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Simple generic picture of tensile toughness in solid polymer blends
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The tensile toughness T of a brittle polymeric solid can be enhanced by blending a ductile polymer. While
this common wisdom is generally valid, a generic picture is lacking that connects the microscopic details to
the macroscopic nonlinear mechanics. Using all-atom and complementary generic simulations, we show how a
delicate correlation between the side group contact density of the brittle polymers ρc and its dilution upon adding
a second component controls T . A set of chemically distinct systems follows a generic trend in T with dρc/dε,
where ε is the tensile strain. The observed trend is explained using a simple mechanical model based on the
parallel spring analogy.
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I. INTRODUCTION

Polymers are widely used in designing light weight, high
performance organic materials [1–4] that find use in items
ranging from common household utensils to complex nano-
materials [1,5–8]. Because of their wide applicability, these
materials are often exposed to a range of environmental con-
ditions, such as temperature [9–12], pressure [10,13], and/or
mechanical deformation [6,9,14–16]. Here, one important ma-
terials property is the ability to sustain large deformation
[4,16–19].

Most known commodity polymers, such as poly(methyl
methacrylate) (PMMA) [15,16], poly(lactic acid) (PLA)
[4,16], and polystyrene (PS) [20], are brittle in their glassy
states, i.e., small strain-to-fracture εf and low yield stress σy �
0.1 GPa due to their weak van der Waals (vdW) monomer–
monomer interactions, the strength of which is about kBT at
the ambient temperature, where kB is the Boltzmann constant
[21]. On the other hand, σy of a polymer can be enhanced by
about an order of magnitude when the monomer–monomer
hydrogen bonds (H bond), having an interaction strength of
about 4kBT –8kBT [3], dominate materials properties, such
as in poly(acrylamide) (PAM), poly(acrylic acid) (PAA), and
poly(vinyl alcohol) (PVA). These H-bonded systems, how-
ever, can either be brittle or ductile depending on their
respective (macro)molecular architectures. Given the above
discussion, the mechanical response remains typically re-
stricted in the single component polymeric systems and thus
often limits their broad applications.

A common route to tune the tensile toughness T =∫ ∞
0 σ (ε)dε of a brittle organic solid is by blending in another

polymer with relatively larger ductility and complementary
component-wise interactions. Here, σ , ε = ln{L(ε)/L◦}, L(ε),
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and L◦ are the true tensile stress and the true tensile strain,
the instantaneous box length, and the initial box length, re-
spectively. Experimentally relevant examples include, but are
not limited to, PMMA-PLA [16,22], PAA-PVA blends [18],
and/or PMMA-PVA [23]. These systems remain fairly misci-
ble over the full range of mixing concentrations xi.

In general, T of a blend varies monotonically between
the two pure phases with xi [18]. On the contrary, a set of
recent experiments on PMMA-PLA blends have reported a
nonmonotonic variation in T with concentration [16]. This
behavior was attributed to the formation of “so-called” co-
continuous phases, with an estimated length scale of about
several μm [16,22]. Here, a set of midsized all-atom simula-
tions have found a similar trend in T [24], suggesting that the
formation of the co-continuous phase may not be a necessary
criterion for the enhancement of T in polymers.

Traditionally, extensive research has been conducted to un-
derstand the mechanics of polymeric materials, both from the
experimental [4,16,18,20] and the simulation [14,15,17,24]
communities. Here, however, most simulation studies usually
deal with single component systems and also predominantly
at the (mesoscopic) generic level, where all-atom details
are drastically coarse-grained [21]. While such models are
extremely useful in dealing with generic polymer proper-
ties, they often (in their pristine form) lack the details that
play a key role in materials properties, unless the generic
model is specifically tuned to reproduce certain properties
of interest. In particular, when dealing with polymer blends
having very specific macromolecular structures and interac-
tions [16,18,24], special attention should be paid. Therefore,
a better understanding of the monomer-level interactions is
needed to achieve a predictive mechanical response of the
polymer blends, which to the best of our knowledge is
lacking.

In this work, we investigate the commodity organic solids
with the goals to (1) understand the effect of blending on
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the mechanical response of brittle systems, (2) show how the
monomeric structures play a key role in dictating the materials
properties, (3) connect the microscopic interaction details to
the macroscopic nonlinear mechanics, and (4) propose how
the behavior of many different chemically specific polymeric
materials can be understood within one generic framework.
To achieve the above goals, we combine all-atom and com-
plementary generic molecular-dynamics simulations with a
simple mechanical model.

