and properties they were
designed for [23].

This diversity of chemical bonding requires an equally di-
verse set of training data to be representative of the rich phase
behavior. To address this, we perform a detailed analysis of
the configurations explored by NS, revealing a wide range of
attraction basins and regions of the PES explored during the
simulation. For the training data we reevaluate the database
of Bartók et al. [24], which contains around 2475 manually
curated silicon structures. We show how the database, a result
of the continuous efforts to create general-purpose MLFFs,
possesses the diversity and representativeness necessary to
deliver accurate thermodynamic predictions from a MLFF-
backed NS simulation.

II. METHODOLOGY

A. DFT

To assess the effect of the xc functional, we recom-
puted the energies and forces of the database provided by
Bartók et al. [24]. For the DFT calculations the Perdew-
Burke-Ernzerhof (PBE) [25] and r2SCAN [26] functionals as
implemented in VASP [27,28] were used. The cutoff energy for
the plane wave basis was chosen as 300 eV. The partial oc-
cupancies for the orbitals were determined employing Fermi
smearing with a smearing parameter of 0.025 eV. The recipro-
cal space sampling was performed on a Monkhorst-Pack grid
with a k spacing of 0.3 Å−1, and the energy convergence crite-
rion was set to 10−5 eV. For the evaluation of energy-volume
curves we used a denser sampling with a k spacing of 0.2 Å−1

and a tighter convergence criterion of 10−8 eV. We removed
one configuration from the database, where a single atom is
placed in a large vacuum.

B. Neural-network force field

The simulations in this work use our recently de-
veloped neural-network force field (NNFF) architecture,
NEURALIL [29,30]. Atomic coordinates are encoded into atom-
centered descriptors that are invariant with respect to global
rotations and translations, with relative positions of neighbors
transformed into second-generation spherical Bessel descrip-
tors [31]. The descriptors are fed into a dense 64×32×16
feature extractor inspired by deep residual network (ResNet)
architectures [30,32] using a Swish-1 differentiable activa-
tion function [33]. We include a repulsive Morse contribution
to avoid unphysical behavior for short interatomic dis-
tances [34]. The implementation uses JAX [35] for just-in-time
compilation and automatic differentiation and FLAX [36] for
simplified model construction and parameter bookkeeping.

In order to compute the descriptors for our training con-
figurations, we rely on the minimum image convention. This
means that we require the training dataset to have cells large
enough to fit a sphere with the corresponding cutoff radius.
However, since training datasets often contain structures with
a variety of different cell sizes, we need to apply a special

procedure to handle this. We use an iterative process to gen-
erate diagonal supercells of increasing size and perform a
Minkowski reduction [37] to make the cell as compact as
possible. This process continues until the desired cutoff fits
into the cell, at which point the cycle is stopped. The result
is a set of supercell structures that conform to the cutoff
parameter for the descriptor generation. However, this set may
still contain configurations with significantly varying numbers
of atoms. To ensure that our JAX-based approach is efficient, it
is important to have static array sizes. Therefore, we perform
a padding procedure with ghost atoms to fill up all supercells
until the number of atoms is constant. This allows us to gener-
ate second-generation spherical Bessel descriptors efficiently
and accurately for all configurations in the training dataset,
regardless of their cell size and number of atoms.

For the descriptor generation we consider atomic environ-
ments within a cutoff of rcut = 4 Å and choose nmax = 6 [29].
For each training we randomly split the database and use 3/4
of the data for training and the rest for validation.

C. Nested sampling

NS partitions the configuration space into a nested se-
quence of phase space volumes confined by surfaces of
isolikelihood. Moving from the outer shells to the higher-
likelihood inner shells in this nested sequence corresponds to
the transition from a high-entropy fluid phase to more ordered
crystalline states. Each iteration of the NS algorithm peels off
a layer of the nested sequence, resulting in a corresponding
sample. This approach to sampling ensures that only ther-
modynamically relevant structures are sampled, ultimately
enabling the calculation of the thermodynamic partition
function [10].

