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Transition from electron-dominated to phonon-driven thermal transport in tungsten
under extreme pressures
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By utilizing a combination of first-principles calculations and machine-learning-interatomic-potential-based
molecular dynamics simulations, we show that (contrary to the conventional understanding of electron-driven
thermal transport in metals) the dominant carriers of heat in tungsten are phonons at high pressures. More
specifically, we show that the contribution of phonons to the total thermal conductivity increases monotonically
from ∼30% at ambient pressure to ∼70% at 100 GPa. This is attributed to considerable phonon hardening leading
to enhanced phonon lifetimes and group velocities in pressurized tungsten. In contrast to the phonon-driven
thermal conductivity, calculations of the electronic thermal conductivity based on density functional perturbation
theory calculations of the full electron-phonon coupling matrix show that there is negligible change in the
electron-driven thermal conductivity throughout the entire pressure range (up to 100 GPa) studied in this paper.
Spectrally resolved electron-phonon coupling at elevated pressures reveals that while phonons are hardened, the
peaks of the spectral function are unchanged, thus resulting in negligible variation of the mass enhancement
parameter that describes the strength of the overall electron-phonon coupling with increasing pressures. In
contrast, the characteristically reduced phonon-phonon scattering, a signature of the isotropic and highly
degenerate phonon branches, leads to the phonon-dominated heat conduction in pressurized tungsten. Taken
together, our results show that the pressure-driven changes in thermal transport can result in large deviations of
the Lorenz number from the traditionally accepted Sommerfeld value in tungsten. Our work reveals an efficient
way to separately manipulate the phononic thermal transport from the electronic heat conduction through the
application of external pressure in tungsten, and as such can be highly beneficial for applications such as in
integrated circuits where tungsten could replace the widely used copper interconnects.

DOI: 10.1103/PhysRevMaterials.7.115001

I. INTRODUCTION

It has been well documented and conventionally accepted
that free electrons are the dominant carriers of both charge
and heat in elemental metals [1]. As a consequence, the ratio
between the thermal (κ) and electronic conductivity (σ ) is
approximately constant at an absolute temperature; that is,
the Lorenz number, L = κ/σT for several elemental met-
als is typically very close to the Sommerfeld value of L0 =
π2k2

B/3e2 = 2.44×10−8 W � K−2 [2]. The physical meaning
of this universal constant (also commonly referred to as the
Wiedemann-Franz law) [3] is that the largest contribution
to the heat conduction is through the same free electrons
that transfer electric current in metals. However, the predic-
tions of the Wiedemann-Franz law can substantially deviate
from experimental measurements of the thermal conductivity
in metals if there is a non-negligible contribution from the
lattice to their overall thermal conductivity. Although, for
complex metallic alloys, the Wiedemann-Franz law in con-
junction with the measurement of the electrical conductivity
and total thermal conductivity has been utilized to eluci-
date the lattice contribution, for elemental metals the lattice
contribution typically has negligible influence on the total
thermal conductivity [4].
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With the recent advancements in computational frame-
works that can now accurately quantify the interactions
between all phonon modes and electronic eigenstates fully
from first principles [5–7], considerable contributions from
the lattice to the total thermal conductivity have been iden-
tified for several elemental metals [4,8]. For example, as
much as 30% of heat conduction under ambient conditions
in tungsten has been ascribed to phonons [8], thus explain-
ing its departure from the widely accepted Wiedemann-Franz
law. The reason for this disagreement was long (incorrectly)
thought to originate from the complex band structure of tran-
sition metals [9,10], since computational frameworks capable
of untangling the phonon contributions resulting from the cou-
pled electron-phonon and phonon-phonon interactions were
not yet available. However, with the recent advancements in
parameter-free density functional theory (DFT) calculations,
as we discuss in more detail below, it has now become possi-
ble to investigate the electronic and phononic contributions
to comprehensively understand their separate influences on
the overall heat transfer processes. This raises the question,
Can the newly formulated understanding be utilized to con-
trol the electron and phonon contributions separately? Going
one step further, can we engineer the phonon contribution to
surpass the electronic contribution in metals? This not only
would be vital in terms of our understanding of condensed
matter but also would be important from an applicative stand-
point where manipulating and processing heat flow through
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untangling the dynamics of individual energy carriers can
potentially be highly beneficial, for instance, in nanointer-
connects where continued miniaturization has led to severe
size effects [11–13]. Herein, utilizing the recent advancements
in the computational process to accurately (and separately)
calculate the phononic (κp) and electronic (κe) contributions to
the total thermal conductivity, we will comprehensively show
that the lattice contribution can be monotonically increased
(by up to 70% of the overall thermal conductivity) under
extreme pressure conditions (of up to 100 GPa) leading to the
strong departure of the Lorenz number from the Sommerfeld
value in pressurized tungsten.

