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Wide-angle and high-efficiency acoustic retroreflectors enabled by many-objective
optimization algorithm and deep learning models
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By redirecting the incident wave energy back toward the source or sensor, retroreflectors mitigate signal losses,
render a higher signal-to-noise transmission with improved sensing performance, and are highly desirable in
acoustic applications such as remote sensing and detection, medical ultrasound imaging, and underwater com-
munications. In this paper, we propose a different and efficient approach to realize a wide-angle high-efficiency
retroreflector that is based on the design frame of acoustic metagrating. By integrating a many-objective
optimization algorithm with a deep learning neural network, we construct a comprehensive and efficient
optimization framework to intelligently design the metagrating so that its seven different diffraction orders work
synergistically to realize the intended high-efficiency retroreflection functionality over a broad and continuous
range of incident angles. Compared with the existing approaches based on corner cubes, Luneburg lenses, or
dual-layer metasurfaces, the single-layer configuration of the retroreflector has a relatively simple unit-cell
structure and can be easily extended to higher working frequencies. Both the proposed design paradigm itself and
the high-performance retroreflector configuration may find applications in various scenarios including ultrasonic
detection and imaging, music performance monitoring, and underwater communications.
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I. INTRODUCTION

Retroreflection refers to the physical phenomenon that
an electromagnetic or sound wave is reflected back to its
source along the direction antiparallel to the direction of
incidence (i.e., θr = −θi). By redirecting the incident wave
energy back toward the source or sensor, retroreflectors miti-
gate signal losses during the transmission process, rendering
a higher signal-to-noise ratio (SNR) of the echo signal with
improved sensing performance, thus contributing to realistic
applications such as remote sensing and detection, high-SNR
communications, and distributed sensor networks. As a kind
of conventional retroreflector, the corner cubes [1] can real-
ize the retroreflection function by letting the incident sound
wave undergo multiple reflections with three mutually perpen-
dicular intersecting plates and redirecting the incident wave
back to its original direction. The cat’s eye configuration,
another conventional retroreflector composed of a focusing
lens and a concave mirror placed at the focal point of the lens,
is also a volumetric device [2]. These bulky and nonplanar
retroreflection devices usually involve configurations of large
size, curved shaped, and limited performance. However, low
weight, cost effectiveness, and a planar configuration (easier
for integration with other functional components) are desir-
able features for realistic applications. Thus, the development
of a retroreflector with a planar structure, a smaller dimension
scale, and higher reflection efficiencies over a wide range of
incident angles is highly desired.
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Acoustic metamaterials [3,4], a class of artificial materials
with intendedly designed unit-cell structures and composi-
tions, have attracted much attention in recent years due to
their ability to control and manipulate the acoustic wave with
intriguing functionalities beyond the capabilities of natural
materials. The Luneburg lens [5,6] was designed to work in
conjunction with an arcual mirror to enable acoustic retrore-
flection over a wide range of incident angles. On the other
hand, the concept of a metasurface was proposed ∼10 years
ago, which was based on the generalized Snell’s law and can
be viewed as a two-dimensional (2D) version of metamaterials
[7–11]. Metasurfaces have the ability to manipulate the phase
and amplitude of the incident wave through their subwave-
length unit-cells arranged in a planar configuration. Along
this line, planar acoustic retroreflectors consisting of cascaded
dual-layer metasurfaces [12,13], reconfigurable metasurfaces
[14,15], and reflective metasurfaces with a curved surface
shape [16] were constructed to demonstrate the interesting
retroreflection effect.

However, for either Luneburg lenses or metasurface-based
retroreflectors, their design process involves the discretiza-
tion, fabrication, and assembly of deep subwavelength unit-
cells, and slight misalignments of their internal structures
can significantly reduce the efficiency of retroreflection and
even result in the disappearance of the retroreflection effect.
In addition, the Luneburg lens is based on an ideally con-
tinuously varying index profile over a circular area in 2D
or a spherical volume in three dimensions, which is more
difficult to implement than a planar device [5,6]. For the
metasurface-based retroreflectors, the subwavelength inter-
nal structures or waveguide channels may induce thermal
viscosity and bring about nonnegligible energy losses [17],
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especially for high-frequency acoustic waves. Furthermore,
the impedance mismatch [18,19] between the incident and
scattered waves will lead to a significant reduction in the
scattering efficiency of metasurfaces, particularly for large
steering angles. Obviously, the limitations of the existing
approaches to retroreflectors are not beneficial to practical
applications.

In parallel, the notion of metagrating was proposed re-
cently as a design frame [20–22], which was based on the
grating diffraction theory rather than the generalized Snell’s
law. With properly designed unit-cells (i.e., meta-atoms),
metagratings can redirect the incident wave energy exclu-
sively to the desired direction with nearly unitary efficiency,
even for large scattering angles [20–31]. In addition, the unit-
cells of metagrating usually have a simpler structure than
those of metasurfaces, avoiding the discretization of a contin-
uous impedance profile with deep subwavelength structures,
which is beneficial to sample fabrication and realistic applica-
tions. For these reasons, several metagrating-based acoustic
retroreflectors were proposed and studied [32–43]. By uti-
lizing periodically modulated grooves or cavities [32–40],
C-shaped brass particles [41], or binary cells with π -phase
difference [42] as the unit-cells of the metagratings, authors
successfully demonstrated the retroreflection phenomenon
and associated cloaking [33–35] or tweezing [39] effects
for airborne and waterborne acoustic waves as well as elas-
tic flexural waves [40]. However, these metagrating-based
retroreflectors only work for a few fixed and discrete incident
angles. Very recently, angular-adaptive retroreflectors based
on reconfigurable metagratings or metasurfaces were demon-
strated, but they are active devices requiring mechanically
tuning the folding state [43] or use a pumping system or mi-
cromotors electrically controlled by a field programmable gate
array [14,15] and are thus more complicated and expensive
than passive devices.

