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Circular dichroism of crystals from first principles
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Chiral crystals show promise for spintronic technologies on account of their high spin selectivity, which
has led to significant recent interest in quantitative characterization and first-principles prediction of their
spin-optoelectronics properties. Here, we outline a computational framework for efficient ab initio calculations
of circular dichroism (CD) in crystalline materials. We leverage direct calculations of orbital angular momentum
and quadrupole matrix element calculations in density-functional theory (DFT) and Wannier interpolation to
calculate CD in complex materials, removing the need for band convergence and accelerating Brillouin-zone
convergence compared to prior approaches. We find strong agreement with measured CD signals in molecules
and crystals ranging in complexity from small bulk unit cells to 2D hybrid perovskites, and show the importance
of the quadrupole contribution to the anisotropic CD in crystals. Spin-orbit coupling affects the CD of crystals
with heavier atoms, as expected, but this is primarily due to changes in the electronic energies, rather than due
to direct contributions from the spin matrix elements. We showcase the capability to predict CD for complex
structures on a 2D hybrid perovskite, finding strong orientation dependence and identifying the eigen-directions
of the unit cell with the strongest CD. We additionally decompose CD into separate contributions from inorganic,
organic, and mixed organic-inorganic transitions, finding the chiral molecules to dominate the CD, with the
inorganic lattice contributing at higher frequencies in specific directions. This unprecedented level of detail in
CD predictions in crystals will facilitate experimental development of complex chiral crystals for spin selectivity.
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I. INTRODUCTION

Chiral materials have recently received significant attention
due to the unique electronic structure arising from the combi-
nation of chiral symmetry-breaking and spin-orbit coupling.
Most notably, chiral nonmagnetic materials generate a spin-
polarized current when flowing a charge current, referred to
as chirality-induced spin selectivity (CISS) [1]. Chiral crystals
show particular promise for spintronic devices because of
significantly greater CISS magnitude, compared to molecules
[2–4]. In addition, chiral materials can emit strongly circularly
polarized light for spin-polarized light-emitting diodes (spin-
LED) [5].

This renewed interest in chirality of materials necessi-
tates wide-ranging techniques to benchmark their structure,
electronic and optical properties, computationally and ex-
perimentally. Chiral crystals could potentially demonstrate
connections between chiral optical properties, which are typ-
ically easier to measure, and their spin transport properties,
facilitating faster identification of candidate chiral materi-
als for spintronics. In particular, the standard experimental
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test of chirality in materials is the difference in optical re-
sponse between left- and right-circularly polarized (LC and
RC) light. Specifically, circular dichroism (CD) is the dif-
ferential absorbance spectrum, �A(ω) = ALC(ω) − ARC(ω),
which is equal and opposite for a pair of enantiomers (chi-
ral structures connected by a reflection). CD spectroscopy is
well-established in organic chemistry and biomaterials due to
the prevalence of chiral asymmetry in molecules, and is rou-
tinely applied to identify enantiomers and classify secondary
structures [6,7].

CD measurements of molecules in gas-phase or solution
are typically easier to perform than for chiral crystals. For
crystals, the typically stronger attenuation and the presence
of crystalline anisotropy require careful choice of sample
dimensions and orientation during measurement, especially
alignment with optical axes [8]. With increasingly complex
chiral crystal structures, first-principles prediction of CD is
necessary to aid experimental identification and characteriza-
tion of chiral crystals. Most prior first-principles calculations
of CD focus on molecules [9], where the signal is av-
eraged over all molecule orientations. These frameworks
ignore crystal anisotropy [10], and additional contributions
from electric quadrupole matrix elements [11,12], that are
important for the orientation dependence. Recent develop-
ments have accounted for these effects in first-principles
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calculations of chiral periodic systems, finding good agree-
ment with orientation-dependent CD measurements for chiral
crystals such as trigonal tellurium [13].

A pending challenge is extending such techniques to
complex crystal structures, and enable rapid evaluation of
several chiral material candidates. The current state-of-the-art
requires summation over several empty bands to compute
orbital angular momentum and electric quadrupole matrix
elements, and simultaneously dense Brillouin-zone sampling,
to converge the predicted CD spectrum [13]. This incurs a
high computational cost for predicting CD and optical ac-
tivity in materials with large unit cells, such as for hybrid
organic-inorganic perovskites (HOIPs). These complex sys-
tems have drawn significant recent attention for exceptional
opto-spintronic properties [2–4,14,15], and routinely involve
100-200 atoms and over 1000 valence electrons per unit cell,
necessitating further advances for efficient first-principles CD
predictions.

Here, we develop an ab initio approach for efficiently
predicting orientation-dependent CD in crystals. By directly
computing angular momentum and quadrupole matrix ele-
ments without relying on a sum over states, we eliminate the
need for convergence with respect to a large number of empty
states. We also simultaneously leverage Wannier interpola-
tion of these matrix elements to enable rapid convergence of
Brillouin zone integration. Together, this allows us to inexpen-
sively compute CD in chiral crystals, varying in complexity
from elemental Te to 2D hybrid perovskites, and showing
excellent agreement with experiment across this range, en-
suring the wide-scale reliability of this approach. Using this
framework, we showcase the importance of the quadrupole
matrix element contribution for orientation-dependent CD in
anisotropic crystals. We also determine the impact of spin-
orbit coupling (SOC) on CD of materials with heavy atoms,
and show that spin contributes primarily by modifying the
band structure, rather than by directly through spin magnetic
dipole matrix elements.