In general, high-pressure studies have provided critical
insights into novel physical phenomena that are other-
wise masked under ambient conditions [14]. For instance,
high-pressure studies have been utilized to increase the su-
perconducting transition temperature in metals that are not
superconducting under ambient conditions [15–17], modu-
late the thermal conductivity of solids across a wide range
[18–21], and enhance interfacial thermal conductance be-
tween two solids by stiffening the interfacial bonding [22–24].
With regard to understanding the fundamental dynamics of
energy carriers at high pressures, first-principles-based studies
have shown that phonon-phonon scattering rates can either
increase or decrease depending on the phase space avail-
able for acoustic phonons (which are the dominant heat
carriers) in nonmetallic, semiconducting crystals far from
their pressure-induced phase transitions [25–27]. Similarly,
ab initio calculations on metals have shown that the appli-
cation of hydrostatic pressures can lead to either an increase
or a decrease in the electron-phonon scattering rates de-
pending on the type of the electronic band structure of the
metal [16,28,29]. Thus these predictive studies based on
first-principles calculations can lend significant insights into
the fundamental dynamics and relaxation processes of the
coupled energy states in condensed matter that are readily
becoming accessible through diamond anvil cell experiments
combined with pump-probe thermoreflectance spectroscopy,
which are able to measure the thermal transport properties of
materials under high-pressure conditions [20,21,24,30].

In terms of advancements in the theoretical description of
the energy exchange between the electronic and vibrational
states in metals, the early works by Kaganov et al. [31] Anisi-
mov et al. [32], and Allen and co-workers [33–35], which
were reliant on the two-temperature approach, and subsequent
more robust theories based on first-principles calculations
[29,36,37] have most notably shown that the energy transfer
rate between the two subsystems is significantly enhanced
at elevated electron temperatures. However, similar advance-
ments in the description of electron-phonon relaxation rates
in different metals under extreme pressure conditions have re-
mained largely elusive [28,38]. This could partly be due to the
fact that properly accounting for all phonon mode interactions
with every electronic state in the entire Brillouin zone requires
fine meshes of the electron and phonon wave vectors to accu-
rately describe the physics at high pressures. For example, it
has been shown that dense electron and phonon wave-vector
grids are necessary to precisely resolve the fine features of the
electron-phonon coupling to determine the superconducting
transition temperatures in elemental metals [16,39]. In this

regard, recent developments in parameter-free first-principles-
based calculations of electron-phonon scattering have enabled
such calculations in dense wave-vector grids through Wan-
nier functions that efficiently interpolate the complex band
structures from coarser grids, thus making the calculations
computationally more tractable [5,6,40]. Utilizing this recent
advancement, several studies [4,7,38,41,42], including our
works [28,43,44], have calculated the electron-driven thermal
conductivity in elemental metals by solving the full Fermi’s
golden rule. These studies have elucidated critical insights
into the spectral-level details of electron-phonon coupling,
including mode-dependent phonon lifetimes that are limited
by electron-phonon scattering [4,7].

For predicting phonon-driven thermal transport, significant
advancements in first-principles-based calculations that solve
the full Boltzmann transport equation (BTE) have consider-
ably broadened our understanding of the phonon physics in
several types of crystalline solids including metals and non-
metals; the reader is referred to Refs. [45,46] for a detailed
review of this topic. However, such approaches of solving the
BTE based on force constants obtained from DFT calculations
are either computationally cumbersome (since the DFT calcu-
lations must be performed on supercells with large number
of atoms) or do not fully include higher-order interactions
since these calculations are mostly limited to lowest-order
interactions among three phonons [45]. Although calculations
with higher-order four-phonon scattering processes requiring
quartic force constants have also recently been performed for
several materials [47–51], including such fourth-order anhar-
monic processes can dramatically increase the computational
cost of the calculations. These higher-order processes, how-
ever, have been shown to have an opposing response at higher
pressures as compared with three-phonon processes in some
material systems such as in cubic boron arsenide [27]. There-
fore, to correctly predict the phonon-driven thermal transport
under pressurized conditions where phonon hardening gener-
ally leads to considerable broadening of the phonon spectrum
to higher frequencies in solids, higher-order anharmonic scat-
tering processes need to be incorporated while determining
the phonon-phonon interactions for thermal transport calcu-
lations. In this regard, molecular dynamics (MD) simulations
are preferred since they intrinsically account for the full an-
harmonicity of the atomic interactions given the appropriate
choice of the interatomic potential to accurately describe the
material system. As such, recent advancements in machine-
learning-based (ML-based) interatomic potentials that are
trained through data obtained from ab initio calculations can
provide first-principles accuracies in describing the vibra-
tional physics of solids [52–59]. This offers the prospect of
performing large-scale simulations of thermal transport that
inherently require large supercells with considerably lower
computational costs as compared with solving the full BTE
based on first principles, which is often computationally pro-
hibitive, especially when considering higher-order processes.