During the NS process, a group of K walkers is continu-
ously updated by replacing the highest-energy walker at each
iteration. Its energy defines a bounded region of configuration
space from which a new walker has to be uniformly sampled.
This sampling process is carried out by performing a Markov
chain Monte Carlo (MCMC) random walk with a cloned
version of one of the remaining walkers, taking a total of
L steps. In the case of a constant pressure simulation, the
MCMC steps involve modifying the simulation cell, through
isotropic volume changes, shear transformations, or stretching
operations and atom steps modifying the positions of indi-
vidual atoms. In this study, the Galilean Monte Carlo (GMC)
technique [38] is applied to decorrelate the positional degrees
of freedom. Every GMC trajectory is initiated by sampling a
random vector from the surface of the 3N-dimensional unit
sphere. This establishes N independent three-dimensional di-
rections along which the atoms are propagated with a given
step size. In cases where a step fails to meet the acceptance
criterion, the direction vector is reflected against the normal-
ized force vector [38]. This assists in navigating the trajectory
back within the allowed energy bound. Our NS calculations
were performed with a modified version of the PYMATNEST

code [8,10]. We retained most of the logic of PYMATNEST but
adapted the parallel workflow to be managed by a scheduler
provided in the PYTHON library DASK. In the original message
passing interface (MPI)-based parallelization scheme [8], in-
stead of the clone taking all the L steps required to decorrelate
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FIG. 1. Synthetic scenario illustrating the advantage of the DASK

parallelization scheme. Boxes delimited by thin lines indicate in-
dividual cell steps or GMC atom trajectories. Note that the larger
boxes correspond to the more time-consuming atom move trajecto-
ries. Boxes delimited by thick lines indicate whole random walks of
particular walkers. For better visibility, the latter are also colored.

the configuration in one iteration, each of the available np

processes is used to have np different walkers perform L/np

steps each. Since the atom moves involve more expensive
force evaluations, they typically take significantly longer than
single cell steps, which require only energy evaluations. As
a result, depending on the random choice of step types the
computational work allocated to each processor can vary sub-
stantially. In contrast, our DASK implementation uses a pool
of nw workers to which nt individual walks are dynamically
assigned. The idea of the DASK-based parallel workflow is
schematically depicted in Fig. 1, showing two artificial scenar-
ios for the original and DASK parallelizations. In both cases,
the workload is handled by np/w = 4 processing units, and
the total walk length is L = 40 steps. In the original paral-
lelization this corresponds to four walkers being walked for
L/np = 10 steps. In this scenario, the MPI code would be re-
quired to wait for all processes to complete their random walk,
resulting in significant computational overhead. However, for
the DASK example the random walk is split into nt = 8 walkers
of length L/nt = 10. These are dynamically allocated to the
four workers to obtain an improved load balance (see Fig. 1).
In the limiting case of nt = nw, the DASK implementation
becomes equivalent to the MPI scheme.

After conducting a series of convergence tests on the pris-
tine silicon system, we chose K = 600 walkers and a walk
length of L = 1000 steps for our simulations. We realize the
cell steps by isotropic volume moves, which sample the cell
volume uniformly. To alter the cell shape, volume-preserving
shear and stretch step moves are proposed with a uniform
distribution in strain. The step probability ratio for volume,
stretch, shear, and atom steps was set to 2:1:1:1, respectively.
We restrict our simulation cell to a minimum aspect ratio
of 0.8 to avoid pathologically thin cells forming at the early
stages of the sampling [10]. Steps violating this constraint are
discarded.

To initiate the sampling process, a set of K = 600 uni-
formly random distributed configurations has to be generated.
We achieve this by replicating a cubic diamond cell with a

density of 2.31 g/cm3 a number of K times. To randomize
these configurations, we perform a two-step procedure. In the
first step, we diversify the cell shapes of these structures by
an initial isotropic volume scaling and a subsequent series of
1000 cell shape modifying steps. In each of these steps one
shear move and one stretch move are performed in random
order. In a second step, to further decorrelate the walkers and,
especially, the positional degrees of freedom, a series of 10
NS random walks each with walk lengths of 100 steps is
performed on the generated structures. The energy threshold
for these walks was chosen to be Uinitial = Umax + N×1 eV,
where Umax is the energy of the highest energy walker and
N is the number of atoms. We find this procedure to be
more numerically stable than sampling positions from a uni-
form distribution, which tends to result in artificially clumped
structures. We stop our simulations once the current esti-
mated finite-difference temperature [8] is below 200 K. This
corresponds to approximately 5×108 energy evaluations for
each individual simulation, underscoring the need for efficient
surrogate models to estimate the potential energy.