II. THEORY

In the following sections, we extensively detail the
complete theoretical formulation and computational imple-
mentation of CD calculations in crystals. We first establish the
necessary optical matrix elements, including magnetic dipole
(orbital and spin) and electric quadrupole contributions, and
using them, formulate CD as a rank-2 tensor with respect to
propagation direction. We then discuss calculation of the nec-
essary matrix elements using two complementary approaches,
direct calculation in density-functional theory (DFT) using
derivatives with respect to the Bloch wave-vector k, and using
Wannier interpolation to accelerate Brillouin zone integration.

A. Higher-order optical transition matrix elements

In the isotropic regime of molecules in gas phase or
solution, the standard approach for predicting optical cav-
ity shows that CD ∝ Im[μ0n · m0n], where μ0n and m0n

are, respectively, the electric dipole and magnetic dipole
transition matrix elements (between ground state 0 and ex-
cited state n) [11]. When examining CD response in chiral

crystals, it becomes important to consider anisotropy of op-
tical response along different crystallographic orientations.
Chirality results from a lack of inversion and mirror sym-
metries, generally leading to crystals with low symmetries
that are likely to exhibit a strongly direction-dependent CD
spectrum. For completeness, we outline below the derivation
of the orientation-dependent CD and the matrix elements that
it involves.

We start with the Pauli Hamiltonian for electrons in an
external electromagnetic field,

Ĥ = (p + eA)2 + eh̄σ · (∇ × A)

2m
, (1)

with electron momentum p and vector potential A =
A0ei(q·r−ωt ) of an electromagnetic wave propagating with
wave-vector q. We can extract the perturbation Hamiltonian
at linear order in A0, which will only exhibit transition matrix
elements between electronic states with k differing by photon
wave-vector q. Further, since the light wavelength is much
longer than the crystal, we expand in powers of q, but retain
terms up to O(q) instead of retaining only q-independent
terms as in the usual dipole approximation. This leads to
the transition matrix elements between bands n and n′ near
wave-vector k at O(A0) given by

〈k + q, n′| Ĥ
′ |k, n〉 = e

m

(
A0 · pk

n′n + iqμA0νX k
μν,n′n

+ B0 · Sk
n′n

) + O(q2), (2)

where repeated indices are summed per the Einstein conven-
tion and magnetic field B0 ≡ ∇ × A0. Above, p and S are the
momentum and spin matrix elements, while the tensor

X k
μν,n′n ≡ 〈i∂kμ

ukn′ | pν |ukn〉 + H.c.

2
, (3)

where ukn(r) is the Bloch function for band n at wave-vector
k, includes both the orbital angular momentum

Lρ = ερμνXμν (4)

as the antisymmetric part (where ερμν is the Levi-Civita
tensor), and the electric quadrupole

Qμν = Xμν + Xνμ − 2

3
δμνXρρ (5)

as the traceless symmetric part. Substituting X in terms of L
and Q, we can write the overall transition matrix element as

〈k + q, n′| Ĥ
′ |k, n〉 = eA0ν

m

(
pk

ν,n′n + iqμ

2
Y k

μν,n′n

)
, (6)

where

Y k
μν,n′n ≡ Qk

μν,n′n + ερμν

(
Lk

ρ,n′n + 2Sk
ρ,n′n

)
(7)

collects together all matrix elements at O(q), i.e., beyond the
dipole approximation.

B. Differential absorbance tensor

Applying Fermi’s Golden Rule to the above transition
matrix elements, we can calculate the imaginary part of the
dielectric function and expand it in powers of q as

Im εαβ = Im ε0
αβ + iqμ Im ε1

αβμ + O(q2). (8)
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This yields the standard dielectric function with only dipole
contributions at O(q0),

Im ε0
αβ ≡ 4π2e2

m2
eω

2

∫
BZ

gsdk
(2π )3

∑
n′,n

δ(εkn′ − εkn − h̄ω)

× ( fkn − fkn′ )
(
pk∗

α,n′n pk
β,n′n

)
, (9)

where εkn and fkn are the single-particle electron energies and
Fermi occupation factors for band n and wave-vector k, and
gs is the spin-degeneracy factor (1 for spinorial, and 2 for
nonspinorial unpolarized calculations) [16]. Meanwhile, the
O(q1) coefficient in Eq. (8) given by

Im ε1
αβμ ≡ 4π2e2

m2
eω

2

∫
BZ

gsdk
(2π )3

∑
n′,n

δ(εkn′ − εkn − h̄ω)

× ( fkn − fkn′ )
pk∗

α,n′nY
k
μβ,n′n − Y k∗

μα,n′n pk
β,n′n

2
(10)

encapsulates the CD contributions, with magnetic dipole and
electric quadrupole contributions within Y k

μα,n′n.
To compute the effective dielectric function for circularly

polarized light, we need to contract with the complex vector
potential amplitudes ALC

0 and ARC
0 for left- and right-circularly

polarized light. For CD, the standard sign convention used
to define LC and RC is ALC

0 = (x̂ + iŷ)/
√

2 and ARC
0 = (x̂ −

iŷ)/
√

2 for a wave propagating along q̂ = ẑ. Rotating these
polarizations for an arbitrary propagation direction, we can
show that ALC∗

0α ALC
0β − ARC∗

0α ARC
0β = iεαβγ q̂γ , leading to

Im εLC (q) − Im εRC (q) = q̂μq̂ν

( − εαβνq Im ε1
αβμ

)
. (11)

Above, the Im ε0
αβ term drops out because it is symmetric in

α ↔ β and contracted against the antisymmetric Levi-Civita
tensor.