The remainder of this work is organized as follows: In
Sec. II we describe the model and method related details. The
results are discussed in Sec. III and, finally, the conclusions
are drawn in Sec. IV.

II. MODEL AND METHOD

A. All-atom model

For the all-atom simulations, we have chosen experimen-
tally relevant vdW and H-bonded commodity polymers (i.e.,
PMMA, PAM, PAA, PLA, and PVA) and polymer blends
(i.e., PMMA-PVA, PAA-PVA, and PMMA-PLA). These three
blends are chosen because their microscopic interactions are
the combinations of vdW and H-bonded polymers (PMMA-
PVA), both H-bonded polymers (PAA-PVA), and both vdW
polymers (PMMA-PLA) and thus covering two common
commodity polymer interactions. Note that we have per-
formed the simulations for all systems in this work, aside from
the PMMA-PLA trajectories that were obtained earlier [24]
and reanalyzed here. The monomer mole fractions are varied
between 0.0 � xi � 1.0 in steps of 0.25. In this study, xi = 0.0
always corresponds to the pure phase of brittle polymer (BP)
and the pure second polymer (SP) at xi = 1.0. The OPLS-AA
parameters are used for PAA, PLA, and PVA [25], while the
modified atomic partial charges are used for PAM [26] and
PMMA [27]. The chain length N� = 30 monomers is chosen
for all systems except PAM, where N� = 32. The simula-
tions are performed using the GROMACS molecular-dynamics
package [28]. More system specific details are shown in the
Supplemental Material Sec. S1A [29].

B. Generic model

The bead-spring polymer model is used for the generic
simulations [21]. Note that the default bead-spring model
is highly ductile [14]. Therefore, inspired by the all-atom
BP architectures, we have parametrized a brush-like polymer
with one short (stiff) dimer attached to every second back-
bone monomer, blended with the (ductile) linear chains. The
generic monomer-monomer interactions are tuned to weakly
mimic the atomistic PMMA-PLA blends. The backbone chain
length is taken as N� = 30. The generic simulations are per-
formed using the LAMMPS package [30]. A detailed discussion
of the generic model is presented in the Supplemental Material
Sec. S1B [29]. The numbers representative of the hydrocar-
bons are the units of length d = 0.5 nm, energy ε = 30 meV,
time t◦ = 3 ps, and pressure p◦ = 40 MPa [21]. Note that, for
simplicity of presentation, we have converted all generic units
into the real units using the above estimates.

III. RESULTS AND DISCUSSIONS

In Figs. 1(a)–1(c) we show the stress-strain behavior of
three different atomistic blends under uniaxial tensile defor-
mation. As expected, blending (ductile) SPs drive (brittle)
BPs to enhanced ductility. Ideally one can argue, if SPs have
their glass transition temperatures Tg much smaller than BP
(and thus remain in their rubbery phases), the ductility or T
may increase via rubber plasticity. In our case, however, all
polymers have Tg � 355–390 K (as measured in the exper-
iments) [16,31], while the simulation results have reported
Tg � 400 K [24,32]. Because our simulations are performed
at T = 300 K, the individual components of a blend remain
deep in their respective glassy states [31,32]. This readily
excludes any explanation purely based on Tg and thus a better
understand of mechanics is needed in the multicomponent
polymers.

A. Molecular-level interlocking and its connection
to the stress-strain behavior

A comparative analysis of the monomer structures of BP
and SP reveals that one major difference between these two
sets is the presence of bulky side groups in BPs (see PAA
and PMMA structures in the insets of Fig. 1), while SPs
are relatively smooth (see PVA and PLA structures in the
insets of Fig. 1). Here, it is known that the side groups of
BPs are rather stiff and thus form extremely rugged (in-
stantaneous) structural corrugation along the chain contours.
Corrugation (or more generally speaking, the breaking of
translational Galilean invariance) is a necessary “ingredient”
to exert the shear forces upon deformation. Note also that
the side groups can flip-flop normal to the chain contours
in the melts, while these structural fluctuations are relatively
frozen in their glassy states. In this context, it has been previ-
ously shown that the presence of stiff side chains may serve
as a necessary criterion to control the brittleness in a solid
PMMA [15].