In this paper, we aim to realize a passive, low-cost, low-
profile, and wide-angle acoustic retroreflector based on a
planar metagrating. To achieve an ideal retroreflection ef-
fect over a wide and continuous range of incident angles,
an infinite number of diffraction orders of the metagrating
is needed so that each incident angle corresponds to the
same reflection angle enabled by one particular diffraction
order. However, an infinite number of diffraction orders is
obviously unfeasible, both theoretically and experimentally.
Therefore, we adopt a different but efficient approach here
and utilize a metagrating with finite diffraction orders. Our
key idea is to relax the strict exact retroreflection condition
(θre = −θin) to a more realistic and feasible quasietroreflec-
tion one (θre ≈ −θin). To be more specific, we utilize seven
different diffraction orders of the metagrating to realize a
wide-angle retroreflection functionality. To this end, we use a
many-objective optimization (MOO) algorithm to handle the
tradeoffs between seven conflicting optimization objectives
and realize high-efficiency retroreflection over a broad and
continuous range of incident angles (13.7◦ � |θin| � 78.7◦).
Furthermore, we develop and train a predicting neural net-
work (PNN) as an ultrafast deep learning model [44–48]
with high prediction accuracy and combine it with the MOO
algorithm to substantially accelerate the optimization pro-
cess over the huge parameter space. With this comprehensive

MOO + PNN model, we can quickly find the globally
optimized solutions that faithfully realize the intended retrore-
flection effect. The finally optimized configuration of the
metagrating has a relatively simple structure and is easy to ex-
tend to higher working frequencies. Both the proposed design
paradigm itself and the high-performance metagrating-based
configuration may find applications in various scenarios such
as remote sensing, ultrasonic detection and imaging, music
performance monitoring, and underwater communications.

II. THEORY

According to the theory of grating diffraction, a plane wave
incident at the angle of θin will be reflected by the grating
into several diffraction channels, with each channel denoting
a distinct reflection angle θre. From the diffraction analysis,
the relationship between them can be expressed as k0 sin θin +
m 2π

d = k0 sin θre, where k0 = 2π
λ

is the wave number of the
acoustic wave in the air background, d represents the peri-
odicity of metagrating, and m is the diffraction order of the
reflected wave. Here, m is an integer and can take only a
few possible values because both the incident and reflected
angles are confined within the range of 0◦ � |θin(re)| � 90◦.
To achieve the exact retroreflection effect, we should have
θre = −θin, where θre and θin have opposite signs because the
reflection and incident angles lie at the same side of the grating
normal. To achieve the quasiretroreflection effect over a wide
angular range, we should have θre ≈ −θin, as schematically
shown in Fig. 1(a).

For the mth diffraction order of the metagrating, the exact
retroreflection condition θre = −θin can be achieved if θin =
arcsin( −m

2 · λ
d ), where the diffraction order m is negative to

enable the retroreflection. Without loss of generality, we set
the periodicity of the grating as d = 1 m. To achieve the
quasiretroreflection effect over a large angle range of 0◦ �
θin � 80◦, we assume the frequency of the acoustic wave be
f0 = 1600 Hz so that the corresponding wavelength in air is
about λ0 = 0.21 m. In this way, we need to consider ∼9 or 10
diffraction orders of the reflected waves, which is a balanced
value when considering both design difficulty and retroreflec-
tion efficiency. In principle, we can use a metagrating with
a larger periodicity d for a given frequency so that more
diffraction orders are involved in the reflected wave. However,
too many diffraction orders that need to be simultaneously
controlled lead to a highly challenging inverse design task and
can result in a very complicated configuration of the unit-cell,
as will be discussed later in more detail. In this paper, our
primary aim is to demonstrate the principle and feasibility of
the design paradigm and showcase the retroreflection func-
tionality with an exemplary and simple implementation of the
metagrating.

To be more specific, the relationship between the incident
angle θin and reflection angle θre for different diffraction
orders (m = −1,−2, . . . −9) are plotted as dotted lines
with different colors in Fig. 1(b). For example, the red
dotted line represents the m = −2 diffraction order. The
diagonal black dashed line denotes the exact retroreflection
condition (θre = −θin), and its intersections (marked by
yellow stars) with different diffraction orders indicate the
discrete values of θin that can be exactly retroreflected. For
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FIG. 1. Schematic of a metagrating-based retroreflector. (a) An illustration of the exact retroreflection and quasiretroreflection functionality.
(b) The colored dotted lines represent the relationship between θre and θin for different diffraction orders (m = −1, −2, . . .−9) of the
metagrating. The diagonal black dashed line represents the exact retroreflection condition (θre = −θin), and its intersections with the dotted
lines (marked by yellow stars) imply that the exact retroreflection effect can be achieved only for several discrete incident angles. The
light-blue-shaded region represents the quasiretroreflection range (|θin + θre| � 10◦), within which the dotted lines are marked by red lines.
The continuity and/or overlap of red lines in terms of θin suggest the possibility of a wide-angle quasiretroreflection effect. (c) The functionality
of a wide-angle retroreflector. (d) The unit-cell configuration of the metagrating, with each unit-cell consisting of a tree-shaped sound-hard
material and a triangular groove.