From the converged NS runs we compute the isobaric heat
capacities according to

Cp = 3NkB

2
+ kBβ2{〈Y 2〉 − 〈Y 〉2}, (1)

where N is the number of atoms, kB is the Boltzmann constant
β = (kBT )−1, and Y is the microscopic enthalpy. The latter is
given by Y = U + PV , with the potential energy U and the
pressure-volume term PV . The thermodynamic expectation
values in Eq. (1) are evaluated using the NS partition function

〈O〉 =
∑

i wiO(Ri ) exp (−βYi )∑
i wi exp (−βYi )

, (2)

where the sums run over all acquired samples. Yi and Ri are
the microscopic enthalpy and configuration of a given sample
i, and O is an arbitrary observable depending on the config-
uration Ri. The weights wi = (χi−1 − χi )V N

i contain the NS
configuration space volumes χi and the cell volumes Vi. We
use the isobaric heat capacity Cp to locate first-order phase
transitions.

D. Structure representation in two dimensions

Visualizing the structural variety occurring in high-
dimensional spaces, such as the 3Natoms-dimensional space of
potential configurations for a system with Natoms, requires a
projection into a lower-dimensional space. For that purpose,
we utilize the same spherical Bessel descriptors used for en-
coding atomic environments for the NNFF. For a structure
composed of Natoms, this results in a matrix with shape (Natoms,
nfeatures), which describes the complete structure. To make this
representation invariant with respect to atom permutations
within the structure, we compute the distributions of each
of the nfeatures features as a histogram and divide it by the
number of atoms Natoms. After flattening, this yields a vector
of length nfeaturesnbins which is permutation invariant and inde-
pendent of the system size. For this work, the histograms are
calculated using nbins = 128 and in a range from 0 to 4. To
visualize the permutation-invariant structure descriptors, we
use dimensionality reduction techniques, which have become
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FIG. 2. The first two principal components of spherical Bessel
descriptors highlighting different silicon phases present in the struc-
tural database. Each gray triangle represents one structure; colored
areas show the convex hull around sets of structures corresponding
to a certain phase. Only a few example phases are highlighted.

a widespread tool, e.g., in the analysis of molecular dynamics
trajectories [39,40]. Following a comprehensive evaluation
of various methodologies, we opted to utilize the principal
component analysis (PCA) technique as implemented in the
SCIKIT-LEARN library [41]. We show a comparison of the PCA,
t-distributed stochastic neighbor embedding [42], and uniform
manifold approximation and projection [39] techniques ap-
plied to our dataset in the Supplemental Material [43].

E. Optimization and symmetry determination

For the analysis of the walker population we perform rough
relaxations of the atomic positions using our NNFF model.
For that purpose, we use the Broyden–Fletcher–Goldfarb–
Shanno implementation contained in the JAX [35] library with
a loose force convergence criterion of 0.01 eV/Å.

For symmetry determination we employ SPGLIB [44] as
implemented in the PYMATGEN package [45]. Since the finite-
temperature structures may have slightly distorted cells, we
employ a very loose symmetry precision parameter of 0.3 Å
to determine the space group.

For runs that converge into strongly disordered or amor-
phous metastable minima, we determine the nature of the
minimum by eye and by looking at the radial distribution
function.

III. RESULTS

A. Neural-network force field

Based on the spherical Bessel descriptors, the config-
uration space spanned by the structures in the training
dataset [24] is illustrated in Fig. 2. The map is divided into
several distinct regions, each representing the most prominent
phases of silicon. One of the most striking features of the

map is the energetically lowest phase, cubic diamond, which
occupies a significant area towards the northeast. Moving
towards the west, we can see the most relevant phases at inter-
mediate pressures, such as β-Sn and simple hexagonal. The
liquid configurations of silicon are represented by only two
patches located in the bottom left part of the map. Figures 3(a)
and 3(b) show detailed parity plots as well as averaged statis-
tics for the models trained on the r2SCAN and PBE datasets.
The energy and force errors are on the order of 10 meV/atom
and 100 meV/Å, respectively, with a slightly better result for
the PBE database. The errors are similar to what we obtain
by training on the original CASTEP data [24]. The differences
in error statistics between the training and validation sets are
given in Fig. 3 and indicate that no significant overfitting
occurred in the training process.

