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Optical absorption spectra of metal oxides from time-dependent density functional theory
and many-body perturbation theory based on optimally-tuned hybrid functionals
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Using both time-dependent density functional theory (TDDFT) and the “single-shot” GW plus Bethe-Salpeter
equation (GW-BSE) approach, we compute optical band gaps and optical absorption spectra from first principles
for eight common binary and ternary closed-shell metal oxides (MgO, Al2O3, CaO, TiO2, Cu2O, ZnO, BaSnO3,
and BiVO4), based on the nonempirical Wannier-localization-based, optimally tuned, screened range-separated
hybrid functional. Overall, we find excellent agreement between our TDDFT and GW-BSE results and ex-
periment, with a mean absolute error smaller than 0.4 eV, including for Cu2O and ZnO that are traditionally
considered to be challenging for both methods.
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I. INTRODUCTION

The optical absorption spectrum is a solid-state prop-
erty of critical importance in optoelectronic materials. A
state-of-the-art ab-initio methodology for predicting accurate
optical spectra of solids is the GW plus Bethe-Salpeter equa-
tion (BSE) approach, where G is the single-particle Green’s
function and W is the dynamically screened Coulomb inter-
action [1–5]. The accuracy of GW-BSE calculations comes
at a computational cost that in practice scales roughly as
N4, where N is the number of atoms in the system. Time-
dependent density functional theory (TDDFT) [6–10] can be
an attractive alternative due to its reduced computational cost
[3]. However, it suffers from serious inaccuracies when ap-
plied to the solid state using standard exchange-correlation
functionals [9,11].

Excited-state properties of solids from linear-response
TDDFT are typically obtained by solving the Casida equa-
tion based on Kohn-Sham (KS) orbitals [12]. The adiabatic
approximation is typically employed, by using the ground-
state KS approximation for the exchange-correlation poten-
tial, Vxc, to obtain the exchange-correlation kernel, fxc, defined
as the functional derivative of Vxc with respect to the elec-
tron density. This kernel is a key quantity in the Casida
equation and highly affects the accuracy of the resulting op-
tical spectra. This is manifested in two major challenges in
predicting optical spectra that are in good agreement with
experiment and with GW-BSE calculations. First, TDDFT
based on KS (semi-)local functionals inherits the underlying
KS band gap, which is known to be severely underesti-
mated [3,13]. The resulting optical spectra are then typically
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redshifted with respect to experiment [3,14–16]. Second,
the exchange-correlation kernel derived from (semi-)local
functionals lacks the correct long-wavelength limit, namely,
fxc(q → 0) ∝ 1/q2 (where q is a reciprocal space vector in
the Brillouin zone), which is an essential property for an
accurate description of excitonic effects [7,10,17,18]. Using
(semi-)local approximations for optical spectra calculations
then results in incorrect line shapes [3,9,14–17].

Within KS TDDFT, several approaches for overcoming
these two challenges have been proposed in recent years. In
many cases, the two aforementioned challenges are treated
separately. The band-gap problem is often solved based on
a fit to a target value, e.g., by using a scissors operator to
correct the eigenvalues [19]. Subsequently, several ideas have
been put forth for constructing a kernel that recovers the
correct long-wavelength limit (see Refs. [9,10] and references
therein). While good results can be obtained using such meth-
ods, they can be computationally complex, and usually at least
one of the aforementioned challenges is solved empirically,
limiting the predictive power of these methods. Therefore a
broader, nonempirical and simple formalism that can solve
both challenges at the same time is desirable. We note a
recent nonempirical approach proposed by Cavo et al. [20],
based on the link between the exchange-correlation kernel
and the derivative discontinuity. While their approach treats
the band-gap problem explicitly, excitonic effects are captured
by using the polarization functional within the framework of
time-dependent current density-functional theory (DFT).

An alternative approach, still entirely within TDDFT, is
based on the use of hybrid functionals within generalized
KS (GKS) theory [21–23]. The inclusion of nonlocal effects
in GKS, or more specifically, the incorporation of exact ex-
change in hybrid functionals, has the potential to solve the
two fundamental problems described above simultaneously.
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This is because the free parameters that control the amount
of exact (Fock) exchange in a hybrid functional can be cho-
sen such that the band-gap description is improved and the
correct long-wavelength limit is accounted for. The latter is
achieved by preserving a nonzero fraction of exact exchange
in the long range such that the functional possesses the cor-
rect asymptotic behavior [24–30] and the kernel behaves as
1/q2 in the long-wavelength limit [25,27]. Clearly, a key
issue is then how to determine the parameters of a hybrid
functional. Importantly, while the formal scaling of GW and
hybrid-functional-based DFT is the same, hybrid-functional
calculations are faster and more efficient than GW calcula-
tions in practice [31,32]. The main differentiator is the high
computational cost associated with the explicit construction
of the dielectric matrix in GW calculations (see the Methods
section below).