example, with m = −6 in the exact retroreflection condition
θin = arcsin( −m

2 · λ
d ), we obtain θin = −θre = 39.6◦, which

specifies the incident angle that can be exactly retroreflected
by the −6th diffraction order. Obviously, different
diffraction orders m correspond to different θin, with θ exa

in =
6.1◦, 12.3◦, 18.6◦, 25.2◦, 32.1◦, 39.6◦, 48.1◦, 58.2◦, and
73.0◦ being the incident angles of exact retroreflection en-
abled by m = −1,−2,−3, −4, −5, −6, −7, −8, and − 9,
respectively.

To achieve a wide-angle retroreflection effect, as shown
schematically in Fig. 1(c), we relax the exact retroreflec-
tion condition of θre = −θin to a quasiretroreflection one of
|θin + θre| � 10◦. That is to say, the reflection angle is allowed
to span a narrow range around −θin with an upper limit
θre = −θin + 10◦ and a lower limit θre = −θin − 10◦ when
the incident angle is θin. Such quasiretroreflection regions are
highlighted with a light blue background in Fig. 1(b). Red
solid lines represent the θin and θre ranges that can realize
the quasiretroreflection effect with different diffraction orders.
For example, with m = −6 in θre = arcsin(sin θin + m λ

d ) and
|θin + θre| � 10◦, we can obtain 34.8◦ and 44.7◦ as the lower
and upper limits, respectively, of the θin range that can achieve
the quasiretroreflection effect enabled by the −6th order.

With above diffraction analysis, we design an acoustic
metagrating for airborne sounds, as illustrated schematically
in Fig. 1(c), where each unit-cell (i.e., meta-atom) consists of
a tree-shaped sound-hard structure and a triangular groove.
The geometrical parameters w1, w2, w3, w4 and h1, h2, h3, h4

are explicitly marked in Fig. 1(d). The background material
is air, with a mass density of 1.29 kg/m3 and sound velocity

of 340 m/s. Without loss of generality, we aim to design a
metagrating-based retroreflector working for a wide range of
13.7◦ � θin � 78.7◦.

From the grating diffraction theory, for an incident wave
within the range of 13.7◦ � θin � 23.6◦, a high-efficiency
quasiretroreflection effect can be realized by the −3rd diffrac-
tion order. In a similar way, for incident waves within the
ranges of 20.3◦ � θin � 30.2◦, 27.3◦ � θin � 37.2◦, 34.8◦ �
θin � 44.7◦, 43.3◦ � θin � 53.2◦, 53.6◦ � θin � 63.5◦, and
68.8◦ � θin � 78.7◦, it is possible to realize the quasiretrore-
flection functionality with the −4th, −5th, −6th, −7th, −8th,
and −9th diffraction orders, respectively. In this way, a broad-
angle retroreflection functionality can be realized by stitching
together each range of θin enabled by different diffraction
order m.

To this end, we use an intelligent optimization algorithm to
design the metagrating-based retroreflector, where the reflec-
tion efficiency at the seven discrete incident angles (θ exa

in =
18.6◦, 25.2◦, 32.1◦, 39.6◦, 48.1◦, 58.2◦, and 73.0◦) at
seven diffraction channels (m = −3, −4, −5, −6, −7, −8,
and −9) are set as the optimization objectives. We note that,
although only seven reflection efficiencies at seven incident
angles are being optimized, the resultant reflection efficiencies
at other incident angles are also being optimized at the same
time, as will be shown later. In short, we need to optimize
eight geometrical parameters to simultaneously handle seven
optimization objectives. Obviously, with eight parameters to
be simultaneously optimized, the parameter space is huge.

For the traditional single-objective optimization algorithms
such as the genetic and particle swarm optimization algo-
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rithms, usually only a single design objective needs to be
considered. Although we can construct an average function
such as Ravg = ∑−9

m=−3 cmRm (cm is the adjustable weight fac-
tor, and Rm is the reflection efficiency for the mth diffraction
order, with its definition and calculation method detailed in
Appendix A) to simplify the original multiobjective targets
into a single-objective one, such a brute-force simplification
would lose important information in the objective space and
make the algorithm stuck in a local minimum instead of
finding a global minimum [49]. Therefore, the traditional
single-objective optimization algorithms are not suitable for
the design of a wide-angle retroreflector. To this end, we uti-
lize a MOO algorithm to simultaneously handle seven distinct
objective functions and avoid getting trapped in local optimal
solutions.

MOO is a type of vector optimization that has been applied
in many fields of science where optimal decisions need to be
taken in the presence of tradeoffs between two or more con-
flicting objectives. For a nontrivial MOO problem, no single
solution exists that simultaneously optimizes each objective.
In that case, the objective functions are said to be conflicting.
A solution is called nondominated or Pareto optimal if none
of the objective functions can be improved without degrad-
ing some of the other objective values. Without additional
subjective preference information, there may exist several
Pareto optimal solutions, all of which are considered equally
good.

