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Minimal and versatile description of diffusion and swelling in polymer-solvent systems:
Modeling and experimental validation
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The interplay between solvent diffusion and swelling of the absorbing solid leads to a variety of possible
behaviors. In the case of polymer matrices, sharp penetration and swelling fronts are commonly found, with
their dynamics depending on the specific features of the polymer-solvent system. Here, at the continuum
mechanical level, we introduce a model to predict both concentration profile and swelling for whatever motion
of the penetration front, in the one-dimensional case. A distinctive feature of our approach is that a constitutive
equation for the thermodynamics of the dry side is not required. The model is validated against paradigmatic
experiments available in literature, as well as through our own data (including optical microscopy) on a
water–polyvinyl alcohol system. In spite of using only a small number of parameters, the model succeeds in
predicting all the tested observables of the diffusion/swelling process in those polymeric systems.
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I. INTRODUCTION

Whenever a solvent is put in contact with a solid, absorp-
tion occurs. If the solid is endowed with some flexibility,
absorption of solvent often causes a significant volume in-
crease, the so-called swelling [1]. The interplay between
solvent diffusion and solid deformation can originate a range
of peculiar phenomena for the overall system [2]. When the
solid is an initially dry polymer matrix, which is the case of in-
terest here, the process frequently occurs with the emergence
of two sharp fronts [3–6]. The first one is the contact surface
between pure solvent and the hydrated side of the film, and is
termed the swelling front. The second one is the boundary of
solvent penetration at a given time: beyond it, the solid can be
considered still dry. This second boundary is usually termed
hydration (or penetration) front. The moving macroscopic
hydration front corresponds, at a microscopic scale, to the
solvent concentration profile showing a steep drop-down to
zero that moves with time.

Figures 1(a)–1(c) show a top view of the absorption pro-
cess of water in a polyvinyl alcohol (PVA) film, and of the
ensuing swelling, as obtained by means of optical microscopy
experiments (see below for details, Sec. III C). Three zones
are clearly distinguishable, from left to right: water (white),
the hydrated part of the film (black), and dry PVA (grayish).
These three areas are sharply distinct, with moving swelling
and hydration fronts being easily identified. Many experi-
ments have been performed over the years on a wealth of
polymer-solvent systems, with analogous qualitative features
as in Fig. 1 in terms of fronts’ presence and motion [7,8], but
with a range of different quantitative features.
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Commonly, the position of the hydration front as a function
of time is well approximated by a power law. The exponent
of such power law categorizes the type of diffusion for the
given polymer-solvent system [9]. The term “Case I” diffusion
is used to indicate a hydration front motion proportional to
t1/2 (which is the typical time dependence in purely diffusive
processes), as opposed to “Case II” diffusion, indicating a
hydration front advancing with a constant velocity, i.e., with
a motion linear in time. Case I and Case II are just limiting
scenarios, however, as systems in which the position of the
hydration front is proportional to t n, with n ∈ ]0.5, 1[, are
often observed, a situation usually named anomalous diffu-
sion [10,11]. In the two limiting cases, for what matters the
swelling front, some authors [12,13] report that it shares the
same time dependence as the hydration front.

Notice that, apart from the nature of the given solvent-
polymer system, the emergence of a certain type of transport
will also depend on other factors affecting polymer relaxation
or solvent motions, e.g., chain orientation [8], film thickness
[14], and temperature [15]. Departure from “standard” Case I
diffusion is often observed when the polymer relaxation rate
is comparable with (or larger than) the diffusion rate [2].

The process of absorption/swelling in polymer matrices
is of primary interest in several industrial applications, such
as degradation and reprocessing of thermosetting polymers,
or, for physical networks, healing and wet adhesion [16,17].
This latter example recently raised considerable interest in
the design of polymer-based adhesives [18]. A liquid solvent,
indeed, can soften the adherent’s surface while preserving net-
work existence, and promotes molecular mobility of polymer
chains and the subsequent interdiffusion across the interface.

Due to the increasing relevance of such applications and to
the scientific challenges underlying the process itself, interest
in the subject is ample, and the relevant literature is quite
rich. Several theoretical models have been developed over the
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years to predict the evolution of swelling and of the solvent
concentration profile [2,10,19], the most famous—and quite
successful one—undoubtedly being the Thomas and Win-
dle (TW) model [13,20]. The TW model is broad in scope,
coupling chemical potential gradient with time-dependent me-
chanical deformation; it is also quite flexible, as in fact it can
predict both Case I and Case II behaviors. Such a generality,
however, comes at the cost of a high number of needed param-
eters; moreover, a nonstandard thermodynamic framework is
perforce needed. Indeed, it should be remarked that, in TW
theory (and in its successive extensions [21–23]), the solvent
chemical potential is assumed to be directly dependent on a
variable of evolution, i.e., the time derivative of concentration,
and this peculiar choice requires in-depth analysis to possibly
avoid problems of thermodynamic consistency. Overcoming
such uncertainties in the TW approach is in fact a key motiva-
tion for the development of our own model.