Within the picture discussed above, the side groups of two
or more neighboring chains can interlock [33], shown by the
schematic in Fig. 2(a). Here, the side groups can interact by ei-
ther vdW or H bonds. The stronger the side chain interaction,
the larger the σy values. We find σ PMMA

y < σ PAA
y < σ PAM

y ,
see the Supplemental Material Fig. S9 [29]. This is expected
because two PMMA side chains interact via weak vdW in-
teraction, while two PAA and two PAM can form 0.84 and
1.52 H bonds per monomer, respectively. When a pure BP
is deformed, the rigid side chain contacts break via relative
motion of the chains and thus the sliding molecules overcome
the effective free-energy barriers. Such broken contacts ini-
tiate cavitation at around the yield strain, i.e., εy � 0.1–0.2,
see Fig. 1. Beyond εy, the systems go into the flow regime
with growing voids, leading to their coalescence and ultimate
fracture.

When the SP molecules are added, they lubricate the
side chain contacts and thus dilute their density ρc, see the
schematic in Fig. 2(b). This microscopic molecular arrange-
ment increases εf and also hinders the growing voids via
rearrangements of SPs. The extent of molecular ruggedness
that a molecule feels, while moving in the homogeneous bulk,
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FIG. 1. True stress σ as a function of true strain ε for three different atomistic blends, namely, (a) poly(methyl methacrylate) (PMMA) and
poly(venyl alcohol) (PVA), (b) poly(acrylic acid) (PAA) and PVA, (c) PMMA and poly(lactic acid) (PLA), and (d) the generic model. The data
are shown for five different PVA and PLA and four (generic) linear chain monomer mole fractions xi. Here, xi = 0.0 corresponds to the pure
brittle phase. The corresponding monomer structures are shown in the insets. σ for the generic model is converted using a factor p◦ = 40 MPa
[21]. Note that the data for PMMA-PLA blends are taken from Ref. [24].

is related to xi and has a direct implication on a moving poly-
mer. The mean-squared-displacement C(t ) data, shown in the
Supplemental Material Figs. S2 and S3 [29], provide evidence
that the polymer diffusion D increases with increasing xi.
Within the linear response, different damping contributions
are linearly additive and thus the effective damping γ ∝ 1/D.
Furthermore, following C(t ) in the Supplemental Material
Figs. S2 and S3 [29], it becomes apparent that the molecular-
level ruggedness (or corrugation) reduces with increasing xi.
In the glassy state, we also expect the relative ruggedness
across different samples to remain the same. Note that the
statement above does not aim to make a direct quantitative
comparison between the melt and the glassy states, rather
only a qualitative comparison without attempting to discuss
the time-temperature superposition.

The systems investigated in this study have larger ductility
than the experimentally reported values [4,16,18,20]. This is
particularly because the quenching rates (i.e., from melt to
glass) in the simulations are usually several orders of mag-
nitude faster than the corresponding experiments and thus
lead (in most cases) to poorer annealed samples [34]. Such
samples usually have a broad distribution of σ , leading to a

FIG. 2. Schematic representations of the direct contacts between
(a) the brittle polymers (BP) before and (b) after including the
second polymer (SP). For the simplicity of presentation, the one-
dimensional projection of the effective roughness (or the effective
free-energy landscape) of the molecules along the chain contours is
shown. The gray and red lines represent (rugged) BP and (smooth)
SP molecules, respectively.

larger εf and also in some cases rather long decaying tails in
the stress-strain curves, see Figs. 1(a)–1(c). On the contrary,
the well-annealed samples have a narrow distribution in σ

and thus all sites fail almost at once, as evident from the
smaller εf . Here, however, it is important to note that our
simulation samples are prepared using an identical protocol
and, considering that this study aims at the relative trends and
not exact numbers, we believe Fig. 1 presents a reasonable
picture.

If the observation discussed above is generic, the trends in
Figs. 1(a)–1(c) should also be visible in a generic (chemically
independent) model, only by incorporating the molecular
ruggedness. In Fig. 1(d) the generic data are presented. It can
be appreciated that the trends observed in Figs. 1(a)–1(c) is
also reproduced by the generic model. When the side groups
of BP are made flexible (i.e., preventing them to interlock),
the same generic systems can become significantly tougher,
see the Supplemental Material Fig. S10 [29].

B. Interlocking contact density and tensile toughness

So far we have only presented a qualitative picture of me-
chanics in blends. We now attempt to draw a more quantitative
comparisons between ρc(ε) and T . Here, ρc(ε) = Nc(ε)/v(ε),
with Nc(ε) and v(ε) being the number of side chain contacts
and the instantaneous system volume, respectively. In the
all-atom simulations, Nc(ε) is calculated when the center of
masses of two neighboring side chains are within a distance
rmin � 0.65 nm, i.e., the minima after the first peak of pair
distribution function. In the generic model, rmin � 1.5 σ [35].