In this paper, we employ NSGA-III [50], an advanced and
powerful MOO algorithm that is predominantly suitable for
addressing optimization challenges characterized by multi-
ple conflicting objectives. The fundamental steps of NSGA-III

encompass nondominated sorting, reference-point-based sort-
ing mechanism, tournament selection operations, as well as
crossover and mutation operations. In each iteration of NSGA-
III, tournament selection is employed to pick the superior
individuals as parents, followed by crossover and muta-
tion operations to construct the new individuals (offspring).
Subsequently, nondominated sorting is applied to rank the
population composed of both offspring and parent individuals
based on the performance on specific targets. In addition, the
reference-point-based sorting mechanism contributes to main-
tain the distribution of solutions, ensuring a uniform spread
of solutions along the Pareto front, thereby mitigating issues
related to local convergence. Compared with other MOO al-
gorithms such as NSGA-II and MOPSO, NSGA-III is particularly
suited for MOO problems with three or more objective func-
tions.

As mentioned previously, the inverse design of a
metagrating-based retroreflector can be formulated as a MOO
problem with seven distinct objectives, i.e., simultaneously
maximizing the reflection efficiencies along seven diffraction
channels (m = −3, . . . ,−9). Here, we use COMSOL Multi-
physics for the calculation of the reflection efficiencies. Then
the loss functions can be written as Lm = (1 − Rm)2, respec-
tively, and the minimization of Lm leads to the maximization
of Rm. Obviously, they conflict with each other due to the
law of energy conservation, i.e.,

∑
m Rm = 1. Thus, this prob-

lem is particularly suitable for NSGA-III. In this stage, we set
the population size as 300. After conducting 30 000 COMSOL

simulations with a time cost of 16 h, NSGA-III finds one set

of Pareto solutions that contains at least one optimized solu-
tion with high-reflection efficiencies for all related diffraction
orders. Their retroreflection efficiencies are relatively high
(e.g., Rm > 0.5 for all m) but still far from perfect, simply
because the parameter space is too big for NSGA-III to find
the global minimum in one go. Thus, we called them sub-
optimized or nearly optimized solutions. Interestingly, such
suboptimized solutions are often concentrated as clusters,
where high-quality solutions with high-reflection efficiencies
are distributed within several small regions in the parame-
ter space. Repeating this optimization process with different
initial guesses, we find 23 suboptimized solutions in the
parameter space. In the optimization process, for each indi-
vidual, we need to accurately calculate its reflection spectra of
multiple diffraction orders over a wide angular range, which
is indeed time consuming when using COMSOL. Following this
way, it takes about ns × 16 h for us to find ns suboptimized
solutions. Since the (eight-dimensional) parameter space is
huge, these suboptimized solutions are usually not globally
optimized solutions, even after we repeat the above process
many times. Thus, we must find an alternative way to greatly
enhance the optimization efficiency.

To this end, we develop and train a PNN and combine
it with NSGA-III to work synergistically to accelerate the
optimization process. Given enough data, the PNN can be
trained to learn the nonlinear relationship between the de-
sign parameters of the metagrating (geometrical parameters
such as w1,2,3,4 and h1,2,3,4) and their response functions (the
reflection efficiency Rm as a function of θin). After training
well, the PNN can quickly and accurately predict the re-
flection response from the geometrical parameters, serving
as an efficient predicting model with minimal prediction er-
rors. In this way, significantly enhanced calculation efficiency
can be achieved by PNN, three orders of magnitude faster
than COMSOL. Therefore, even though it takes some time to
develop and train the PNN, in total, we can achieve greatly im-
proved optimization efficiency when integrating the PNN with
NSGA-III.

As mentioned above, each meta-atom of the metagrating
is characterized by eight design parameters, which implies
a huge parameter space (or design space). Training a PNN
that can thoroughly and completely map the whole design
space to the response space would demand a staggering
amount of data, rendering it impractical. However, in applying
NSGA-III, we notice that high-quality data (those with high-
retroreflection efficiencies) tend to cluster around smaller
regions in the parameter space, while other regions are filled
with low-quality data and can be safely disregarded. Thus, ex-
cluding those spacious low-value regions can greatly enhance
the optimization efficiency and is beneficial to the searching
of global optimized solutions.

Along this routine map and starting from the 23 subop-
timal solutions previously found, we develop and train 23
PNNs and then integrate it with NSGA-III to design the retrore-
flector more efficiently. Firstly, we define a small region in
the parameter space around each suboptimal solution, i.e.,
{Di|dopt,i − 0.05 × dspan � d � dopt,i + 0.05 × dspan}, where
dspan represents the diameter of the geometrical parameter
(i.e., the difference between the upper and lower limits), and
i = 1, . . . , 23 denotes the ith region. Within each region Di,
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FIG. 2. (a) In the first stage, we use NSGA-III and COMSOL to perform the many-objective optimization. After conducting 30 000 COMSOL