Several nonempirical, hybrid-functional-based methods
for optical spectra calculations have been proposed in recent
years. Yang et al. [33] proposed a screened exact-exchange
(SXX) approach to replace the full dielectric function in the
BSE kernel with a single screening parameter that can be
calculated within the random phase approximation (RPA) [5].
Sun et al. [34,35] then proposed constructing a hybrid kernel
by combining SXX and (semi-)local exchange and correla-
tion kernels. Tal et al. [32] used dielectric-dependent hybrid
functionals [36], where the parameters are determined self-
consistently based on fitting to a dielectric function calculated
via the RPA.

A promising hybrid functional in the context of optical
spectra calculations is the screened range-separated hybrid
(SRSH) functional [25,26], as it has a potential that by con-
struction behaves as 1

ε∞r for a large interelectronic distance
r, where ε∞ is the high-frequency dielectric constant of the
material. It has been demonstrated repeatedly that when the
SRSH parameters are empirically fitted to reproduce the GW
or the experimental band gap, one can obtain highly accurate
optical absorption spectra of solids [27,37–41].

Recently, we removed the empiricism in SRSH funda-
mental band-gap calculations in the solid state by choosing
the parameters of SRSH based on a Wannier-localized,
optimally tuned SRSH (WOT-SRSH) functional [42]. In this
method, the range-separation parameter is selected to satisfy
an ansatz that generalizes the ionization potential theorem to
the removal of an electron from a localized Wannier function
[43]. This method has been shown to yield highly accurate
quasiparticle (QP) band gaps for prototypical semiconductors
and insulators [42] and for halide perovskites [44] that are
in excellent agreement with experimental and GW results.
Furthermore, the merit of using an optimally tuned eigen-
system as a starting point to single-shot G0W0 calculations
has been recently demonstrated by Gant et al. [45], who
obtained highly accurate band gaps, band widths and d-band
locations for a variety of semiconductors. They further
showed that WOT-SRSH, both by itself and as a starting point
to single-shot G0W0, outperforms other hybrid-functional
starting points and even quasiparticle self-consistent GW. In
light of this success and based on the accuracy of the prior
empirical SRSH calculations discussed above, it is evident
that WOT-SRSH holds a significant potential for accurate,
nonempirical optical spectra predictions for solids.

An interesting application is the case of metal oxides
(MOs), which are of much importance in various applications,
including solar cells, catalysts, batteries, and sensors [46,47].
From a computational perspective, the accurate prediction of
the electronic structure and optical properties of MOs is chal-
lenging and has been widely studied (see, e.g., Refs. [48–69]).
The major challenges with MOs are attributed to the localized
nature of the electrons in the d orbitals. The well-known one-
electron self-interaction error [30,70] and delocalization error
(or deviation from piecewise linearity) [30,71] associated with
(semi-)local functionals are more significant for MOs, leading
to DFT calculations that predict unphysical metallic behavior
for some systems [51,52,55]. Promisingly, the fraction of ex-
act exchange employed in hybrid functionals directly reduces
these errors and has been shown to offer a better description
of their electronic structure [48–52,55].

In this article, we assess the accuracy of the WOT-SRSH
method in predicting the optical absorption spectra of a set of
MO crystals. We perform both TDDFT and GW-BSE calcula-
tions for eight common binary and ternary closed-shell MOs,
using the WOT-SRSH formalism as a nonempirical founda-
tion for both sets of calculations. We find that both methods
agree well with one another and predict optical absorption
spectra in good agreement with experiment. Our calculations
demonstrate the applicability of WOT-SRSH to complex sys-
tems, either in itself, using TDDFT, or as a starting point for
GW-BSE calculations.

II. METHODS

A. Materials

We focus on eight abundant closed-shell metal oxides for
which both computational and experimental data is avail-
able in the literature: MgO, Al2O3, CaO, TiO2, Cu2O, ZnO,
BaSnO3 [72], and BiVO4 [73]. To ensure consistency with
experimental results, we use experimental crystal structures
at room temperature, the details of which are given in Table I.

B. DFT

1. WOT-SRSH

The SRSH functional [26] splits the Coulomb operator via
the identity

1

|r − r′| = α
erfc(γ |r − r′|)

|r − r′|︸ ︷︷ ︸
xx, SR

+ (1 − α)
erfc(γ |r − r′|)

|r − r′|︸ ︷︷ ︸
KSx, SR

+ ε−1
∞

erf(γ |r − r′|)
|r − r′|︸ ︷︷ ︸

xx, LR

+ (
1 − ε−1

∞
)erf(γ |r − r′|)

|r − r′|︸ ︷︷ ︸
KSx, LR

,

(1)

where the exchange expressions that result from the four terms
are evaluated with exact-exchange (xx) integrals for the first
and third terms and with semilocal Kohn-Sham exchange
(KSx) integrals (in this work, the Perdew-Burke-Ernzerhof,
PBE, functional [81]) for the second and fourth terms. In this
construct, the fraction of exact exchange in the short range
(SR) is α and the fraction of exact exchange in the long range
(LR) is the inverse of the dielectric constant, ε−1

∞ . In this
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TABLE I. Structural details of the crystals used in the calculations.