To further test the transferability and accuracy of our
trained models, we created a test set of structures that are not
included in the training dataset. For this we extracted crystal
structures of the most prominent silicon phases in the inves-
tigated pressure range from the Materials Project database.
In addition, we added the body-centered orthorhombic Imma
phase [46] since it was not present in the Materials Project
database. For each of these six phases, we created a set of
isotropically scaled cells around the equilibrium volume and
evaluated the energies by DFT and the corresponding NNFFs.
The resulting energy-volume curves are shown in Fig. 3
for both functionals. The NNFFs reproduced the respective
curves with very similar performance. Compared to the PBE
energies, the r2SCAN energies exhibit a significant increase
in energy differences. For example, the energy difference be-
tween the cubic diamond and β-Sn minimum is increased by
almost 50% in the case of r2SCAN.

B. Phase diagram

We conducted NS calculations using our NNFF models
across a range of eight different pressures, spanning from 0
to 16 GPa. To account for finite-size effects on the calculated
quantities, we performed simulations on systems consisting of
16 and 32 silicon atoms. Additionally, for a few specific data
points, we extended the simulations to include also 64-atom
systems. The resulting constant pressure heat capacities are
shown in Fig. 4. An overview of all calculations and the
corresponding identified most stable phases is summarized in
Table I.

Theoretically, the heat capacity diverges at first-order phase
transitions in the thermodynamic limit. This behavior is con-
sistent with our findings, as the heat capacity peaks become
more pronounced as the system size increases from 16 to 64
atoms. Moreover, we observe a slight shift towards higher
temperatures in the smaller systems. Interestingly, this finite-
size effect appears to be pressure dependent. Comparing the
16- and 32-atom simulations we observe that at 0 GPa, the
deviation is more pronounced, and as the pressure increases,
the deviation gradually decreases. For the three pressures we
ran using 64 atoms, at 4 and 10 GPa the melting temperature
decreases by around 100 K; at 16 GPa almost no shift appears.
A similar trend was recently observed in a NS study of car-
bon, where the finite-size effect almost diminished above a
pressure of 100 GPa [12].
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(a) (b) (c)

FIG. 3. (a) Force and (b) energy training and validation set parity plots for the NNFF. Energies per atom are given relative to the minimum
energy occurring in the respective dataset. (c) Energy-volume curves for several crystalline phases of silicon evaluated using DFT with a certain
functional (solid lines) and corresponding NNFF models (dotted lines) that were trained on a database evaluated using the same functional.
Top: r2SCAN. Bottom: PBE. Energies per atom are given relative to the minimum energy of the cubic diamond phase for both functionals.

Based on the calculated melting temperatures from our
simulations we can construct a p − T phase diagram. It is
depicted in Fig. 5 together with the experimental phase di-
agram reported by Voronin et al. [47], which we briefly
describe below. In the low-pressure regime up to approxi-
mately 10 GPa, the predominant phase is the cubic diamond
phase, and the melting line exhibits a consistent negative slope
of −60 K/GPa. Increasing the pressure above 10 GPa, the
β-Sn becomes stable. The cubic diamond-β-Sn-liquid triple
point is found at 10.5 GPa and 1003 K. Within a relatively
narrow region of around 2 GPa, the β-Sn phase occupies a
distinct range and is separated from the orthorhombic Imma
phase by a phase boundary characterized by a negative slope
at approximately 13 GPa. As pressure increases further, the
equilibrium structure transitions to a simple hexagonal phase.
The β-Sn, Imma, and simple hexagonal phases are separated
by a gentle positively sloped melting line from the liquid
phase.

The simulated r2SCAN melting temperatures (see Fig. 5,
black dashed and dotted lines) reproduce the experimentally
observed trends. The 32-atom simulations show a negatively
sloped melting line until 10 GPa, close to the experimen-
tal cubic diamond-β-Sn-liquid triple point. For the higher

pressures, the melting line follows the experiment with a
slightly decreased slope and a small constant shift to lower
temperatures. Our simulations of different system sizes indi-
cate that a small finite-size effect even for the 64-atom runs
remains for the lower pressures, while it seems to be almost
absent for the higher-pressure domain. We discuss the regions
of stability for the r2SCAN calculations in the following sec-
tion, where we perform a detailed analysis of these NS runs.