simulations, NSGA-III can find one set of Pareto solutions. Repeating this optimization process, we find 23 suboptimized solutions and 23
small regions in the parameter space. (b) In the second stage, we develop and train 23 predicting neural networks (PNNs) and integrate it with
NSGA-III to accomplish the inverse design task. An initial training dataset of the PNNs is formed by utilizing the data in the 23 small regions.
Then we concurrently use NSGA-III to generate new solutions, use COMSOL to evaluate their reflection response, and iteratively extend the
training dataset of PNNs with high-quality data. In each cycle of the inverse design process, we use NSGA-III to continuously and intelligently
explore the 23 small regions and search for high-quality data with higher reflection efficiencies and select the best ones and supplement them
into the training set to iteratively retrain the PNNs. In this way, the training dataset can be iteratively updated and refined in each cycle, leading
to the continuously accumulation of high-quality data. Repeating such a cycle 10 times, we finally find the sets of optimized solutions that can
produce the desired retroreflection functionality. At the same time, we obtain 23 PNNs with a high prediction accuracy. Using this NSGA-III +
PNN framework, the design efficiency of the retroreflector can be greatly enhanced.

we randomly sample 1000 sets of design parameters and
calculate their diffraction responses, which takes ∼40 min
for each Di. For simplicity, we call each set of design pa-
rameters and the diffraction response as one datum. These
1000 data are utilized as the initial training data of one PNN.
There are 23 PNNs for 23 regions. Each PNN is a fully
connected neural network consisting of four hidden layers
with 500–500–500–500 neurons, where the rectified linear
unit is used as the activation function. The input layer con-
tains eight neurons, representing the eight design parameters
of each meta-atom, while the output layer consists of seven
neurons, denoting the retroreflection efficiencies along seven
diffraction channels. The activation function of the output
layer is a sigmoid function to ensure that the output values
of the PNN (i.e., retroreflection efficiencies) fall within a
reasonable range between 0 and 1. For the training of the
PNNs, we employ the adaptive moment estimation algorithm
optimizer to iteratively update the weights and biases of the
neurons. The objective is to minimize the mean absolute error
loss function, denoted as L = 1

N

∑N
n=1 |S(n)

simu − S(n)
pred|, where

|S(n)
simu − S(n)

pred| represents the absolute difference between the

COMSOL simulation results S(n)
simu and the predicted values of

the PNN S(n)
pred, with n denoting each datum. With the learn-

ing rate and batch size set as 0.001 and 64, respectively,
the training error of the PNN is effectively minimized to an
ideal value of ∼0.02, with the typical training time being
∼6 min. Compared with COMSOL, a well-trained PNN can
provide highly accurate predictions with small errors in the
diffraction efficiencies. Therefore, we can replace the rigorous
COMSOL simulations with the PNN model and concurrently
use the PNNs and NSGA-III for the inverse design of the
retroreflector.

Next, we integrate NSGA-III with the PNNs to accomplish
the inverse design task of the metagrating. At this stage, the
population size of NSGA-III is set as 1000. We use the previ-
ously trained PNNs to predict the response function of each
individual, and the predicted reflection response is feedback
to NSGA-III to generate new sets of parameters and further
optimize the response function. After 200 000 times of PNN
predictions, the optimization algorithm concludes and outputs
the optimized solutions; among them, 300 solutions with the
best performance are saved. We repeat the above process five
times with different initializations of NSGA-III and then select
the 300 best data with the highest diffraction efficiency Ravg.
The above generation and selection process costs ∼30 min.

Then we calculate the reflection efficiencies of these 300
high-quality solutions with COMSOL and add them to the
training dataset of each PNN. Each iteration of the inverse
design process is illustrated in Fig. 2(b). After the 300 data are
added, the PNN is retrained, and it follows that the prediction
precision of PNN is further improved. We repeat this iteration
10 times and each time add 300 data to the training set of
PNN. With the original 1000 data, at the end, a big set of
4000 high-quality solutions are found in each Di. In total,
we have 23 × 4000 high-quality data for all 23 Di regions,
which constitute the ultimate training data of the PNNs. In this
way, the prediction accuracy of the PNNs can be iteratively
improved. Finally, the PNNs can replace COMSOL with neg-
ligible prediction errors. With the help of the high-accuracy
PNNs, we can greatly improve the optimization efficiency of
NSGA-III. As a result, a set of globally optimized solutions
can quickly be found with this comprehensive NSGA-III +
PNN framework, where the time cost is much less than the
conventional NSGA-III + COMSOL model.
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FIG. 3. The retroreflection response of the globally optimized solution. (a) The reflection efficiencies for the m = −1, . . . , −9 diffraction.
Each order achieves its maximum reflection efficiency at the exact retroreflection angle, with the reflection efficiencies being 78.8, 72.1, 92.8,
82.4, 82.2, 94.7, and 91.7% for θ exa

in = 18.6◦, 25.2◦, 32.1◦, 39.6◦, 48.1◦, 58.2◦, and 73.0◦, respectively. (b) The two-dimensional (2D) map of
the diffraction response, with bright and dark colors representing high- and low-reflection efficiencies, respectively, indicating a wide-angle
retroreflection effect for 13.7◦ � θin � 78.7◦.