Crystal structure Space group Unit-cell parameters (Å)

MgOa Rocksalt Fm-3m a = b = c = 4.22
Al2O3

b Corundum R-3cH a = b = 4.76, c = 13.00
CaOa Rocksalt Fm-3m a = b = c = 4.81
TiO2

c Rutile P42/mnm a = b = 4.59, c = 2.96
Cu2Od Cubic Pn-3mZ a = b = c = 4.27
ZnOe Wurtzite P63mc a = b = 3.25, c = 5.21
BaSnO3

f Perovskite Pm-3m a = b = c = 4.11
BiVO4

g Monoclinic C2/c a = b = 6.88, c = 5.09
α = 68.45◦, β = 111.55◦, γ = 63.56◦

aReference [74]; bReference [75]; cReference [76]; dReference [77]; eReference [78]; fReference [79]; gReference [80].

manner, a different balance between exchange and correlation
is obtained in the SR and LR, the transition between which is
controlled by the range-separation parameter, γ . The default
choice for α is 0.25, adopted from the hybrid Perdew-Burke-
Ernzerhof (PBE0) [82,83] and the Heyd-Scuseria-Ernzerhof
(HSE06) [84] functionals, although it may vary based on con-
siderations discussed below. The choice of ε−1

∞ as the fraction
of exact exchange in the LR attains the asymptotically correct
potential of the SRSH functional [24–30].

The procedure of selecting γ is often carried out in a
nonempirical fashion by enforcing an exact physical con-
dition, the ionization potential theorem (IPT) [85–88]. This
procedure, known as optimal tuning, has shown great success
in the prediction of fundamental gaps of molecules [89–96].
In the bulk limit, however, optimal tuning fails because the
IPT is trivially satisfied for every parametrization of SRSH (or
indeed any functional) [71,97–99], such that the uniqueness of
the optimally-tuned γ that is achieved in molecules is lost.

The reason for the failure of optimal tuning in the
bulk limit is the natural delocalization of the electronic
orbitals. Recently, a number of studies have exploited differ-
ent localization schemes for electronic structure predictions
[43,57,100–114]. Similarly, the WOT-SRSH approach adopts
a criterion that generalizes the IPT to the removal of charge
from a maximally localized Wannier function [42]. This
ansatz, inspired by Ma and Wang [43], is given by

�Iγ = Eγ
constr[φ](N − 1) − Eγ (N ) + 〈φ| Ĥγ

SRSH |φ〉 = 0,

(2)
where Eγ (N ) is the total energy of the system with N elec-
trons and Eγ

constr[φ](N − 1) is the total energy of a system with
one electron removed from a Wannier function φ, including
an image charge correction (see Supplemental Material, SM
[115], for further details). 〈φ| Ĥγ

SRSH |φ〉 is the expectation
value for the energy of the Wannier function with respect to
the SRSH Hamiltonian of an N electron system. The energy of
the charged system is calculated under a constraint that allows
one to control the occupation of the Wannier function via the
Lagrange multiplier λ [42]. The constraint is imposed using
the equation

ĤSRSH |ψi〉 + λ |φ〉 〈φ|ψi〉 = εi |ψi〉 , (3)

where {ψi} and {εi} are the GKS eigenfunctions and eigenval-
ues, respectively, of the constrained (N − 1)-electron system.

Here, the WOT-SRSH procedure is carried out in an itera-
tive manner based on the four-step scheme suggested by Wing

et al. [42]. In step 1 the orientationally averaged ion-clamped
dielectric constant, ε∞, is calculated in the primitive unit cell.
In step 2 we compose maximally localized Wannier functions
from the topmost valence bands in a supercell. We then select
the Wannier function with highest energy in the manifold and
use it in step 3, where we enforce the ansatz given in Eq. (2)
by selecting the range-separation parameter γ so that �Iγ = 0
for the supercell. Finally, in step 4 we calculate properties of
interest with the selected γ . This scheme is repeated itera-
tively: ε∞ in step 1 is initially calculated using HSE06, and
after performing steps 2–4, ε∞ is calculated again using the
optimally-tuned parameters found in step 3.

In the scheme described above, α is kept fixed. As can be
seen in Table II, we do not always use the default choice of
0.25. There are two scenarios where α has to be changed,
already encountered in previous WOT-SRSH studies [42,44].
The first scenario is that the fraction of LR exact exchange,
ε−1
∞ , is close to 0.25, resulting in the insensitivity of �I to

variations in γ . The second scenario is that there is no γ for
which the generalized IPT is satisfied. In this work these two
issues are solved by increasing α from the default value in
three of the materials. An additional criterion in the selection
of α is that the functional exhibit the full asymptotic ε−1

∞
behavior within the supercell. This is ensured by demand-
ing that erf(γ ∗rmax) ≈ 1, where γ ∗ is the optimally-tuned
range-separation parameter for the chosen α and rmax is the
maximal distance between two electrons in the supercell. We
note that, as demonstrated in Ref. [42], the QP band gap from
WOT-SRSH is somewhat sensitive to the choice of α. This
sensitivity is reduced when using G0W0 based on a WOT-
SRSH starting point [45].