Next, we need to convert dielectric functions to ab-
sorbance for predicting CD. The complex dielectric function
leads to a complex wave-vector q = (ω/c)

√
ε(ω), which

causes the intensity to fall off exponentially as I = I0e−2 Im ql

with path length l . Hence, the Naperian absorbance is α =
2 Im q = 2(ω/c) Im

√
ε. In the limit of low loss tangent

(| Im ε| 
 |ε|), we can simplify this to α ≈ [ω/(c
√

ε) Im ε =
(ω2/(c2q)] Im ε.

We can then convert the difference in Im ε to a differential
absorbance,

�α ≡ αLC (q) − αRC (q)

= q̂μq̂ν Symμν

[
−εαβν

ω2

c2
Im ε1

αβμ

]
, (12)

where Symμν[Fμν] ≡ Fμν+Fνμ

2 for any tensor Fμν . Note that the
magnitude of q, which depends on Re ε, only cancels out in
the low loss tangent limit and must be explicitly calculated us-
ing Re ε obtained using the Kramers-Kronig relation applied
to Eq. (9) for high loss cases, which we do not consider here.
Equation (12) shows that circular dichroism �α = �αμν q̂μq̂ν

is a symmetric rank-2 tensor with respect to propagation
direction q̂. Importantly, this is in contrast to the dielectric
function ε = εμνÊμÊν , which is a rank-2 tensor for crystals
with respect to the electric field direction Ê.

Finally, substituting Eqs. (7) and (10) into Eq. (12), we
arrive at the final expression for the circular dichroism tensor,

�αμν = 4π2e2

m2
eω

2

∫
BZ

gsdk
(2π )3

∑
n′,n

δ(εkn′ − εkn − h̄ω)

× ( fkn − fkn′ ) Re Sym
[
δμν pk∗

ρ,n′n
(
Lk

ρ,n′n + 2Sk
ρ,n′n

)
−pk∗

μ,n′n
(
Lk

ν,n′n + 2Sk
ν,n′n

)
+εμνρ pk∗

σ,n′nQk
ρσ,n′n

]
. (13)

In general, all matrix element terms contribute for crystals.
However, for isotropic systems or, for molecules after com-
puting an orientation average, the tensor reduces to the scalar
(1/3) Tr(�α). The term depending on the quadrupole matrix
elements Q is traceless and vanishes, while the isotropic aver-
age becomes proportional to p∗ · (L + 2S), i.e., electric dipole
· magnetic dipole, as is well known for molecules [11].

C. Direct calculation of L, Q matrix elements

To calculate CD using Eq. (13), for each wave-vector k
and band pairs n, n′, we need the matrix elements of momen-
tum p, spin S (if accounting for SOC), angular momentum
L and electric quadrupole Qμν . Computation of p and S is
straightforward directly in density-functional theory, as well
as through Wannier interpolation. However, L and Qμν , given
by Eqs. (4) and (5), require evaluation of Bloch function
derivatives ∂kukn(r) within Xμν in Eq. (3), which is nontrivial.

The most common approach to deal with these Bloch
function derivatives is to insert an identity operator resolved
as a sum over all states

∑
m |ukm〉 〈ukm| within Eq. (3). The

resulting expectations of the form 〈i∂kukn′ |ukm〉 can then be
written in terms of momentum matrix elements using p ≡
(−im/h̄)[r, Ĥ], leading to

X k
μν,n′n = h̄

2im

∑
εkm �=εkn

pk
μ,n′m pk

ν,mn

εkm − εkn
+ H.c. (14)

This expression has the advantage that it only relies on
single-particle energies and momentum matrix elements read-
ily available from any DFT code, and is the basis of most
previous methods to calculate CD [13,17]. However, the sum
over states introduced necessitates calculating a large number
of empty bands, and converging with respect to this num-
ber. This convergence will be slow and cell-size dependent
for lower-dimensional systems in particular. Additionally, for
large unit cells such as for the hybrid perovskites, this require-
ment substantially increases the computational cost.

As an alternative, we directly implement the Bloch wave-
vector derivative in DFT as a finite difference derivative over
k. We effectively compute the derivatives ∂kukn(r) using

dk · ∂kukn(r) =
∑

n′
uk+dk,n′ (r)Un′n − ukn(r), (15)

where matrix U aligns the phases for nondegenerate bands
and unitary rotations within degenerate subspaces between the
Bloch functions computed at k and k + dk. This is necessary
because the DFT calculation of Bloch states at different k
are undetermined up to these phases and unitary rotations
in general. Specifically, to compute U , we first compute the
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overlap matrix On′n = 〈uk+dk,n′ |uk,n〉 and then calculate

Un′n =
{

(ŪV̄ †)n′n, |εn′ − εn| < dε,

0, otherwise,
(16)

where the rotation within each degenerate subspace is given
by

Ūab =
{

(Õ(ÕÕ†)−1/2)ab, |va − vb| < dv,

0, otherwise.
(17)

Above, Õ is the submatrix within the v-degenerate subspace
of ŌV̄ , where Ō is the submatrix of O within the ε-degenerate
subspace, while V̄ and v are the eigenvectors and eigenvalues
of the momentum operator projected along the perturbation
direction, dk · p. We use thresholds of dε = 10−6 Eh and
dv = 10−4 Eha0 for identifying the degeneracies (where Eh

is the Hartree energy and a0 is the Bohr radius). Essentially,
this scheme uses the momentum operator first to resolve
the energy degeneracy and align the phases, and when the
momenta are also degenerate, computes a unitary rotation
from symmetric orthornormalization of the overlap Õ. This
is also effectively the Hamiltonian-gauge equivalent of the
Wannier-gauge scheme for computing Berry curvature and
related properties introduced in Ref. [18].