III. RESULTS

By utilizing the NSGA-III + PNN framework, we find the
following globally optimized solutions: w1 = 0.0849m, w2 =
0.4340m, w3 = 0.1430m, w4 = 0.2020m, h1 = 0.0922m,
h2 = 0.2248m, h3 = 0.3553m, and h4 = 0.7184m. The cor-
responding diffraction efficiency spectra as a function of θin

are plotted in Fig. 3(a). Figure 3(b) shows the relationship be-
tween θre and θin, with bright colors presenting high-reflection
efficiencies, which is consistent with the desired wide-angle
retroreflection functionality shown in Fig. 1(b). The optimiza-
tion reflection efficiencies are 78.8, 72.1, 92.8, 82.4, 82.2,
94.7, and 91.7% at the exact retroreflection angles of θ exa

in =
18.6◦, 25.2◦, 32.1◦, 39.6◦, 48.1◦, 58.2◦, and 73.0◦, respec-
tively. The average retroreflection efficiency over these seven
incident angles is 85.0%, being very high.

To demonstrate the retroreflection effect, in Fig. 4, we show
the full-wave numerical simulation results. Figures 4(a)–4(g)
show the scattered pressure field when a Gaussian beam is
incident along the exact retroreflection angles. Nearly perfect
retroreflection effect can be observed. The corresponding far-
field radiation patterns are shown in Figs. 4(h)–4(n), where
the blue contours show the far-field radiation patterns when
acoustic beams are incident along the red arrow directions.
The blue polar plots of the reflected power verify again the
exact retroreflection effect.

Furthermore, the reflection efficiencies along other inci-
dent directions are also high, with the reflective direction
being very close to the incident direction. As shown
in Fig. 3(a), the reflection efficiency spectra of m =
−3, −4, −5, −6, −7, −8, and −9 orders are distributed
evenly within the range of 13.7◦ � θin � 78.7◦, and they raise
to peaks one after another with increase of θin. In this way, we
achieve a high-retroreflection efficiency Rm (>40%) for any
θin within the above continuous angular range, demonstrating
a continuous and wide-angle retroreflection effect.

Some examples are shown in Fig. 5, where Figs. 5(a)–5(f)
display the scattered pressure field resulting from Gaussian
beams incident at angles of 20◦, 30◦, 40◦, 50◦, 60◦, and
70◦, respectively, where θdiff = |θin + θre| represents the angu-
lar difference between the incident and reflective directions.

Here, θdiff takes the values of 2.81◦, 4.22◦, 0.79◦, 3.82◦,
3.49◦, and 6.61◦, respectively, being very small for all cases.
The corresponding far-field radiation patterns are shown in
Figs. 5(g)–5(l), where the green-shaded regions represent
the quasiretroreflection condition, i.e., |θin + θre| � 10◦. Thus,
with a passive and intelligently designed metagrating, we
have successfully realized a high-efficiency retroreflector for
a broad incident angle range of 13.7◦ − 78.7◦.

In the demonstrations of Figs. 4 and 5, the Gaussian beams
are incident from the left-hand side with a positive incident
angle θin. However, we want to note that the retroreflector
works equivalently for negative incident angles. Since the
meta-atom shown in Fig. 1(d) has mirror symmetry with
respect to the grating normal, it is easy to infer that, when
the Gaussian beams are incident from the right-hand side,
the same retroreflection functionality can be obtained. Thus,
the retroreflector works efficiently over an angular range of
−78.7◦ � θin � −13.7◦ and 13.7◦ � θin � 78.7◦.

Here, we do not optimize the reflection performance for
|θin| < 13.7◦. The reason is that a small-angle reflection re-
quires a very large number of diffraction channels and is not
easy to implement with metagrating due to the underlying
mechanism of grating diffraction. In this regard, the small-
angle reflection performance of the retroreflector is presented
in Appendix B.

As shown in Fig. 1(d), the unit-cell of the metagrating is
composed of a tree-shaped sound-hard material and a triangu-
lar groove. The reason why such a specific shape is chosen is
given in Appendix C.

Furthermore, the comprehensive MOO + PNN model pro-
vides us the flexibility that multiple optimized solutions can be
found simultaneously, and all of them have overall satisfying
retroreflection performance. To this end, we compare one lo-
cally optimized solution with the globally optimized solution
in Appendix D.

IV. DISCUSSION

We note that the realization of a wide-angle retroreflector
is enabled by considering only seven optimization objectives
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FIG. 4. The performance of the metagrating-based retroreflector. (a)–(g) Gaussian beams are incident at θ exa
in = 18.6◦, 25.2◦, 32.1◦, 39.6◦,

48.1◦, 58.2◦, and 73.0◦, respectively, and are reflected back along the same path. The directions of the incident reflected wave beams are shown
by red and blue arrows, respectively. (h)–(n) The corresponding far-field radiation patterns. Red arrows indicate the incident directions. Blue
contours point to the reflective directions, with their amplitudes proportional to the far-field reflection intensity.

at seven discrete incident angles, with no need to consider
the reflection efficiencies at other incident angles in the range
of 13.7◦ � |θin| � 78.7◦. The reasons are as follows. On one
hand, if more optimization objectives (such as the reflec-
tion efficiencies at 30 or 50 different incident angles) are
involved, the MOO algorithm would need much more iter-
ations to converge to an optimized solution with satisfying

performance, which imposes a huge cost of time and be-
comes impractical. To solve the inverse design problem with
limited computational resources and a limited time cost, we
only select the reflection efficiencies at seven angles as the
optimization objectives. It turns out that the metagrating con-
figuration is very suitable for this purpose. Due to the physical
mechanism of grating diffraction, the reflected wave beams