TABLE II. Self-consistent WOT-SRSH parameters obtained in
this work. ε∞ is orientationally averaged.

α ε∞ γ (Å−1)

MgO 0.25 2.85 2.40
Al2O3 0.40 2.94 1.40
CaO 0.25 3.25 1.70
TiO2 0.25 6.25 0.85
Cu2O 0.25 6.51 0.95
ZnO 0.30 3.57 1.30
BaSnO3 0.30 3.92 1.40
BiVO4 0.25 5.92 2.00
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We emphasize that while the parameters α, ε∞, and γ are
system dependent, they are nonempirical. The self-consistent
WOT-SRSH parameters used in this work are reported in Ta-
ble II. They have been obtained for QP band-gap convergence
to within 50 meV, a condition achieved with up to three itera-
tions. See the SM [115] for additional computational details.

2. TDDFT

Optical spectra are computed using linear-response
TDDFT by solving the Casida equation within the Tamm-
Dancoff approximation [7,116]. The Casida equation then has
the following form [12,22,27,117]:

�SAS
vck = (

εGKS
ck − εGKS

vk

)
AS

vck

+
∑
v′c′k′

[ 〈vk, ck|KHxc(α, ε∞, γ )|v′k′, c′k′〉

− 〈vk, v′k′|Ksxx(α, ε∞, γ )|ck, c′k′〉 ]
AS

v′c′k′ , (4)

where v and c denote valence- and conduction-band states,
respectively, εGKS are the GKS eigenvalues, �S are the ex-
citation energies, and AS

vck are the expansion coefficients
of the exciton wave function �S in terms of valence- and
conduction-band-state pairs at the same k point, namely,

�S (re, rh) =
∑
vck

AS
vckψck(re)ψ∗

vk(rh). (5)

As expressed in Eq. (4), the TDDFT kernel is composed of
two parts: the Hartree-exchange-correlation kernel, KHxc, and
the screened exact-exchange kernel Ksxx, defined as

KHxc(α, ε∞, γ ) = 1

|r − r′| + (1 − α) f SR,γ
xc + (

1 − ε−1
∞

)
f LR,γ
xc

(6)
and

Ksxx(α, ε∞, γ ) = α
erfc(γ |r − r′|)

|r − r′| + ε−1
∞

erf(γ |r − r′|)
|r − r′| , (7)

where f SR,γ
xc and f LR,γ

xc are the short- and long-range contribu-
tions, respectively, of the exchange-correlation kernel of the
(semi-)local Kohn-Sham approximation. The bracket notation
in Eq. (4) represents real space integrals of the form

〈b1k1, b2k2|K|b3k3, b4k4〉

=
∫

d3rd3r′ψ∗
b1k1

(r)ψb2k2 (r)K (r, r′)ψb3k3 (r′)ψ∗
b4k4

(r′),

(8)

where bi can be a valence- or conduction-band index, and it
is understood that the wave functions on the left-hand side
always have position r and the wave functions on the right-
hand side always have position r′.

Once the linear-response equation is solved, optical ab-
sorption spectra (i.e., the imaginary part of the dielectric
function, ε2) can be obtained by

ε2(ω) = 16π2

ω2

∑
S

|p̂ · 〈0|v|S〉|2δ(ω − �S ), (9)

where

〈0|v|S〉 =
∑
vck

AS
vck 〈vk|v|ck〉 , (10)

S is a neutral excitation, v is the single-particle velocity oper-
ator, and p̂ is the direction of the polarization of light.

TDDFT calculations in this work are performed at both
the PBE level (denoted TDPBE), the equation for which
is obtained by using the PBE eigenvalues and setting α =
ε−1
∞ = 0 in Eq. (4), and at the WOT-SRSH level (denoted

TDWOT-SRSH), the equation for which is obtained by using
the WOT-SRSH eigenvalues and the optimally-tuned α, ε∞,
and γ parameters in Eq. (4). See SM [115] for additional
computational details.

C. Many-body perturbation theory

1. GW approximation

Within the framework of many-body perturbation theory
(MBPT), the electron self-energy � can be approximated
to first order as the convolution of G and W , written sym-
bolically as � = iGW [4]. � is usually constructed from
an underlying DFT eigensystem, {ψnk, ε

DFT
nk }, at varying lev-

els of self-consistency, with the choice of self-consistency
usually having significant implications for the accuracy and
variability of results [5,62–64,66,118–120]. The simplest ap-
proach, and the one employed in this work, is the “single-shot”
method (denoted G0W0), where the QP energies are calculated
as a first-order perturbative correction to a DFT eigensystem
[3,5,66,121].