The 16-atom PBE simulations (see Fig. 5, gray dashed
line) correctly predict the slope of the low-pressure melting
line. However, they fail in the prediction of the absolute
values, which are shifted to lower temperatures by approxi-
mately 300 K. This is in line with previous ab initio molecular
dynamics simulations that predict the 0 GPa melting tem-
peratures to be 1687 and 1450 K for the SCAN and PBE
functionals, respectively [22]. For higher pressures, PBE cap-
tures neither the correct trend nor the correct magnitude of the
experimental melting line, with a continuing negative slope
down to a transition temperature of 706 K at 16 GPa. We note
that these differences in melting temperatures do not arise
from the algorithm finding different phases. A comparison of
the data in Table I reveals that overall similar phases are found
for PBE and r2SCAN. Instead, we relate this observation to a

TABLE I. Space groups of final structures the nested sampling converges to for different runs (I: cubic diamond Fd 3̄m, II: β-Sn I41/amd ,
III: bc8 Ia3̄, IV: hexagonal diamond P63/mmc, V: simple hexagonal P6/mmm, I*: disordered cubic diamond P1̄, A: amorphous).

Functional Size Seed 0 GPa 4 GPa 9 GPa 10 GPa 11 GPa 12 GPa 13 GPa 16 GPa

PBE 16 0 IV 1446 I 1216 II 911 II 951 II 901 II 951 V 856 V 706
r2SCAN 16 0 IV 1791 I 1676 I 1346 IV 1431 II 976 II 981 V 1001 V 1031

1 I 1821 I 1696 IV 1231 III 1011 II 951 II 996 V 1021 V 1056
2 I 1801 I 1686 I 1251 IV 1361 II 941 II 981 V 1031 V 1046

32 0 I 1696 I 1636 I 1231 II 886 II 951 II 976 V 991 V 1036
1 I 1566 I 1616 I 1316 I* 986 II 961 II 956 V 966 V 1006
2 IV 1696 I 1601 I 1231 II 936 II 926 II 936 V 966 V 1001

64 0 I 1586 A 901 V 1001
1 IV 1466 A 836 V 1001
2 I* 1451 I* 891 V 996
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FIG. 4. Heat capacities for a series of pressures in the range of 0
to 16 GPa as calculated for system sizes of 16 (dotted lines), 32 (solid
lines), and 64 atoms (dashed lines) using the r2SCAN-based model
(see Table I). For better visibility, 16- and 64-atom heat capacities
are scaled by factors of 3 and 0.3, respectively.

misprediction of the relative energies of the different silicon
phases shown in Fig. 3(c). Due to the smaller energetic dif-
ferences, the observed phase transitions can occur already at
lower temperatures. In the following, we restrict our analysis
to the more accurate r2SCAN results.

C. Analysis of NS runs

Figure 6 shows the evolution of the walker live set for the
32-atom NS run (seed = 0) at 10 GPa in the two-dimensional
(2D) structure representation map (see Fig. 2). In order to
assign each of the walkers to a certain basin of the PES,
we relaxed their atomic positions and determined the corre-
sponding space group. Initially, all walkers reside in the liquid
configuration area of the training database. At this point, the
walkers are in highly disordered liquid or even gaslike states
characterized by large cells and low coordination numbers.
Therefore, even after ionic relaxation, the system remains in
a low-symmetry crystalline configuration, and all walkers are
assigned to space group P1 at the start of the sampling. As
the iteration progresses, the cloud of walkers leaves the liquid
area and enters the domain spanned by the β-Sn and simple
hexagonal P6/mmm phase structures of the training database.
Although the majority of walkers remain in the P1 space
group, we observe a diverse population of other space groups,
notably Imma, I41/amd , and C2/m. In subsequent snapshots,
the presence of strongly disordered, liquidlike walkers dimin-
ishes. The simulation predominantly focuses on the Imma
phase, with the I41/amd and C2/m phases being weakly
represented. Towards the end of the simulation, sampling