FIG. 5. The quasiretroreflection effect over a continuous and wide range of incident angles. (a)–(f) show the scattered pressure field when
Gaussian beams are incident at 20◦, 30◦, 40◦, 50◦, 60◦, and 70◦, respectively. Red and blue arrows represent the incident and reflective
directions, respectively, with θdiff denoting their angular difference. (g)–(l) The corresponding far-field radiation patterns.
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FIG. 6. Setup of the numerical simulation in COMSOL

Multiphysics.

are directed only along several discrete directions, instead of
along a continuum of directions, which matches well with our
optimization objectives. Furthermore, the efficiency curve for
each reflection order usually takes a smooth peaklike shape
with maximum at its central angle θin, determined by the for-
mula θin = arcsin( −m

2 · λ
d ). Therefore, if we can enhance the

reflection efficiency at a single angle θin for each diffraction
order, we can simultaneously increase the reflection efficien-
cies at nearby incident angles. This is the underlying reason
why we can realize a wide-angle retroreflection functionality
by considering only a few optimization objectives.

Of course, the simultaneous optimization of seven distinct
objectives is far from trivial. We utilize the MOO algorithm
for the following reasons. Firstly, the MOO algorithm can
handle the tradeoffs between conflicting objectives and find
an optimal solution that equally satisfies all objectives. The
reflection efficiencies for different diffraction orders indeed
have conflicts with each other, especially when one particular
θin corresponds to two neighboring diffraction channels that
have an overlapped range of reflection angles. In such a cir-
cumstance, enhancing the reflection efficiency of one order
would inevitably degrade the reflection efficiency of the other
order. For example, the incident angle ranges are 13.7◦ �
θin � 23.6◦ for the −3rd diffraction order and 20.3◦ � θin �
30.2◦ for the −4th diffraction. Thus, in the overlapped range
of 20.3◦ � θin � 23.6◦, enhancing the reflection efficiency of
the −3rd order would inevitably degrade the reflection effi-
ciency of the −4th order due to the conservation law of wave
energy. It is quite difficult for a single-objective optimization
algorithm to handle such tradeoffs between different diffrac-
tion orders, and this is the underlying reason why we resort to
a MOO algorithm. More interestingly, in this paper, we show
that, in conjunction with a deep learning predicting model,
the MOO algorithm can handle the inverse design problem of
a wide-angle retroreflector with satisfying performance and
greatly reduced costs of data and time.

V. CONCLUSIONS

In this paper, we propose an alternative and efficient ap-
proach to realize a wide-angle high-performance acoustic

retroreflector, which is based on the framework of metagrat-
ing. By developing and training a deep learning network PNN
and integrating it with the MOO algorithm NSGA-III, we can
intelligently utilize the seven different diffraction orders of the
metagrating to promptly resolve the inverse design problem.
To be more specific, the smartly designed retroreflector can
work efficiently over a broad and continuous range of incident
angles 13.7◦ � |θin| � 78.7◦ with pretty high average effi-
ciency. Furthermore, the optimized metagrating has a simple
structure and planar configuration, which is easy for fabrica-
tion and integration. In addition, the proposed comprehensive
NSGA-III + PNN framework shows substantially enhanced op-
timization efficiency and effectiveness over a huge parameter
space and can be utilized for the design of other acoustic
devices in various application scenarios.
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APPENDIX A: DEFINITION AND CALCULATION OF THE
REFLECTION EFFICIENCY

In this appendix, we give the definition and calculation
method of Rm, the reflection efficiency of the mth diffraction
order. For an impinging plane wave with incident angle θin,
we calculate the reflection efficiency Rm with COMSOL by
computing the integration of the scattered pressure wave field
on the upper boundary (marked by the red line in Fig. 6) of
the unit-cell. As shown in Fig. 6, the integration boundary is
parallel to the x direction, and periodic boundary conditions
are specified on the left and right boundaries (orange lines)
that are parallel to the y direction.

The pressure field of the incident plane wave is pin =
b0exp[ik0(sin|θin|x−cos|θin|y)], where k0 = 2π/λ0 is the
wave number in air. Thus, the energy flux along the y direction
is given by Pin = 1

2 ∫ pinv
∗
y,indx = 1

2
−k0cos|θin|

ωρ0
∫ |pin|2dx, where

a negative sign appears because the plane wave is incident
toward the −y direction.

For the mth order reflection wave,

its wave vector is given by
⇀

kr,m =
(k0sin|θin| + mG,

√
k2

0 − (k0sin|θin| + mG)2), with G = 2π
d .

The pressure field and energy flux are, respectively, pr,m =
br,mexp[i(k0sin|θin| + mG)x]exp[i

√
k2

0 − (k0sin|θin|+mG)2y]

and Pr,m = 1
2

√
k2

0−(k0sin|θin|+mG)2

ωρ0
∫ |pr,m|2dx. The re-

flection coefficient br,m can be calculated by
numerical integration on the domain bound-
ary with br,m = ∫ p∗

scexp[i(k0sin|θin| + mG)x]exp

[i
√

k2
0 − (k0sin|θin| + mG)2y]dx. After knowing br,m, we

can calculate the energy flux Pr,m, as well as the mth order
reflection efficiency Rm through Rm = Pr,m/Pin.