Specifically, the single-particle Green’s function, G0, is
constructed directly from the DFT eigensystem, and the dy-
namically screened Coulomb interaction W0 is given by

W0(r, r′; ω) =
∫

dr′′ε−1(r, r′′; ω)
1

|r′ − r′′| , (11)

where the dielectric function is computed within the RPA
based on the polarizability, χ0(r, r′, ω), given by the Adler-
Wiser expression [122,123].

In practice, χ0(r, r′, ω) can be evaluated explicitly via a
full-frequency (FF) calculation, or approximately modeled
using a plasmon-pole model (PPM). In the FF approach, the
convolution of G0 with W0 is handled via contour deforma-
tion [124,125] using explicitly sampled frequencies along the
imaginary axis. To mitigate the substantial cost of computing
the FF dielectric function, we employ the static subspace
approximation [126–130], where χ0(r, r′, ω) is efficiently
but approximately represented using the leading eigenvec-
tors of a low-rank decomposition of the static polarizability
χ0(r, r′, 0). In the PPM approach, χ0 is evaluated statically
(ω = 0) and extended to finite frequencies via a simplified
model [5,131,132]. Here we employ FF calculations for all
materials except Cu2O, where we use the PPM. See SM [115]
for further details.

With the above quantities, the G0W0 self-energy can be
used to correct the DFT eigenvalues perturbatively via

ε
QP
nk = εDFT

nk + 〈nk|�(
ε

QP
nk

) − Vxc|nk〉 . (12)

Due to the fact that ε
QP
nk in Eq. (12) depends on itself, eval-

uating this expression can be nontrivial. For FF calculations,
〈nk|�(ω)|nk〉 is accurately known for a range of frequencies,
allowing for a solution of Eq. (12). However, if a PPM for the
frequency dependence of the screening is used, we employ the
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common practice of expanding Eq. (12) to first order about
εDFT

nk to evaluate it [133–135].
The single-shot approach has the advantage of being the

least computationally demanding GW approach, and, typi-
cally, the QP band structures computed within G0W0 are in
substantially better agreement with experiment than those
computed from their underlying DFT functionals [66,136–
141]. However, the single-shot approach also suffers from a
sensitivity to the starting point, i.e., the (G)KS eigensystem
used to construct �. Hence, the question of how to choose
an appropriate DFT starting point for G0W0 calculations has
been actively debated [66,138,142–147]. In this work we fo-
cus on the WOT-SRSH eigensystem as a starting point for
G0W0 (denoted G0W0@WOT-SRSH), as done in Ref. [45],
where it was demonstrated to be highly accurate over a broad
range of systems. For the sake of comparison, we also ex-
amine results obtained from using PBE as a starting point
(denoted G0W0@PBE). Additional computational details, in-
cluding convergence tests, can be found in the SM [115].

2. Ab initio BSE method

The ab initio Bethe-Salpeter equation, within the Tamm-
Dancoff approximation [2,3,148], has a standard form that
is very similar to the Casida equation. It can be constructed
from Eq. (4) by substituting εGKS with εQP, KHxc with the
bare exchange interaction kernel Kx = 1

|r−r′| , and Ksxx with the
static screened direct interaction kernel Kd = W0(r, r′; ω = 0)
[2,149]. In practice, when constructing Kx and Kd , we interpo-
late from coarse �-centered k grids to fine-shifted k grids, as
specified in the SM [115]. After solving the BSE, the exciton
wave function and the imaginary part of the dielectric function
are obtained from Eqs. (5) and (9), respectively. Additional
computational details can be found in the SM [115].

D. Vibrational renormalization of band gaps and optical spectra

To make a meaningful comparison with experimental band
gaps and optical spectra, two effects should be taken into
account: zero-point renormalization (ZPR) energy and finite
temperature fluctuations (FTF). Both are inherently excluded
in calculations that use the fixed ion approximation but can
have a significant effect on electronic properties [36,42,67–
69,72,73,156–165]. These effects can be understood from
methods that go beyond static DFT, such as molecular dy-
namics [73,156] and electron-phonon self-energy approaches
[67–69,158–162].

Accurate state-dependent calculations of ZPR and FTF
effects are beyond the scope of this work. To account for
them, we exploit values from the literature. In the absence of
a universal method to calculate or measure these effects, we
exploit values obtained based on different methods, the details
of which are given in Table III. These renormalization values
are used as rigid shifts for the computed optical band gaps and
optical absorption spectra.

All values in Table III represent the renormalization of
the QP band gap due to electron-phonon interactions, except
for the case of BaSnO3, where the value corresponds to
renormalization of the optical band gap due to exciton-phonon
interactions. By applying the same rigid shift to all features
in the optical spectra (including the optical band gap itself),

TABLE III. Vibrational renormalization values, taken from prior
literature, used in this work as a rigid shift for the computed band
gaps and optical absorption spectra. All values include both the ZPR
and FTF effects, except for MgO and CaO, where the values include
the ZPR effect alone.