Other previous efforts to circumvent these problems
include a more basic theoretical approach [2] to the
absorption/swelling process. The existence of a sharp hydra-
tion front is assumed a priori, and the motion of the front is
either calculated via an ad-hoc “constitutive equation” for its
velocity [24–26], or is implicitly given [2], or directly mea-
sured [12]. A critical issue arising in these models, however,
is that a standard thermodynamic characterization of the dry
state is often unavailable, or even unattainable, e.g., if dealing
with an out-of-equilibrium solid.

Due to the above discussed limitations for the available
theoretical frameworks, modeling of the absorption/swelling
process in polymer matrices is still an open issue. Hence, we
here introduce (Sec. II) a model that is more versatile and
robust than the state-of-the-art ones, being able to describe any
type of diffusion (Case I, Case II, and anomalous) while re-
quiring just a few parameters (possibly, the minimum number
of parameters), all of them being independently measurable.
The predictions of this model are then validated (Sec. III)
through both experimental data available in literature and our
own experiments on a PVA–water mixture. Some conclusions
are then given in the last section of the paper.

II. MODEL

Our model requires as an input the position of the hydration
front measured as a function of time, thus falling in the same
category as the approaches in Refs. [12,24,25]. To mathe-
matically describe and justify this sharp front, the diffusion
coefficient, exponentially increasing with solvent concentra-
tion (as is quite often observed [27]) in the hydrated side, is
assumed to undergo a sudden jump to a constant, much lower,
value beyond the front.

The equations of the model are presented here for the
one-dimensional case, in a peculiar set of non-Eulerian co-
ordinates, with the origin X = 0 always anchored to the
swelling front, which proves to be convenient from the mathe-
matical point of view. In a laboratory-fixed frame of reference,
indeed, the integration domain will change with time on both
hydration and swelling sides, in ways to be determined. The
choice of the X set of coordinates, instead, allows one to deal
with a single unknown, the overall extent of the hydrated part.
The new coordinate X is related to the Eulerian coordinate x

FIG. 1. Panels [(a)–(c)]: Three subsequent frames from a typical
optical microscopy video for the absorption/swelling process in a
PVA–water system. Initial condition (dry film) (a), t = 5 s (b), and
t = 10 s (c). Black stripe is the hydrated portion of the film. Red line
is the initial interface; light-blue and gray lines are hydration and
swelling fronts, respectively. Panels (d) and (e): For a given time,
representation of the absorption/swelling phenomenon in Eulerian
(d) and non-Eulerian (e) coordinates.

through the (one-dimensional) deformation gradient λ ≡ dx
dX ;

the field λ(X, t ) is the local film stretching, to be determined.
The second row of Fig. 1, panels (d) and (e), schematically
shows the hydration phenomenon at a given time in the two
different sets of coordinates, with the three zones solvent,
hydrated, and dry from left to right. Notice that, in the X
coordinate, the hydrated domain is “distorted” with respect
to its laboratory-fixed shape.

In the X -coordinate description, the solvent mass balance
for the hydrated side (side 1) reads as [12,28,29]

∂C

∂t
= − ∂J

∂X
= − ∂

∂X

(
− D(C)

kBT

C

λ2

∂μ

∂X

)
, (1)

where C = C(X, t ) is the number concentration of solvent,
J is the corresponding solvent flux, D(C) is a diffusivity,
which can change with concentration, μ is the solvent chem-
ical potential, and kBT is the Boltzmann factor. The adopted
constitutive equation for J in the X coordinate is standard, for
an incompressible mixture, in the framework of irreversible
thermodynamics, where a (local) linear relation between the
flux and the thermodynamic force (i.e., the chemical potential
gradient) is usually assumed [30,31].