For each k, the above process is repeated with six dk
along each (positive and negative) Cartesian direction in re-
ciprocal space, each with magnitude |dk| = 10−4a−1

0 . The
∂kukn computed from the positive and negative displacement
for each direction are averaged together, resulting effectively
in a central-difference derivative evaluation (with phase and
rotation matching as outlined above). After obtaining ∂kμ

ukn′ ,
we compute its momentum pν matrix elements against all ukn

to get the X k
μν,n′n defined in Eq. (3). Note that the momentum

operator is defined using the [r, Ĥ] commutator to properly
account for nonlocal pseudopotential contributions [16,19].

Figure 1 highlights the efficiency of directly comput-
ing Xμν and CD from Bloch derivatives, instead of from a
sum-over-states approach using momentum matrix elements
[Eq. (14)]. We focus here on convergence, and present com-
parisons to experiment in the Results section below. The
molecular benchmark, camphor, requires summing more than
1000 bands to converge toward the direct DFT result, which
is expected due to the contribution of unbound empty states,
while convergence is manageable requiring 100 bands for the
solid benchmark, Te. In contrast, direct calculation using LQ
matrix elements only requires 50 bands for camphor and 75
for Te. This represents a massive computational speed-up as
typical plane-wave DFT calculations scale as N3

b (limited by
subspace diagonalization) when calculating large numbers of
empty states, where Nb is the number of electronic bands.
Specifically, for the camphor example, the evaluation of just
50 bands (including LQ matrix elements) is at least 100x faster
than computing 1000 bands (without LQ matrix elements) on
the same computational resources. The direct DFT calculation
using Bloch derivatives avoids the extra convergence with re-
spect to bands which arises from a sum-over-states approach,
and enables prediction of CD regardless of dimensionality and
unit cell complexity.

FIG. 1. Band convergence of CD computed purely from momen-
tum p matrix elements using Eq. (14), compared to the direct DFT
evaluation of L and Qμν matrix elements without the additional sum
over bands, for (a) camphor and (b) Te, which additionally shows
the Wannier prediction for comparison. More than 1000 bands are
necessary to converge the result for the camphor molecule, while 100
bands achieve adequate convergence for the Te crystal. (c) Conver-
gence of direct DFT prediction of CD for Te with number of k-points
for Brillouin zone integration.

D. Evaluation using Wannier Functions

We use matrix elements of p, S (when using SOC), L
and Qμν computed directly using DFT to predict CD using
Eq. (13). This requires an integration of k over the Brillouin
zone, which we do using a Monte Carlo sampling, with the
matrix elements at each k calculated as discussed above. We

123801-4



CIRCULAR DICHROISM OF CRYSTALS FROM FIRST … PHYSICAL REVIEW MATERIALS 7, 123801 (2023)

choose Monte Carlo sampling because the L and Qμν matrix
elements do not vary smoothly with k in a crystalline system,
often exhibiting sharp peaks. Regular k-meshes may converge
a smooth integrand more quickly, but could lead to unknown
systematic errors for nonsmooth integrands, which would
show up instead as statistical errors in Monte Carlo sampling.
Regardless, the technique shown here can be applied easily
with any of these Brillouin-zone sampling schemes. While
this is useful to benchmark results systematically, without
needing any band convergence, it still requires convergence
over the number of k used, which eventually becomes com-
putationally expensive. For example, Fig. 1(c) shows that
predicting the CD for Te requires over 2000 k-points to con-
verge the Brillouin zone integral.

To accelerate calculations further, we also implement a
Wannier interpolation alternative to the direct DFT calculation
above. The interpolation of p and S is straightforward using
the standard approach of applying Wannier rotations to the
DFT-computed matrix elements, followed by a Fourier trans-
form to a real space version [20]. The matrix elements can
then be reconstructed at arbitrary k using an inverse Fourier
transform, and then rotated to the eigen-basis using eigenvec-
tors of the Hamiltonian interpolated to the same k [16,19,21].

However, Wannier interpolation of the Xμν needed for L
and Qμν requires care because the derivatives in ∂kukn′ in-
troduce sharp features in reciprocal space that can lead to
interpolation errors. One possible approach to mitigate this
closely mirrors the calculation of the Berry curvature, and
combines interpolation of position operators (and higher mo-
ments) with computing the derivative of the unitary rotation in
Wannier basis [18]. Here, we propose a simpler approach that
more closely mimics the direct DFT calculation above.

The key idea is that since ∂kukn′ introduces long-range
real-space terms after transformation to Wannier functions,
we invoke a range separation to only Wannier-interpolate
the short-ranged part. Specifically, we define the “smoothed
derivative,”

∂kukn′ ≡
∑

a

∂k

(∑
n

uknU
kna

)
U k∗n′a, (18)

where U kna are the unitary rotations that maximally localize
the Wannier functions [20]. These rotations match the Bloch
functions at nearby k, thereby eliminating the sharp features in
the derivative. We apply Eq. (3) using this smoothed derivative
instead to get matrix elements X̄ k

μν,n′n, which can be interpo-
lated readily in exactly the same way as the momentum and
spin matrix elements.