Thermal renorm.
[meV]

MgO –533a

Al2O3 –310b

CaO –357a

TiO2 –290c

Cu2O –210b

ZnO –190b

BaSnO3 –367d

BiVO4 –920e

aReference [162], from nonadiabatic Allen-Heine-Cardona theory.
bReference [69], from nonadiabatic Allen-Heine-Cardona theory.
The FTF correction is extracted graphically at 300 K.
cReference [67], from nonadiabatic Allen-Heine-Cardona theory.
The FTF correction is extracted graphically at 300 K.
dReference [72], from temperature-dependent optical absorption on-
set measurements.
eReference [73], from path-integral molecular dynamics at the PBE0
level, including nuclear quantum effects.

we implicitly assume the size of the renormalization [166]
of exciton binding energies are negligible relative to the
energy scales of interest in this work. To demonstrate the
validity of this assumption, we calculated phonon screening
corrections to the binding energy of the lowest-lying exciton
according to the expression derived in Ref. [166] and found
that they are smaller than 0.1 eV. We note, however, that
these corrections serve as an approximate lower bound to
the exciton binding-energy renormalization, because they are
based on a model expression, applicable to 1s excitons at 0 K.
Thus the validity of our estimates may be more questionable
for materials that exhibit significant thermal fluctuations. For
more details see the SM [115].

III. RESULTS AND DISCUSSION

Figure 1 shows the optical absorption spectra obtained
from TDWOT-SRSH, G0W0-BSE@WOT-SRSH, and exper-
iment for all materials studied in this work, except BiVO4,
which is discussed separately below. For reference, Fig. 1
also shows spectra from TDPBE and G0W0-BSE@PBE. As
expected, the PBE-based results are unsatisfactory. TDPBE
significantly underestimates the reported measured absorp-
tion onset, and the line shapes also deviate significantly
from experiment. The G0W0-BSE@PBE line shapes are more
accurate owing to the correct description of electron-hole
interactions in BSE but suffer from a redshifted absorp-
tion onset relative to experiment due to the PBE starting
point. Most notably, TDWOT-SRSH considerably outper-
forms G0W0-BSE@PBE.

We point out that the line shapes of G0W0-BSE@PBE
and G0W0-BSE@WOT-SRSH are similar, but the spectra
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FIG. 1. Imaginary part of the dielectric function, computed with TDPBE (yellow dot-dashed line), G0W0-BSE@PBE (green dotted line),
TDWOT-SRSH (purple dot-dashed line), and G0W0-BSE@WOT-SRSH (red dashed line), compared to experiment (gray solid line). Vertical
dotted lines indicate the main spectral features in experiment. The anisotropy in Al2O3, TiO2, and ZnO is accounted for by considering
polarization perpendicular to the optic axis (ordinary component, c⊥) and parallel to the optic axis (extraordinary component, c‖) explicitly.
Computed spectra are rigidly shifted in the energy axis by the vibrational renormalization reported in Table III. They are also shifted in the
vertical axis such that the zero absorption tail exactly begins where indicated by an axis tick. Experimental data are taken from the following
sources: Al2O3: Ref. [150]; MgO: Ref. [151]; TiO2: Ref. [152]; CaO: Ref. [153]; ZnO: Ref. [154]; Cu2O: Ref. [155]; and BaSnO3: Ref. [72].

are shifted. This is an indication that the differences result
mostly from the one-particle energies being different, while
the eigenstates are relatively similar. Generally, significant
orbital reordering is known to affect the line shape and not just
the absolute position—see, e.g., Ref. [167]. The advantage of
using WOT-SRSH over PBE as a starting point is that it leads
to a more accurate band gap and band structure, as previously
shown in Ref. [45]. We further demonstrate these trends for
other starting points of G0W0-BSE in the SM [115].

It is readily apparent that both TDWOT-SRSH and G0W0-
BSE@WOT-SRSH predict peak positions and line shapes in
close agreement with each other and with the experimental
data. The agreement is consistently good both for the absorp-
tion onsets and for higher energy spectral features. Notably,
excitonic peak positions are well captured in both methods.
In most cases the BSE excitonic peak position is slightly
blueshifted compared to the TDDFT one, most notably for
Al2O3, MgO, and CaO, where the shift is ∼0.3–0.4 eV. This
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shift can be explained primarily at the electronic level, where
G0W0 corrections tend to blueshift the lowest direct gaps, as
seen in the SM [115] and in prior work [45]. This blueshift is
largely caused by the underscreening of the Coulomb interac-
tion in W0, brought about by the use of the RPA in conjunction
with an accurate hybrid functional [145,168]. This can be seen
when comparing the values of ε∞ used in WOT-SRSH and
the high-frequency RPA dielectric constant (obtained from the
same eigensystem) reported in the SM [115]. Relatedly, the
underscreening present in W0 also manifests in an about 10%
increase, on average, of the computed G0W0-BSE@WOT-
SRSH exciton binding energy. This competing effect redshifts
the resulting spectra but by much less than the blueshift at the
electronic level.