A further constitutive equation for μ is now needed. Flory-
Rehner model equations are here assumed to hold, not only
at equilibrium, but also instantly and locally, with the as yet
unknown one-dimensional fields C(X, t ) and λ(X, t ) defined
at any elementary volume of the mixture. Notice that the
adoption of Flory-Rehner theory is here made to describe the
case of a hydrated network, and implies the absence of free
volume inside the mixture, with any of the “lattice cells” being
occupied by either a network monomer or a water molecule.
Thus, the total volume of the mixture is given, at any time,
as the sum of the volume of the dry polymer matrix and the
absorbed solvent volume. Coherently, the two unknown fields
are related by the incompressibility condition λ = 1 + νC,
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thus giving μ as a function of C only [31]:

μ

kBT
= ln

(
νC

1 + νC

)
+ 1

1 + νC
+ χ

(1 + νC)2

+ Nν

(
1 + νC − 1

1 + νC

)
(2)

with ν the solvent molecule volume, χ the Flory polymer-
solvent interaction parameter, and N the number density of
polymer subchains. Two main contributions can be distin-
guished in Eq. (2): the first three terms in the right-hand side,
indeed, represent the chemical potential due to the mixing
of the molecules of polymer and solvent (in the limit of an
infinite polymerization degree); the last term in the right-hand
side, instead, takes into account network stretching.

In the dry side (side 2), where the matrix is essentially
a solid (maybe even an out-of-equilibrium one) and wa-
ter diffusion is highly hindered, thermodynamic constitutive
equations are not used at all, and a classical Fickian diffusion
is instead simply assumed, with a constant diffusion coeffi-
cient D02. We remark that such a distinctive feature of our
approach is of great importance, as (i) it avoids thermody-
namic consistency issues; and (ii) it allows for dealing with
a “dry” side that can be either at thermodynamic equilibrium
(as is the case in [12]) or in an “arrested state,” e.g., a glass, as
in the TW case [20].

The complete problem can be thus described through a
system of two partial differential equations:

∂C

∂t
= D01

∂

∂X

[
eMν(C−Ceq )ξ (C)

∂C

∂X

]
,

∂C

∂t
= D02

∂2C

∂X 2
(3)

[where ξ (C) = C
kBT λ2

∂μ

∂C ; see Eqs. (1) and (2)], with the diffu-
sivity on the hydrated side being

D(C) = D01eMν(C−Ceq ). (4)

Here, M is a positive dimensionless constant value, Ceq is
the equilibrium concentration at the boundary of contact with
pure water [see below, Eq. (5)], and D01 is a constant diffusiv-
ity, with D01 � D02. In the dry region, it is 0 � C � Ch, with
Ch the concentration at the hydration front, Xh.

For the system of Eqs. (3), boundary conditions are as
follows. At X = 0, i.e., at the swelling front, the constant
concentration Ceq is obtained by imposing μ = 0 in Eq. (2),
with zero taken as the chemical potential of pure water:

ln

(
νCeq

1 + νCeq

)
+ 1

1 + νCeq
+ χ

(1 + νCeq)2

+ Nν

(
1 + νCeq − 1

1 + νCeq

)
= 0. (5)

At X → +∞ the slab will be considered dry at any time,
C = 0. Ch is instead unknown, but it will be determined as
a model output, from the fulfillment of the solvent mass
balance across the hydration front: [D(C)ξ (C) ∂C

∂X ]|X=X −
h

=
D02

∂C
∂X |X=X +

h
. The boundary conditions to be applied are thus

C(X = 0, t � 0) = Ceq,

C(X = Xh(t ), t � 0) = Ch(t ) (6)

for the hydrated side, and

C(X = Xh(t ), t � 0) = Ch(t ),

C(X → +∞, t � 0) = 0 (7)

in the dry side. Notice that, in these boundary conditions,
concentration at the hydration front will in general depend on
time.

By solving the system of Eqs. (3) with boundary condi-
tions (6) and (7), the entire concentration profile is obtained,
as a function of time and space. The model can then be
fully validated if the concentration profile is also experimen-
tally accessible. Such a measurement, however, is not always
straightforward, especially if the absorption/swelling process
of interest is a rapid one. To validate the model, therefore,
it proves useful to also compute integral quantities, easily
accessed in experiments, such as the volume increase of the
film and the total absorbed mass of solvent. Indeed, the readily
measured swelling distance xs (see Fig. 1) can be related to an
integral of the C field:

|xs(t )| =
∫ Xh (t )

0
[1 + νC(X, t )]dX − Xh(t ). (8)

Also, since volume additivity is assumed, the total absorbed
solvent mass is obtained by a product of |xs| times the density
of pure solvent. An indirect model validation will then be
always available.