In Fig. 3 we show ρc(ε) for the all-atom and the generic
systems. It can be appreciated that (a) ρc(ε) decreases with
increasing ε, which is expected because tensile deformation
breaks the side chain contacts. (b) Increasing xi generally
dilutes ρc(ε), hence the weaker decay rates are observed for
ε > εy (shown by the vertical dashed lines in Fig. 3).

The individual data sets in Fig. 3 show two different
dρc(ε)/dε regions. A relatively rapid initial decay for εy <

0.2 (in all-atom) and εy < 0.1 (in generic), where dρc(ε)/dε

is dominated by the disruption between side groups, see Fig. 1.
The second linear decay beyond εy occurs when the individual
systems reach the stationary flow regime (or the plastic flow),
where the voids grow by breaking the side chain contacts to
control T and also SPs rearrange to control the void growth.
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FIG. 3. Density of side chain contacts �ρ
c
= ρc (ε) − ρc (0) as

a function of true strain ε between the neighboring monomers of
the brittle polymers in the blends of (a) poly(methyl methacry-
late) (PMMA) and poly(vinyl alcohol) (PVA), (b) poly(acrylic acid)
(PAA) and PVA, (c) PMMA and poly(lactic acid) (PLA), and (d) the
generic model. For better visibility of the relative variation in the
data, we have shifted all curves with respect to ρc (0) of the unstrained
system, i.e., at ε = 0. In the generic model, dρc/dε is scaled using
the unit conversion d = 0.5 nm [21]. Data for PLA-PMMA blends
is derived from our earlier simulation trajectories in Ref. [24]. The
vertical dashed lines show the ε values at the yield points, see Fig. 1.

We calculate the slopes S = dρc(ε)/dε in the stationary flow
regimes, where the behavior is reasonably well described by a
simple linear form ρc(ε) = ρ◦ + Sε.

Figure 4 shows the variation of toughness-to-strength ratio
T /σy with S�3

◦. Here, �◦ is a microscopic length scale equal
to the equilibrium distance between the center of masses of

FIG. 4. A master curve relating the normalized tensile toughness
T /σy with the change in side chain contact density ρc upon defor-
mation, as quantified by the slope S = dρc(ε)/dε. Here, σy and �◦
are the yield stress and the equilibrium distance between the center
of masses of two side groups of the brittle polymers, respectively.
Note also that S is negative by definition and thus we only use its
magnitude |S|. The line is a fit to the data using Eq. (3). While most
data sets are shown for uniaxially deformed samples, we also present
one case study in which a set of PMMA-PVA blends is biaxially
deformed.

FIG. 5. A schematic representation of the parallel spring model
developed in this study. Here, a solid polymer blend is considered as
a three-dimensional network of springs. Within a simple approxima-
tion, a system consists of Ns slices of parallel springs, each containing
on average nc springs, along the direction of deformation with veloc-
ity v. L◦ and �◦ are the unstrained box length and equilibrium spring
length, respectively. k is the spring constant.

two side groups of BP, which ranges between 0.45–0.55 nm
for the all-atom systems. For the generic, we have chosen
�◦ = 21/6d � 0.56 nm, i.e., the distance between the particles
of the side groups. Note that �◦ values are estimated from the
positions of first correlation peaks in their pair distribution
functions. It can be appreciated that our choice of chemical
specific systems and the generic system fall onto one empir-
ical master curve. Here, most data sets are obtained under
uniaxial loading, where mechanics is dominated by the shear
forces of sliding molecules. One set of data under biaxial
loading, where the cavitation is enhanced (see the Supple-
mental Material Figs. S6 and S7 [29]), also supports the same
empirical trend.

C. A simple model based on the parallel spring analogy

The data sets in Fig. 4 show a reasonable correlation across
several samples; it is, however, also important to investigate if
this behavior can be explained within a description by only
incorporating some microscopic details. For this purpose, we
use a simple (mechanical) model based on the parallel springs
analogy (PSA) [36]. PSA has a rather broad application rang-
ing across linear vibration theory [37], polymeric materials
[38], random fiber networks [39], and mechanics of a single
fiber [40].