From above discussions, we can see that Rm refers to the
reflection efficiency for the mth diffraction order for any inci-
dent angle, and it is not limited to special incident angles such
as θin = arcsin( −m

2 · λ
d ). Since Rm is normalized with respect
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FIG. 7. The performance of the retroreflector at small incident
angles. (a) and (c) The scattered pressure field when Gaussian beams
are incident at 5◦ and 10◦, respectively. Red and blue arrows repre-
sent the incident and reflective directions, respectively. (b) and (d)
The corresponding far-field radiation patterns.

to the incident energy flux Pin, and
∑

m Rm represent the total
energy flux of all reflected orders, we must have

∑
m Rm = 1,

as dedicated by the law of energy conservation.

APPENDIX B: THE REFLECTION PERFORMANCE
AT SMALL INCIDENT ANGLES

In this appendix, we demonstrate the small-angle reflection
performance of the retroflector. In Figs. 7(a) and 7(c), we
show the scattered pressure field when the Gaussian beams
are incident at 5◦ and 10◦, respectively. Red and blue arrows
represent the incident and reflective directions, respectively.
The corresponding far-field radiation patterns are shown in
Figs. 7(b) and 7(d). It can be observed that the wave beams are
reflected along the direction of mirror reflection with θre = θin,
where the retroreflection effect (θre = −θin) is missing. This
is consistent with what we expected because we do not op-
timize the reflection performance for θin < 13.7◦ at the first
place.

APPENDIX C: THE SHAPE OF THE UNIT-CELL

Basically speaking, each unit-cell of the metagrating con-
tains a resonant cavity, decorated with a triangle groove at
the bottom of each cavity and a triangle peak between neigh-
boring cavities. In this way, the interaction of the incident
wave and the unit-cell can be efficiently manipulated so
that up to seven diffraction channels can be simultaneously
controlled.

FIG. 8. The comparison of retroreflection responses of three different configurations. (a) and (b) The globally optimized configuration,
whose performance is presented in Fig. 3. (c) and (d) The groove-removed configuration. (e) and (f) The peak-removed configuration.
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FIG. 9. The retroreflection performance of a locally optimized
solution found by the many-objective optimization (MOO) + pre-
dicting neural network (PNN) framework. Dotted and solid lines
represent the diffraction efficiency spectra of the globally optimized
solution and one locally optimized solution, respectively.

In Fig. 8, we compare the retroreflection performances of
three different configurations, i.e., (a) and (b) for the globally
optimized one (whose performance is presented in Fig. 3),
(c) and (d) for the groove-removed one, and (e) and (f) for
the peak-removed one. By comparing Fig. 8(c) with Fig. 8(a),
we can observe that, when the groove is removed from each
resonant cavity, the overall retroreflection efficiencies along
seven diffraction channels are substantially lowered, espe-
cially for small incident angles where 15◦ � θin � 35◦. As
for the peak-removed configuration that is shown in Fig. 8(e),
the overall retroreflection efficiency is far away from what we
expect from a retroreflector. Thus, the shape of the unit-cell
is specifically designed and optimized to enhance the retrore-
flection efficiency as much as possible over a broad range of
incident angles.

APPENDIX D: COMPARISON BETWEEN THE GLOBALLY
AND LOCALLY OPTIMIZED SOLUTIONS

As mentioned in the main text, the MOO + PNN model
can find multiple optimized solutions. The performance of the
globally optimized solution is demonstrated in Fig. 3, where
the reflection efficiencies are 78.8, 72.1, 92.8, 82.4, 82.2, 94.7,
and 91.7% at the exact retroreflection angles of θ exa

in = 18.6◦,
25.2◦, 32.1◦, 39.6◦, 48.1◦, 58.2◦, and 73.0◦, respectively. Its
diffraction efficiency spectra are plotted as dotted lines in
Fig. 9, where the averaged retroreflection efficiency over the
seven incident angles is 85.0%.

As a comparison, in Fig. 9, we also plot the retroreflection
response of a locally optimized solution found by the MOO +
PNN framework, with the corresponding design parameters
being w1 = 0.0864m, w2 = 0.4343m, w3 = 0.1442m, w4 =
0.2029m, h1 = 0.0883m, h2 = 0.2304m, h3 = 0.3568m, and
h4 = 0.7028m. Its diffraction efficiency spectra are plotted by
solid lines, with the corresponding reflection efficiency being
78.9, 72.0, 96.2, 75.4, 82.4, 94.5, and 93.3%, respectively, at
the seven exact retroreflection angles. The averaged retrore-
flection efficiency over the seven incident angles is 84.7%,
slightly lower than the globally optimized one.

Furthermore, we note that the globally optimized solution
has a more balanced reflection performance over the entire
range of θin, where reflection efficiency along the R−6 channel
is substantially enhanced (82.4% vs 75.4%), with the price
that the reflection efficiency along the R−5 channel is slightly
lowered.

Thus, the comprehensive MOO + PNN model provides
us the flexibility that multiple optimized solutions can be
found simultaneously, and all of them have overall satisfying
retroreflection performance. We can choose one or several
solutions to meet the practical application requirements in
various scenarios.
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