III. RESULTS

In this section, we will illustrate how our model proves
to correctly predict not only the two limiting scenar-
ios of Case I and Case II diffusion, but also anoma-
lous diffusion. To this purpose, the diffusion/swelling
behavior of three different polymer-solvent systems has
been analyzed: chitosan/water, poly(methyl methacrylate)
(PMMA)/methanol and PVA/water. For the first two systems,
which exhibit Case I and Case II diffusion, respectively, the
study has been conducted relying on literature data [12,13];
for the PVA/water mixture, instead, we here present our
own experimental data. Solvent concentration profiles will be
shown for the three cases, and model validation will be carried
out by comparing the obtained predictions of swelling and
absorbed mass of solvent with experimental data.

A. Case I diffusion

As an example of Case I diffusion, we focus on the case
of water diffusing in a chitosan-based polymeric network. For
this system, the predictions of our model are shown in Fig. 2
and compared with the results by Mao et al. [12]. The best fit
(9.31t0.5 µm, with t in seconds) obtained by Mao et al. for
the hydration front is shown, as a dashed line, in Fig. 2(a).
This time law has been used as an input for the solution of our
equations. Circles are, instead, Mao et al. experimental data
for swelling, and the solid black line is our model prediction
for xs(t ). The quite good agreement with experiments has been
obtained using a constant diffusion coefficient in the hydrated
side (D1 = D01, M = 0).
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FIG. 2. Absorption/swelling process for a water-chitosan system. Panel (a): data (symbols) and our model predictions for the swelling
front. Dashed line is a fit from [12] to the experimental data for the hydration front, used as an input for our model; solid line is the model
prediction for the swelling front. Panel (b): comparison between predicted concentration profiles from our model (lines) and from the Mao
et al. model [12] (symbols), at three times. In the inset, situation at the hydration front is shown, at t = 1800 s.

Figure 2(b) displays νC vs X , at various times, as calcu-
lated both by Eqs. (3) (lines) and by the Mao model [12]
(symbols). The differences in the calculated profiles in the
dry side are highlighted in the inset, where it is apparent that
the standard Fickian diffusion (our model) shows a smoother
profile as compared to the one obtained by the Mao model.
Interestingly, despite these differences, the concentration Ch

that guarantees mass conservation across the hydration front
is the same between the two models, and is always indepen-
dent from time, resulting in identical solvent concentration
profile predictions in the hydrated region. All the needed
parameters for our model are taken from Ref. [12]: χ = 0.41,
N = 4.27 × 1024 m−3, and D01 = 5.15 × 10−9 m2/s, D02 =
5.15 × 10−14 m2/s. It is here worth emphasizing again, how-
ever, that in the Mao model further parameters were needed
for the thermodynamic description of the dry side, which is
instead avoided in our approach.

B. Case II diffusion

The system chosen as an example of Case II diffusion
is liquid methanol in glassy PMMA, the one studied in the
seminal paper by TW [13,20], a system which still gains much
interest nowadays [32].

Figure 3(a) shows the original measurements for the po-
sitions of the hydration and swelling fronts as a function
of time. The best linear fit for those hydration data [dashed
line: (6.0 ± 0.1)t µm, with t in hours] has been here used
for our model input, and the solid black line is the model
prediction for xs(t ) via Eq. (8), in good agreement with data.
In the original paper, measurements of concentration profiles
and absorbed methanol mass as a function of time are also
available. Figure 3(b) shows the predicted νC vs X for five
different times (lines), and a comparison with the measured
concentration profile after 60 h of diffusion. Agreement with
data is excellent. It is worth noticing that, in this system, the
concentration Ch at the hydration front slightly decreases with
time. In the rightmost panel of Fig. 3, the predicted absorbed
mass of solvent is shown (line), together with the experimental
data. For all the considered quantities (swelling, concentra-

tion profile, and absorbed mass), the agreement between data
and our predictions is quite good. It is worth noting that
our predictions have been obtained assuming an exponential
diffusion coefficient M = 28, a value well within the M range
estimated by TW. Other parameters are χ = 1, N = 3.5 ×
1027 m−3, D01 = 5 × 10−12 m2/s, and D02 = 10−14 m2/s, all
of them taken from the original TW paper. Once again, we
emphasize that the parameters needed in our computation (χ ,
N , D01, M, and D02) are fewer than in the original TW work.