It can be seen that in the three cases where there are larger
deviations between the WOT-SRSH-based methods, namely,
Al2O3, MgO, and CaO, the BSE spectra predict peak positions
that are in better overall agreement with experiment, sug-
gesting possible improved predictive accuracy associated with
G0W0-BSE@WOT-SRSH. However, this improved accuracy
can in part be attributed to a cancellation of errors resulting
from underscreening, as discussed above.

A notable success of both methods is their accuracy for
ZnO, a system known to have significant convergence is-
sues in MBPT that resulted in a range of different reported
band-gap values [56,59,62,64,138,142,169–172]. Here, using
both WOT-SRSH and G0W0@WOT-SRSH, we obtain opti-
cal absorption spectra for ZnO in excellent agreement with
experiment (after approximately accounting for vibrational
effects) and between the two methods without encountering
any material-specific difficulties.

Another general trend we observe is that the oscillator
strength of the first excitonic peak is reduced in TDDFT
compared to BSE, while other features at higher energies
are in better agreement. This reflects an underestimation of
electron-hole interaction and a more delocalized exciton in
TDDFT, in line with previous comparisons between the two
methods [37].

For BiVO4, we observe a larger deviation between the
WOT-SRSH–based spectra and experiment, as can be seen in
Fig. 2. This system was comprehensively studied by Wiktor
et al. [73], with a special emphasis on the effect of thermal
fluctuations on the electronic structure. Excluding these ef-
fects and the effect of spin-orbit coupling (which they found
to decrease the band gap by only 0.13 eV), they obtained a
QP band gap of 3.64 eV using quasiparticle self-consistent
GW, in good agreement with our results (3.5 and 3.8 eV from
WOT-SRSH and G0W0@WOT-SRSH, respectively). Using
path-integral molecular dynamics (including nuclear quantum
effects) at the PBE0 level, they found a large QP band-gap
renormalization of –0.92 eV at 300 K, a value which we
adopted in this work. Shifting the QP band gap by this amount
brings it very close to the experimental optical indirect band
gap of 2.5 eV [173]. While the effect of thermal fluctuations
on the QP band gap in BiVO4 has been explored, their effects
on the optical absorption spectra, beyond causing a scissor-
shift in the electronic bands, has not been studied to the best
of our knowledge. Using the aforementioned QP thermal shift
in the absorption spectrum may be insufficient for such a
complex system with significant thermal fluctuations, because

FIG. 2. Same as Fig. 1 but for BiVO4. The anisotropy in the
optical response is directionally averaged. Experimental data are
taken from Ref. [173].

exciton-phonon interactions may also renormalize the exciton
binding energy significantly. We therefore leave the question
of thermal effects on the optical properties of BiVO4 for the
future, noting the agreement between the WOT-SRSH-based
QP band gaps computed in this work and the one obtained by
Wiktor et al. [73].

Comparing the absorption onset of TDDFT and BSE with
experiment in the case of BaSnO3 and BiVO4, we observe
sharp excitonic peaks at the onset in both TDDFT and BSE,
as opposed to shallow “shoulders” in experiment. This can be
directly attributed to significant finite temperature effects in
those systems [72,73] that can substantially alter the exciton
and reduce the exciton binding energy and oscillator strength
of excitonic peaks. These effects are not taken into account in
our calculations. We note that peak shapes in agreement with
our results have been obtained in Ref. [72] for BaSnO3 and in
Ref. [73] for BiVO4 from GW-BSE.

In the context of comparing computed band gaps with
experiment, we point out that a comparison of fundamental
band gaps with optical experiments is inconsistent for MOs,
because the exciton binding energy cannot be neglected. One
can, in principle, compare fundamental band gaps with values
obtained from, e.g., combined photoemission and inverse pho-
toemission spectroscopy, but such experiments often suffer
from significant experimental uncertainties that amount to
∼0.4–0.5 eV [174,175] and from sensitivity to surface effects
and crystal dynamics [176]. For these reasons, in this work
we focus on optical band gaps for the comparison with exper-
iment. Still, as fundamental band gaps are of general interest,
we list them in the SM [115].

The optical band gap is defined in most cases in this work
as the onset of absorption, where a bright (dipole allowed)
excitonic transition can be observed. As our optical spec-
tra calculations do not account for momentum transfer, we
choose as a benchmark experimental values that represent
minimal direct transitions obtained in optical measurements.
Table IV summarizes the optical band gaps predicted from
TDWOT-SRSH and G0W0-BSE@WOT-SRSH compared to
experimental values. The optical-band-gap predictions are
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TABLE IV. Computed optical band gaps, compared with experimental optical measurements of direct transitions. Computed values refer
to bright excited-state energies at the onset of absorption, unless mentioned otherwise. Corrected values are obtained by adding the vibrational
renormalization values taken from Table III. Spin-orbit coupling effects are not included. The mean absolute error (MAE) with respect to
experiment is also given. All values are given in electronvolts.