After Wannier interpolation to a finer k mesh, we must
account for the previously eliminated long-range parts, which
arise due to the derivative of the Wannier rotations. Specifi-
cally, we get combinations of the form

Dk
μ,n′n =

∑
a

U k
n′a

(
∂kμ

U k†
an

)
, (19)

which corrects the short-ranged X̄ to the desired full matrix
elements,

X k
μν = X̄ k

μν + i

2

(
Dk

μ pk
ν + pk

νDk
μ

)
, (20)

written in terms of matrices in band space (omitting band
indices) for simplicity. We compute the rotation derivative
Dk

μ after Wannier interpolation exactly as discussed in detail
in Ref. [18], where it is applied for Berry curvature and
other band derivative calculations. The main modification here
is to simplify the reconstruction process by interpolating a
simplified version of X k

μν . Additionally, by using momentum
matrix elements computed and interpolated directly (without
using Dk

μ as done in Ref. [18]), we have fewer powers of Dk
μ

in our final expression, making this approach less sensitive
to convergence of the Wannier transformation with respect
to k-mesh. Finally, once we have X k

μν with fine k-sampling
using the above approach, we can use it to extract L and Qμν

and compute CD using Eq. (13) just as before. Figure 1(b)
demonstrates the near equivalence of computing CD directly
from DFT matrix elements and using Wannier interpolation
of the matrix elements for the Te crystal benchmark. Minor
discrepancies between the two curves are a result of the diffi-
culties in Wannier interpolation of L and Qμν matrix elements,
as mentioned above.

E. Circular dichroism units

Finally, we discuss units used in reporting CD and point out
convenient units and conversions for comparing predicted and
measured CD in chiral crystals. Experimental CD is typically
reported as ellipticity introduced into linearly polarized light
because of the differential absorption of the two initially equal
circular-polarized components. Specifically, after path length
l through the sample, the fractional difference in intensity of
the two circular components becomes l�α, where �α is the
Naperian absorbance difference computed by Eq. (13). This
ellipticity corresponds to a phase difference θ = l�α/4 (in
radians) between the two linear-polarized components.

Experimentally, absorbance is typically defined with a
base-10 logarithm, which we will denote �α10, and the
angle is reported in degrees, leading to the conversion
θ/deg = [180 ln 10/(4π )] × l�α10 ≈ 32.982 × l�α10 that is
commonly used [22]. Note that the corresponding conversion
for the Naperian absorbance is θ/deg = (45/π ) × l�α ≈
14.324 × l�α.

For molecules, CD is typically reported as molar circular
dichroism, [θ ] = θ/(Cl ), where C is the molar concentration
of the chiral molecule. In terms of typical experimental units
used

[θ ]

deg × cm2/dmol
= 4500 ln 10

π︸ ︷︷ ︸
≈3298.2

�α10/(cm−1)

C/(mol/l)
. (21)

For our theoretical predictions, the concentration is one
molecule in a unit cell of volume �, yielding

[θ ]

deg × cm2/dmol
= 4500NA/mol−1

1027π︸ ︷︷ ︸
≈0.86261

�α

(cm−1)
× �

Å3
,

(22)
where NA is the Avogadro number. We convert our predictions
using Eq. (13) to these units for molecules, as the units are
well-standardized.
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For crystals, CD may be reported as ellipticity per path
length through the crystal,

θ/l

deg/mm
= 45

10π︸︷︷︸
≈1.4324

�α

cm−1
, (23)

or converted to the Naperian absorbance difference as shown
on the right side of the above equation. Either of these choices
are appropriate, as they can easily be converted as shown
above. However, several experimental reports of CD in crys-
tals report the ellipticity without reporting the path length l ,
making it impossible to compare quantitatively to theoretical
predictions. Below, we report results for crystals in deg/mm
for direct quantitative comparison with experiment. When
comparing to experiments that report ellipticity without path
length, we report the path length that would lead to best match
with our theoretical predictions, so that we retain the absolute
scale on our predictions.

III. METHODS

We implemented the DFT and Wannier calculation of re-
quired matrix elements in the open-source plane-wave DFT
software JDFTx [19]. We use scalar and full-relativistic
norm-conserving pseudopotentials, respectively, for calcula-
tions with and without spin-orbit coupling from PseudoDojo
[23], with a kinetic energy cutoff of 45 Eh for the plane-
wave basis. We use the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional for all crystalline materials
[24], and the Becke 3-parameter Lee-Yang-Parr (B3LYP) hy-
brid exchange-correlation functional for the molecules [25].
We use initial structures from the Materials Project database
[26] unless indicated otherwise, and fully relax lattice vectors
(for crystals) and atomic positions for all calculations. For
the hybrid perovskite crystal, we include DFT-D2 dispersion
corrections [27] during structural relaxation to account for
long-range interactions between the organic components. See
Supplemental Material for the converged structures and addi-
tional computational details [28].

For Brillouin zone integration in the crystal calculations,
we use a �-centered 12 × 12 × 12 k-mesh in the initial
self-consistent calculations, except for the hybrid perovskite,
where we use 8 × 8 × 8 on account of the significantly larger
unit cell. For direct DFT calculations of the matrix elements,
we perform non-self-consistent calculations for varying num-
ber of randomly sampled k in the Brillouin zone (reported
with the results). For Wannier-interpolated calculations, we
construct Wannier functions to cover an energy window rang-
ing from the bottom of the set of valence bands to at least
10 eV above the Fermi level and conduction band minimum
for metals and semiconductors, starting with random Gaussian
orbitals to generate the initial guess for the Wannier rotations
[20]. We use these Wannier functions to interpolate matrix
elements to a fine Monte Carlo sampling of k within the
Brillouin zone, with the number of k for each system reported
along with the results.