C. Anomalous diffusion

Now we show how our model can successfully describe
the anomalous diffusion observed in our experiments for a
(solvent-casted) PVA physical network in water. PVA is a
hydrophilic, synthetic polymer, nontoxic and biocompatible,
widely used for several industrial applications [33–36]. Notice
that, since the PVA film in our experiments is in a rubbery
state, the absorption/swelling process is very fast: we then
limit our analysis to 5 s only [37]. The experimental setup
to measure the positions of hydration and swelling fronts is
composed by two Perspex plates (5 cm × 5 cm) held together
by magnets, with a small PVA sample (1 cm × 1 cm, thickness
76 µm) sandwiched in between. The top plate is pierced, thus
allowing for water application via a 15-ml pipet. The process
is observed with a Zeiss Axiovert 200 microscope (reflection
mode), using a magnification of 2.5×, and recorded. An ex-
ample of such recordings is in Fig. 1. Full details on the setup
and on the front-tracking procedure and codes will be given
elsewhere.

Figure 4(a) gives the positions of hydration and swelling
fronts in time, as obtained by performing image analysis on
the recorded videos. Power-law fits for the fronts’ positions
in time are (8.5 ± 0.1)t0.64±0.01 for the hydration front and
(12.6 ± 0.1)t0.55±0.01 for the swelling one, classifying the dif-
fusion as anomalous. As before, we use the (fitted) hydration
front evolution as the input, and obtain xs(t ) from our model,
in excellent agreement with data. The panel (b) of Fig. 4
shows the predicted concentration profiles at various times.
It is interesting to note the huge difference in the shape of
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FIG. 3. Absorption/swelling process for a methanol-PMMA system. Panel (a): data for hydration and swelling fronts (symbols) and our
model predictions for the swelling front (solid line). Dashed line is a linear fit (model input) for the hydration front. Panel (b): predicted
concentration profiles at five times (lines); experimental data (symbols) at 60 h. Panel (c): measured (symbols) and predicted (line) total
absorbed solvent mass as a function of time. All experimental data are taken from [13,30].

the predicted concentration profiles with respect to the previ-
ously examined TW case. Here, however, experimental data
are lacking. In the inset, it is shown that, in this system as
in the TW case, the concentration Ch at the hydration front
decreases with time. In Fig. 4(c), the predicted absorbed mass
of solvent is compared with the experimental data (obtained
gravimetrically, by weighting the hydrated film at different
times), and excellent agreement is again found.

For this system, a constant diffusivity has been chosen
in the hydrated side, which we set as the self-diffusivity
of water at room temperature: D01 = 2.3 × 10−9 m2/s. For
the polymer-solvent interaction parameter, the most common
value found in literature for the water–PVA solutions at room
temperature has been used: χ = 0.494. The last parameter
N [see Eq. (2)] does not show any significant impact on the
predictions, at least over the time span we are interested in
here. To obtain our results, N = 1024 m−3 has been cho-
sen as a reasonable value [12,28]. As a perspective, a value

for N could be separately estimated from the approximate
relation G ≈ NkBT , where the polymer elastic modulus G
can be measured, for example, through dynamic mechanical
analysis.

IV. CONCLUSIONS

In this work, a “minimal” model to describe liquid dif-
fusion and swelling in polymer films has been introduced,
and applied to predict the behavior of very different systems:
water/chitosan, methanol/PMMA, and water/PVA. We find
that a concentration-dependent diffusivity is needed to fit the
data in the glassy system methanol/PMMA (Case II diffu-
sion), whereas a constant diffusion coefficient in the hydrated
side of the medium suffices to describe Case I and anomalous
diffusion. The accuracy of our model and its flexibility are
quite remarkable, since results are obtained by only exploiting
basic Flory-Rehner thermodynamics for the hydrated side,

FIG. 4. Absorption/swelling process for a water–PVA system. Panel (a): Data for hydration and swelling fronts (symbols) and our model
predictions for the swelling front (solid line). Dashed line is a power-law fit (model input) for the hydration front. Panel (b): Predicted
concentration profiles at five times (lines). In the inset, the prediction of a Ch decrease in time is given. Panel (c): Measured (symbols)
and predicted (line) total absorbed solvent mass as a function of time. All experimental data are original; symbols size represents the maximum
standard deviation upon five repetitions of the experiment.
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and a thermodynamics-free description for the dry side, which
leads to a relatively small number of needed parameters, as
compared to other models. It is also worth emphasizing here
that those parameters are all measurable, in principle at least,
in independent experiments.

Overall, we believe that insights in this work arise from
a simplifying and in fact more far-reaching change in the
constitutive equation for the dry side (diffusivity is all that

is needed), as well as from pointing out the difficulties pos-
sibly hidden in the adoption of a “quasi”-thermodynamical
constitutive equation (TW). Further assessment of the model
validity will of course require other experiments. To this
purpose, we want to mention that we are currently collect-
ing many further experimental results in various water–PVA
systems. Our preliminary results are in full agreement with
predictions of the model introduced here.
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