In this simple model, an organic solid is modeled as a
network of three-dimensional springs consisting of Ns slices
along the direction of deformation, where each such slice
on average consists of nc parallel springs with stiffness ki,
see Fig. 5. Here, one side chain interlocking represents one
spring contact. If we consider that all contacts contribute
equally to the loading, i.e., ki � k, the force within one slice
reads f (δ) = ∑nc

i=1 kiδ = knc(δ)δ and thus the total force on
a sample will also be F (δ) = knc(δ)δ, which stems from
the fact that the slices are connected in series (i.e., similar
to the springs in series approximation) and thus the total
force is the same as the force within a slab [41]. Under
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FIG. 6. A schematic representation of the stress-strain behavior
with a well-defined rectangular ductile region. Here, εy and εf are the
yield and failure strains, respectively.

the affine assumption, the local (microscopic) displacement
δ = �◦(eε − 1), where ε = ln{�(ε)/�◦} is the true strain. Here
�◦ is the equilibrium distance between the centers of mass of
two side groups of BP. The tensile stress σ then follows from
F using

σ (ε) = k
nc(ε)ε�◦

A(ε)
= kρc(ε)ε�◦�(ε), (1)

where ρc(ε) = Nsnc(ε)/v(ε). A(ε), v(ε) = A(ε)L(ε), and
�(ε) = �◦eε are the instantaneous cross-sectional area in
the lateral directions, the instantaneous volume, and the
slice length along the direction of deformation, respectively.
L(ε) = Ns�(ε) is the total instantaneous length of a system.
Following this argument, we can now write the toughness-to-
strength ratio as

T
σy

= 1

σy

∫ εf

0
σ (ε)dε = k�2

◦
σy

∫ εf

0
ρc(ε)eε(eε − 1)dε. (2)

Equation (2) leads to an empirical solution,

S�3
◦ �

1 − k′�3
◦ρ◦

σy

∑4
i=1 bi

( T
σy

)i

k′
σy

∑4
i=1 ci

( T
σy

)i+1 , (3)

where k′ = k/�◦ is a modulus and the constant prefactors bi

and ci are in listed in Ref. [42]. Going from Eq. (2) to Eq. (3),
we enforce a condition that dσ/dε = 0 for ε > εy and thus
one can approximate εf � T /σy, see the schematic in Fig. 6.

Equation (3) is plotted as a solid line in Fig. 4, with
k′�3

◦ρ◦/σy < 1. It can be appreciated that the model predic-
tion of Eq. (3) agrees reasonable well with the simulation
data in Fig. 4. This further reinforces a picture directing at
a possible route towards the tunability in T /σy and its links
to the atomic-level details. Note that, even when the model
prediction of Eq. (3) uses a fixed k (i.e., linear), the model
itself is nonlinear due to the behavior of ρc.

We note in passing that Eq. (3) is derived for the true strain
estimates. However, for the relatively smaller ε values (as in
our cases), the model prediction is dominated by the leading-
order terms (i.e., for i > 2), while the higher-order terms only
contribute less than 5% to the data shown in Fig. 4.

With the model presented in this study, we do not wish
to claim that our treatment captures all the necessary ingre-
dients of the underlying complex macromolecular systems.
Instead, we have attempted to propose a simple model that
can reasonably capture the functional dependence shown in
Fig. 4. Of course, one may formulate a model that incorporates
more system-specific complexities that (a) will be extremely
nontrivial given that there are many competing interactions
in these systems. (b) Our simple model captures most of
the important features within the leading-order contributions,
while the other complexities are expected to play only minor
roles.

IV. CONCLUSION

We have performed large-scale molecular-dynamics simu-
lations to study the mechanics of solid commodity polymer
blends. We show how a delicate balance between the (macro-
molecular) side chain organizations, resultant corrugation
along the chain contour, and their interlocking controls the
tensile toughness T of a polymeric material. Our study estab-
lishes a relationship between the microscopic interactions and
the macroscopic nonlinear mechanics, which follows a univer-
sal empirical relationship across a wide range of polymeric
systems. To better understand this behavior, we have also
formulated a simple model based on the springs in parallel
analogy. The simplified picture presented here may serve as
a guiding tool for the development of advanced functional
materials with tunable and predictive mechanical properties.

It will certainly require more detailed experiments to val-
idate our scenario. One plausible path might be to follow
the protocol presented in an earlier study of one of us [43],
where a proton nuclear magnetic resonance (NMR) setup was
used to obtain the local side chain organizations between the
neighboring nonbonded monomers. Here, we expect that the
on-the-fly NMR measurements (at different ε) might give
direct information about ρc and thus can lead to a better
understanding of the underlying atomistic picture in these
commodity organic solids.
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