Corrected Corrected
TDWOT-SRSH G0W0-BSE@WOT-SRSH TDWOT-SRSH G0W0-BSE@WOT-SRSH Experiment

MgO 7.8 8.1 7.2 7.6 7.7c

Al2O3 9.3 9.8 9.0 9.4 8.8d

CaO 6.5 6.9 6.1 6.6 6.9c

TiO2
a 3.4 3.6 3.1 3.3 3.0e

Cu2Ob 2.5 2.4 2.3 2.2 2.6f

ZnO 3.2 3.3 3.1 3.1 3.5g

BaSnO3 3.8 4.0 3.4 3.6 3.6h

BiVO4 3.1 3.5 2.2 2.5 2.7i

MAE 0.37 0.31

aValues are dark excitons. See text for additional information.
bValues are first bright excited state. See text for additional information.
cReference [177], from thermoreflectance spectra at 85 K.
dReference [178], from VUV reflectance at 300 K.
eReference [179], from absorption spectra at 1.6 K.
fReference [180], from photoluminescence spectra at 6 K.
gReference [181], from wavelength-modulated reflectivity measurements at low temperature.
hReference [72], from electron-energy-loss spectroscopy at 300 K.
iReference [173], from UV-vis absorption spectroscopy.

in overall good agreement between the two methods and
experimental values, indicated by mean absolute errors of
∼0.3–0.4 eV with respect to experiment. We note that some
discrepancies with respect to experimental gaps are to be
anticipated, because there can be ambiguity associated with
the choice of the model and fitting method used to analyze
the absorption edge or the spectral features in experimental
data. We also highlight that this work primarily focuses on
the optical absorption spectra as a whole, where extrapolation
is not needed to make a direct comparison. Additionally, we
emphasize that while the shifted fine k grids used to compute
the optical absorption spectra are relatively converged with
respect to the overall peak positions and line shape in the scale
of the plot, the absorption onset obtained from our calcula-
tions is likely somewhat underconverged [2,34] (see SM [115]
for more details).

There are two exceptional cases to the above definition for
the optical band gap. These are rutile TiO2 and Cu2O, where
the onset of absorption is a dark (dipole forbidden) transi-
tion. In TiO2, the dark bound 1s exciton has been resolved
by Pascual et al. [179], allowing for direct comparison with
TDDFT and BSE results. Both methods predict other in-gap
brighter transitions, but those are less directly comparable
with existing experimental data. Nonetheless, the shape and
position of the first absorption peak (near 4 eV) is in good
agreement with experiment for both TDWOT-SRSH and GW-
BSE@WOT-SRSH.

The second exception to the above definition is Cu2O,
where the in-gap transitions from the topmost valence bands
to the lowest conduction band (the so-called yellow/green
exciton series) are dipole-forbidden transitions between states
of orbital character of 3d and 4s, respectively. These bound

excitons, which have a p-like orbital character, occur just
below the fundamental band gap [180,182]. Experimentally,
these low-energy transitions are found to occur at 2.03 eV
(1s exciton) and 2.15 eV (2p exciton) [182,183], whereas we
observe the onset at 1.7 eV and 1.8 eV via TDWOT-SRSH
and GW-BSE@WOT-SRSH, respectively. However, the so-
called blue or violet excitonic series in Cu2O, associated with
transitions from the topmost valence bands to the second-
lowest conduction bands, are dipole allowed and manifest as
the lowest energy resonant bright transitions that are clearly
apparent in the optical spectra. Thus we choose to define the
optical band gap as the first of these bright transitions, which
is experimentally observed at 2.6 eV [180]. This value is in
good agreement with the corresponding first bright transitions
obtained in theory (see Table IV).

IV. CONCLUSIONS

We have demonstrated the accuracy of the nonempirical
WOT-SRSH functional for the prediction of the optical ab-
sorption spectra of MOs, a group of materials known for
their computational complexity. By applying a simple, com-
putationally efficient scheme for choosing the parameters of
the SRSH functional, we find excellent agreement between
TDWOT-SRSH and G0W0-BSE@WOT-SRSH, with slightly
increased accuracy of the latter relative to experiment. These
results suggest that the range of applicability of WOT-SRSH
extends beyond computing band gaps of relatively simple
semiconductors and insulators. It can be used with predictive
accuracy to compute both electronic and optical properties
of more challenging, closed-shell MO systems. This work
paves the way for the application of WOT-SRSH to the study
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of more complex MO systems, including MOs with heavier
atoms (e.g., Zr- and Hf-based ones) and open-shell MOs.
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