FIG. 2. Calculated CD spectra for (a) camphor and (b) norcam-
phor agree well with measurements [29]. The HOMO-LUMO gap is
corrected using the scissor operator (shift unoccupied energy levels)
to match experiment, but the CD spectrum is matched quantitatively
without any scaling.

IV. RESULTS

A. Molecular benchmarks

We begin by benchmarking our approach for prototypical
chiral molecules, given the abundance of experimental CD
data. Figure 2 shows reasonable agreement of predicted CD
with experimental measurements for camphor and norcam-
phor [29]. We use the B3LYP hybrid exchange-correlation
functional for these molecules, as utilized in previous molec-
ular CD predictions [30]. For these predictions, we use the
direct DFT calculation of L also outlined in Section II C, as
there is no need for Brillouin zone sampling and Wannier
interpolation for molecules. Note that the quadrupole Qμν

does not contribute to the trace of Eq. (13). We apply a scissor
shift of the unoccupied states of 1.1 and 0.6 eV, respectively,
to match the HOMO-LUMO gap to experiment, and apply a
Gaussian broadening of 0.15 eV to the discrete transitions, but
the magnitude of CD is compared directly with no arbitrary
scaling. Note the strong agreement of both the signs and
magnitudes of peaks for both molecules. However, the first
peak around 4 eV in the experimental spectra is missing in
our calculations, while previous TD-DFT calculations capture
this peak [29]. This likely arises from our method being based
on an independent-particle approximation using DFT, while
TD-DFT includes local-field effects (Hartree term) in the
excitation.

B. Isotropic CD from cubic crystals

Next, we consider crystalline systems with symmetries
that lead to isotropic CD, where the quadrupole contribu-
tion remains zero. Specifically, we investigate cubic crystals
CoSi and MgPt, with the P213 chiral space group (and enan-
tiomer P213̄) that been the focus of recent research in spin
properties [31]. CoSi is a chiral semi-metal with promise
for topologically protected surface conduction for integrated
circuit technologies [32]. Figure 3(a) shows that CoSi exhibits
CD starting at zero photon energy, as expected since it is a
semimetal. The CD intensities peak near 0.75 and 2.0 eV,
coincident with the corresponding peaks in the computed op-
tical conductivity [Fig. 3(c)], which in turn agrees well with
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FIG. 3. (a) Predicted CD for cubic chiral semimetal CoSi is en-
tirely from the magnetic dipole (MD) terms, with no contribution
from the electric quadrupole (EQ) terms. The CD is equal and oppo-
site for enantiomers with the P213 (R) and P213̄ (S) space groups, and
(b) is unaffected by spin-orbit coupling (SOC). (c) Computed optical
conductivity (OC) for CoSi shows good agreement with experiment
in the location of the absorption peaks, and the differential absorption
for CD also peaks at the same frequencies. (d, e) Same as panels
(a, b) for MgPt, showing a nonnegligible impact of SOC. (f) Spin
contributions do not change the CD of MgPt, and the impact of SOC
is instead due to band energy changes. (g) Band structure of CoSi is
largely unchanged by SOC, while (h) that of MgPt shows spin-splits
∼ 0.1–0.2 eV.

the experimental absorption spectrum [33,34]. This agreement
between peak frequencies of overall absorption in OC and
differential absorption in CD arises from a peak in joint den-
sity of states for absorption, but not all OC peaks need to be
CD peaks in general due to the differences in relevant matrix
elements (p alone versus also accounting for L and Qμν).
CD measurements have not yet been reported for CoSi, and
would be a useful test for chiroptical properties in topological
materials in future work. Predictions of CD with and without
SOC differ negligibly for CoSi [Fig. 3(b)], as expected since

it is composed entirely of light atoms and its band structure
changes negligibly with inclusion of SOC [Fig. 3(g)].

To elucidate the effect of spin-orbit coupling, we also pre-
dict CD for MgPt, incorporating heavy element Pt in the same
chiral crystal structure as CoSi [Fig. 3(c)]. MgPt also exhibits
CD for photon energies starting from zero, and of a similar
magnitude to CoSi [Fig. 3(d)]. The CD predictions with and
without SOC are qualitatively similar, but with a nonnegli-
gible change in magnitudes and peak positions [Fig. 3(e)].
To elucidate how SOC changes the CD, Fig. 3(f) shows the
CD predicted with and without the spin contribution from
the terms containing Sk

n′n in Eq. (13). These CD spectra are
indistinguishable, indicating that the spin contribution is neg-
ligible even in this high-SOC material. Instead, the small
effect of SOC is primarily due to changes in band energies
by 0.1–0.2 eV [Fig. 3(h)], leading to small shifts in the CD
peaks and magnitudes. Since the CD changes negligibly even
in systems with sizable SOC, we omit SOC for most of the
test systems considered next.