FIG. 5. Pressure-temperature phase diagram of silicon. Solid
black lines show the experimental phase equilibrium lines according
to Ref. [47] (I: cubic diamond Fd 3̄m, II: β-Sn, XI: Imma, V: sim-
ple hexagonal P6/mmm, L: liquid). Dotted and dashed black lines
show 16- and 32-atom simulations using the NNFF model trained
on r2SCAN data. Data points for r2SCAN simulations represent
the average of three independent simulations at each pressure (see
Table I). The gray dotted line shows the melting line of a series of
16-atom simulations using a model trained on PBE data. Colored
areas show regions of stability we deduce from our runs (Red: Fd 3̄m,
blue: P6/mmm, green: I41/amd-Imma-P6/mmm; see Sec. III D for
a detailed explanation).

lower enthalpy levels, a shift occurs in the population towards
the I41/amd phase, which turns out to be the most stable
phase at this pressure. This contradicts the depiction in the
2D configuration space map, where the trajectory ends at the
tip of the cubic diamond region, not falling into the actual
I41/amd region. We interpret this behavior as an artifact of
the PCA, which cannot always preserve the full information
from the high-dimensional space upon dimensionality reduc-
tion. Nevertheless, the visualization in Fig. 6 provides insight
into how the NS algorithm explores the configuration space
during the simulation. Throughout the process, the walker
set encompasses a wide region in configuration space until
eventually converging into the most stable basin.

A summary of the walker populations for all investigated
pressures in the 32-atom, seed = 0 calculation series is pre-
sented in Fig. 7(a). Additional analyses for the other runs can
be found in the Supplemental Material [43]. For the three
lowest pressures, a similar pattern emerges with a predomi-
nant population of the cubic diamond Fd 3̄m phase. Although
the NS algorithm visits alternative basins such as Imma and
I41/amd , these are quickly disregarded due to the exceptional
stability of the cubic diamond phase under those conditions.
In the intermediate pressure range of 10 to 12 GPa, two com-
peting phases are observed. The Imma phase experiences a
substantial initial increase in population alongside a grad-
ual representation of the I41/amd phase. The Imma phase
later becomes depopulated towards the end of the simulation,
with the I41/amd phase emerging as the most stable. The
presence of the P6/mmm phase is also noted, gaining signif-
icance between 10 and 12 GPa. Beyond 12 GPa, the walker
population is dominated by the P6/mmmm phase, which be-
comes the ground state. The exploration of the I41/amd phase
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FIG. 6. Evolution of the walker population of the 32-atom, seed = 0, simulation at 10 GPa in configuration space over time illustrated
using the 2D configuration space map from Fig. 2. Gray points correspond to configurations in the training database; dashed lines indicate
the convex hull of configurations belonging to a certain phase. Blue lines show the trajectory of NS samples (plotting only every 10 000th
sample). Red points show the walker population at the given iteration. Histograms to the side show the population of space groups determined
for optimized walkers.

diminishes in importance, while the Imma phase maintains a
degree of population throughout the simulation.

For the pressures above 10 GPa all r2SCAN simulations
converge to the same phases consistently (see Table I). How-
ever, discrepancies arise among the runs at lower pressures.
Regardless of the system size, between 0 and 9 GPa multiple

runs converge into the hexagonal diamond P63/mmc phase,
which has been observed experimentally as a minor phase
in indented cubic silicon [48]. We attribute this to the small
energetic difference between the actual ground state Fd 3̄m
and the P6/mmm phase [see Fig. 3(c)]. Furthermore, we
observe a disordered cubic diamond phase for the 4 GPa

FIG. 7. Analysis of the basins that are explored during the nested sampling for the 32-atom, seed = 0, simulations. (a) Population of the
most prominent space groups over time for the walkers at each simulated pressure. Colors indicate the iteration. (b) Partition function ratios of
different occurring phases for all simulated pressure values, averaged over all three independent 32-atom runs, excluding two outliers discussed
in the text. Colored areas show the standard deviation. Dashed lines show averaged heat capacity cp peak positions corresponding to melting
(see Table I).
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64-atom simulation. At 10 GPa, two runs of the 16-atom
simulations converge to the P63/mmc phase, while the third
run results in the Ia3̄ space group, known as the cubic body-
centered BC8 phase of silicon. The BC8 phase is metastable
at ambient pressure [47] and can be obtained by slowly
decompressing the metallic β-Sn phase and remains
metastable unless heated above 200 ◦C [49]. In the 32- and
64-atom case, we observe one simulation collapsing into a
disordered cubic diamond minimum. The remaining 64-atom
simulations converge to amorphous structures. We connect
these discrepancies to the experimental findings of multiple
metastable phases in this pressure range [47]. Thus, the prob-
lem becomes strongly multimodal under these conditions,
hampering the sampling.