C. Anisotropic CD from hexagonal crystals

To study the impact of the electric quadrupole contri-
butions and anisotropic CD, we next consider hexagonal
crystals with two distinct values in the CD tensor: xx = yy
for in-plane-wave propagation, distinct from the zz component
for out-of-plane propagation and all off-diagonal terms zero.
Specifically, we calculate quartz (SiO2), trigonal Se and trigo-
nal Te, all of which are in the P3121 and P3221 space groups,
respectively, for the left- and right-handed enantiomers. For
Te, we include spin-orbit coupling because this introduces a
small gap (0.03 eV), which we can correct with a scissor to
the experimental gap of 0.34 eV, while the no-SOC calculation
is metallic and cannot be corrected [13]. Figure 4 shows that
the electric quadrupole (EQ) contributions substantially alter
the total predicted CD for all systems. In most cases (except
xx = yy component for Se), there is a partial cancellation
between the magnetic dipole (MD) and EQ contributions,
leading to the total CD being of smaller magnitude than pre-
dicted using the MD component alone. This showcases the
necessity to include the quadrupole contributions for correct
general treatment of CD in crystals.

To compare with experimental measurements, it is prefer-
able to directly compare CD, as this provides clear energy-
dependent signatures that often change in sign, as seen for
the molecules above. However, in the absence of CD mea-
surements, we can also compare to optical rotation (OR). OR
arises from phase difference on the propagation of LC and
RC light due to differences in Re ε(ω) below the band gap,
in contrast to differential absorption from Im ε(ω) that leads
to CD. Consequently, the Kramers-Kronig relation yields the
OR [35],

θ (ω) = 2ω2

π

∫ ∞

0
dω′ �α(ω′)

ω′(ω′2 − ω2)
, (24)

from the CD, �α, computed using Eq. (13). We can covert OR
to experimental units (deg/mm) using Eq. (23) in the same
way as for CD.

Quartz has no reported CD measurements, due to the high
band gap ∼9 eV that would necessitate deep ultraviolet mea-
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FIG. 4. Calculated CD tensor of hexagonal crystals quartz, Te,
and Se shows strong anisotropy between in-plane (xx = yy) and
out-of-plane (zz) directions. The total CD (MD+EQ) is substantially
modified by the electric quadrupole (EQ) contributions compared to
the magnetic-dipole-only CD (MD).

surements with wavelength <140 nm. Additionally, while
optical rotation measurements for quartz have been reported
[36], they do not provide a reliable test for the CD spectrum
since they are too far below the band gap and relatively weak.

Trigonal selenium has served as a prototypical elemental
semiconductor for investigating chirality [39,40]. Figure 5(a)
shows that our CD predictions for Se are in good qualitatively
agreement with experimental measurements [37], in the sign
as well as the relative magnitude of the peaks. Here, we have
used a scissor of 0.97 eV to correct the computed band gap
to the experimental value of 2.0 eV. Additionally, the exper-
imental CD reported the overall ellipticity, without crystal
dimensions or path length, leading to the overall magnitude
not being directly comparable. We assume a path length l =
0.01 mm in the experiment, which brings the experimental CD
to the correct scale compared to our predictions.

Trigonal tellurium is one of the most studied chiral crystals,
showing promise for chiral optoelectronic properties such as
the circular photogalvanic effect [41]. Experimental CD for
Te has so far been restricted to polycrystalline samples with
various degrees of chiral purity, leading to large sample-to-
sample variations in the location, magnitude, and sign of
CD peaks [42]. Consequently, Fig. 5(b) compares to optical
rotation measurements along the c axis (zz tensor component)
of Te single crystals [38], and finds quantitative agreement.

FIG. 5. (a) Predicted CD for Se matches experiment well [37],
after using a scissor to correct the band gap, assuming path length
l = 0.01 mm not reported in Ref. [37]. (b) Optical rotation (OR)
for Te, obtained by Kramers-Kronig integration of predicted CD,
matches experimental measurements quantitatively [38]. The electric
quadrupole term is critical to even get the correct sign as experiment
for the OR of Te.

Here, we have a scissor of 0.31 eV to correct the gap, and
the magnitude of the OR is then compared absolutely with
no arbitrary scaling. Note that the quadrupole contribution is
essential here even to get the sign of the OR correct. This can
be seen earlier in Fig. 4 as well, where the lowest energy total
CD for Te has opposite signs between in-plane and out-of-
plane propagation, while the MD-only CD having the same
sign, showing that this extreme anisotropy is introduced by
the quadrupole (EQ) component.

D. CD in complex chiral crystals

Finally, to showcase the capability of first-principles CD
calculations of complex materials, we consider chiral hybrid
perovskites. Hybrid organic-inorganic perovskites provide an
interesting platform to control crystal symmetry using molec-
ular structure to target exciting optical properties [44,45].
In particular, introducing chiral molecules into hybrid per-
ovskites transfers the chirality to the crystal structure overall,
distorts the inorganic lattice and enhances the chiral response
overall [43,46].

CD measurements have been recently reported for several
chiral hybrid perovskites, typically with complex structures
and large unit cells with 100–200 atoms per primitive cell. As
an example here, we focus on 1-(1-naphthyl)ethylammonium
lead bromide (NPB) with 115 atoms in the primitive cell,
with structure and CD characterized extensively in Ref. [43].
Figure 6 compares our predicted CD with experimental mea-
surements from Ref. [43]. We use a scissor of 0.6 eV to rigidly
shift the conduction band energies relative to the valence
band energies to match the band gap corresponding to the
experimental absorption edge. Additionally, the experiment
reported ellipticity without path length, so we fit the path
length l = 0.02 mm for best match of CD magnitude with our
predictions. We find good agreement with the experimental
CD, except for missing the excitonic peak at h̄ω = 3.2 eV.
Such hybrid perovskites are well-known to exhibit strong
excitonic contributions to the absorption [43,47], especially
up to approximately 0.5 eV above the absorption edge [48].
With many-body effects not accounted for in our DFT cal-
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FIG. 6. (a) Predicted CD agrees with measurements [43] for
hybrid perovskite (S)-NPB (1-(1-naphthyl)ethylammonium lead bro-
mide) beyond the first excitonic peak not captured in our DFT
calculations. Since experimental data is polycrystalline and does
not report path length, we show the isotropic average (Tr�α/3)
and fit path length l = 0.02 mm to match the predicted magnitude.
(b) Atomic structure of (S)-NPB, where the chiral molecules dis-
tort the inorganic lattice to induce chirality throughout, indicating
eigendirections α and β in the xz plane that lead to maximal CD
magnitude. (c) Angular dependence of CD in the xz and xy planes,
showing maximum magnitudes along the α and β directions for
all frequencies, almost an an order of magnitude higher than that
along the optical axis (y direction). (d) Orbital decomposition of CD
along the eigendirections at two peak frequencies A and B: each heat
map is split into quadrants based on transitions from initial and final
states in the organic molecule and inorganic lattice components. The
intramolecular contributions dominate the CD, with mixed and inor-
ganic contributions becoming important only for higher frequencies
in the y direction.

culations (which are at the mean-field level), this excitonic
peak is missed as expected, and our results agree with the
experimental CD for higher photon energies.

Leveraging the tensorial nature of CD, we next examine
the orientation dependence of CD by diagonalizing the tensor
to extract the principal directions. We find that in addition
to the optic axis, the y direction, which is an eigenvector by
symmetry, the remaining two eigenvectors in the xz plane,
which we label α and β in Fig. 6(b) are relatively insen-
sitive to frequency over the relevant range and located at
−32◦ and 58◦ relative to the z-axis, respectively. Interestingly,
eigendirection α is approximately in the plane of the (S)-NEA
molecules, while β is perpendicular to it and the optic axis
(ŷ) is aligned with the screw axis of the inorganic lattice. We
find that the CD along y peaks at approximately the same
frequencies as α and β [Fig. 6(c)], but with a much lower
magnitude.

Finally, we decompose the CD predictions by orbital con-
tributions to investigate whether the organic or inorganic
components of 2D HOIPs provide a stronger contribution to
CD. To do this, we weight the contribution of each transition
(knn′ combination) in Eq. (13) by atomic orbital projections
of the initial and final state wavefunctions. For α and β

directions, we find the dominant contribution to CD at all
frequencies to be Cp-Cp transitions (where Cp denotes carbon
p orbitals), with minor contributions from Cp-Brp and Pbp-Cp

transitions [Fig. 6(d)]. The relative strength of these minor
contributions tends to increase with frequency, as is demon-
strated in the CD peaks located at 3.6 and 4.65 eV, labeled A
and B, respectively. The y direction shows the same relative
contributions for the A peak as in the α and β directions, but
for the B peak, is dominated by Pbp-Brp transitions instead.
This dominant inorganic contribution makes sense since the
y direction corresponds to the screw axis of the inorganic
component of the perovskite. Overall, the chiral molecules
dominate the CD in 2D HOIPs, while transitions involving
the inorganic lattice contribute at specific frequencies and
directions.

V. CONCLUSIONS

We have developed a unified computational framework for
first-principles prediction of circular dichroism in both molec-
ular and periodic systems, motivated by the increasing recent
interest in chiral crystals for their unique spin and optoelec-
tronic properties. We find excellent agreement between our
predictions and experimental measurements for both molec-
ular benchmarks and crystals ranging in complexity from
elemental semiconductors to hybrid organic-inorganic per-
ovskites. We demonstrate the versatility of our method by
testing it for systems with varying degrees of anisotropy and
unit cell complexity. Critically, this versatility is enabled by
direct DFT and Wannier evaluation of the orbital angular
momentum and electric quadrupole matrix elements without
requiring a sum over all states, substantially reducing compu-
tational cost and convergence challenges for large unit cells
and low-dimensional systems.

Further, developing CD as a rank-2 tensor with respect
to propagation direction facilitates intuitive analysis of the
anisotropic CD from complex crystals. We show that the
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quadrupole contribution substantially modifies the anisotropic
CD for all the noncubic crystals we studied, and is essential
for quantitative agreement with single-crystal CD measure-
ments. We find that SOC affects CD primarily by modifying
the electronic structure and band energies, rather than by a
direct contribution from the spin matrix elements. Leveraging
the capability to compute CD tensors for complex materials,
we perform a thorough analysis of the directional dependence
of CD using a 2D hybrid perovskite as an example, identi-
fying the unit cell directions along which CD is maximized.
Further, decomposing the CD signal into organic, inorganic,
and mixed contributions allows us to conclude that the chiral
molecules are dominate the optical activity in the relevant
frequency range (excluding excitonic transitions), whereas the
inorganic lattice dominates only in certain directions and at
higher frequencies.

Finally, we discuss a standardization necessary in exper-
imental reports of CD in crystals. We recommend the use
of either differential Naperian absorbance in inverse length
units or ellipticity change per unit path length in units such
as deg/mm. Absolute ellipticity (e.g., in degrees) reported
without crystal dimensions or path length, which has been

prevalent in recent experimental work, precludes quantitative
comparison and should be avoided. Specifically, we recom-
mend reporting path length with at least 10% accuracy, based
on the precision now achievable for first-principles CD pre-
dictions. This is critical as an increasing number of complex
chiral crystals such as hybrid perovskites are being devel-
oped experimentally, and can now be predicted with the
high-throughput-capable first-principles approach presented
here.
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