Figure 6 furthermore gives a visual impression of how the
number of walkers determines the granularity of the PES sam-
pling. Smaller numbers increase the likelihood of the walker
cloud missing the entry point to a particular basin funnel. As
a result, the set of walkers can become trapped in a metastable
minimum since the Galilean Monte Carlo walk cannot tra-
verse large energy barriers. This interpretation is supported
by our comprehensive analysis of the walker populations (see
the Supplemental Material [43]). In cases where a run con-
verges to a metastable phase, the actual most stable phase is
never populated, indicating that its entry point has not been
found due to its small phase space volume. The more frequent
occurrence of the P63/mmc phase in the 16-atom simulations
may also be influenced by the minimum aspect ratio constraint
imposed on the cell shape. We speculate that in the 16-atom
case this constraint may favor the formation of the P63/mmc
phase compared to the competing Fd 3̄m phase.

D. Solid-solid phase transition

To facilitate the identification of solid-solid phase tran-
sitions, we calculate the ratios of the contributions to the
partition function by the competing phases. To achieve this,
we perform optimizations on every 10th sample obtained dur-
ing the NS process and determine the corresponding space
group. This enables us to assign specific samples to particular
basins of the PES and separate the overall partition function
into individual contributions from different phases:

Z (β ) =
∑

i

wie
−βEi =

∑

i∈dia

wie
−βEi +

∑

i∈β−Sn

wie
−βEi + · · · .

(3)

The result is shown as an average over the independent runs
for the 32-atom simulations (excluding the two outliers at 0
and 10 GPa discussed above) in Fig. 7(b). In all cases the melt-
ing transition is clearly visible in the form of a sharp step in the
P1 partition function contribution. For pressures above 9 GPa
the competition between different phases becomes apparent.

The intersections of the I41/amd and the Imma contributions
at 10, 11, and 12 GPa indicate a solid-solid phase transition
occurring at 372, 247, and 96 K, respectively. Although the
Imma phase is significant at 13 GPa, determining a clear phase
transition point is challenging in this case. To summarize, in
the pressure range from 10 to 13 GPa, three distinct phases,
namely, I41/amd , Imma, and P6/mmm, interact in a complex
manner (see the green shaded area in Fig. 5). At 16 GPa we
observe an unambiguous dominance of the P6/mmm phase.

IV. CONCLUSION

In the current study, we successfully combined the nested
sampling method with a fully automatically differentiable
neural-network force field. By employing this powerful
methodology, we can achieve ab initio precision in our pre-
dictions, which we demonstrated by accurately simulating
the pressure-temperature phase diagram of silicon. Through a
comparison of the predicted melting lines from two common
exchange-correlation functionals, we have demonstrated that
the performance of a machine-learning model is limited by the
quality of its corresponding ground truth data.

The successful use of neural-network force fields together
with nested sampling adds to the growing field of calculating
phase diagrams using machine-learned force fields [12,50,51].
Despite their success, machine-learned force fields still heav-
ily rely on the quality, size, and diversity of the training
datasets to deliver accurate and reliable results. This require-
ment can be demanding and hinder their transferability and
widespread applicability. In this study, we utilized a meticu-
lously curated configuration database. However, adapting our
method to a different system would necessitate the creation of
an entirely new database. In this respect, the inherent capabil-
ity of NNFFs to handle large amounts of data facilitates the
adoption of active learning methods. By developing efficient
NNFF-backed nested sampling active learning approaches,
we may mitigate the necessity for intricate manually curated
training databases. This opens up new possibilities for purely
data-driven configuration space exploration, enhancing our
understanding of complex systems.

A compatible version of NEURALIL, including example
scripts for training and evaluation, is available on GitHub [52].
The PYMATNEST code on which our implementation is based
is available on GitHub [53].

A dataset containing the energy and sample trajectories of
all presented nested sampling calculations as well as the DFT-
evaluated training databases is available on Zenodo [54].
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