In this paper, we utilize a combination of a ML-based
interatomic potential for MD simulations and first-principles
calculations of the full electron-phonon coupling matrix to
comprehensively investigate the thermal transport mecha-
nisms in pressurized tungsten. Our MD simulations under
the Green-Kubo (GK) formalism predict a monotonically
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increasing contribution of κp from 30% at ambient pressure
to 70% under extreme pressure conditions of 100 GPa. Our
MD simulations in conjunction with spectral energy density
(SED) calculations show that the enhanced lattice contribution
with pressure originates from considerable phonon hardening
leading to increased phonon lifetimes and group velocities
in pressurized tungsten. In contrast to this phonon-driven
thermal conductivity, calculations of κe based on density func-
tional perturbation theory (DFPT) calculations of the full
electron-phonon coupling matrix show that there is negligible
change in the electron-driven thermal conductivity throughout
the entire pressure range (up to 100 GPa) studied in this
paper. We attribute this to the negligible change in the over-
all electron-phonon coupling strength with pressure, which
leads to minimal changes in the average electron lifetimes
near the Fermi energy. Taken together, our results show that
the pressure-driven changes in thermal transport can result in
large deviations of the Lorenz number from the traditionally
accepted Sommerfeld value. Our results can also help guide
experiments towards separately controlling the phonon- and
electron-driven thermal transport in tungsten.

II. RESULTS AND DISCUSSION

Before discussing our thermal conductivity results, we first
compare the phonon dispersions calculated from our machine
learning potential (MLP) with our DFT calculations and ex-
perimental results taken from Ref. [60] as shown in the top
panel of Fig. 1(a). Our MLP-based calculations agree very
well with both the experimental results and our DFT cal-
culations. Moreover, our mode-specific calculations of the
electron-phonon coupling as shown in the bottom panel of
Fig. 1(a) depicting the phonon linewidths, γ = h̄/τ , or the
imaginary part of the phonon self-energy that is related to the
lifetimes, τ , of the individual phonon modes [61], show that
the linewidths are much higher at the zone boundary along the
�-H direction with the ‘dip” in the dispersion as highlighted
in the bottom panel of Fig. 1(a). This dip is well captured
by our MLP, and as such, the phonon dynamics predicted
with our MLP captures key features of the phonon disper-
sion providing confidence in our use of the MLP-based MD
simulations to predict the phonon contributions to thermal
conductivity of tungsten as we discuss in detail below.

We first present the temperature-dependent thermal con-
ductivity of unpressurized tungsten from room temperature to
1100 K in Fig. 1(b). Note that we study this intermediate tem-
perature regime since electron-impurity and electron-electron
scattering are less pronounced as compared with electron-
phonon interactions, which primarily dictate the resistance to
heat flow at these temperatures. Our calculations of the total
thermal conductivity at room temperature that take into ac-
count both the electron and phonon contributions agree within
12% of the values reported in prior first-principles-based
calculations [8,38]. Moreover, our MLP-based GK-predicted
κp of 60 ± 9 W m−1 K−1 at room temperature also agrees
very well with prior work that has calculated the phonon
contribution to the total thermal conductivity by solving the
BTE that includes three-phonon scattering processes [38].

The very high room temperature κp of W (60 ± 9
W m−1 K−1) when compared with other elemental metals

(a)

(d)(c)

(b)

FIG. 1. (a) Machine-learning-potential-based calculations of the
phonon dispersion of tungsten showing great agreement with the
experimentally measured dispersion (given by Larose and Brock-
house [60]) and our density functional theory calculations (top
panel). The machine learning potential can correctly capture the
“dip” in the phonon spectrum. At this dip, our calculations of the
electron-phonon interactions show enhanced coupling associated
with the specific phonon modes as quantified by the calcula-
tions of the phonon linewidths (bottom panel). As such, our
machine learning potential captures such key features in the phonon
dispersion. (b) Temperature-dependent thermal conductivity contri-
butions from the electronic and phononic subsystems. While the
electronic contributions increase, the phonon thermal conductivity
shows a pronounced decrease with temperature due to anharmonic
phonon-phonon scattering that increases with temperature. At room
temperature, our results agree well with prior calculations from the
BTE that considers three-phonon scattering processes as conducted
by Chen et al. [8] and Zhang et al. [38]. (c) Average mean free paths
of electrons near the Fermi level in tungsten as a function of tem-
perature. Inset: electronic heat capacity as a function of temperature
showing the monotonic increase with temperature. (d) Phononic con-
tribution to total thermal conductivity as a function of temperature
in tungsten. Inset: as temperature is increased, the electron-phonon-
scattering-induced phonon lifetimes decrease slightly. Along with
increased anharmonic phonon-phonon scattering, the slight increase
in the electron-phonon scattering can also facilitate the reduction in
the contributions from the lattice at higher temperatures.

such as Al, Ag, and Au (with κp values of 6, 4, and 2
W m−1 K−1, respectively) [7] is a consequence of the reduced
anharmonic phonon-phonon scattering in tungsten [8,62].
This weak phonon-phonon scattering can be attributed to
the degeneracy of the phonon branches [62]. For example,
the phonon branches at the P and H points in the Brillouin
zone for body-centered-cubic (bcc) structures show triple
degeneracy [see Fig. 1(a)]. Another factor which separates the
lattice dynamics of W from other bcc metals originates from
its uniquely isotropic phonon dispersion as shown in Fig. 1.
The transverse acoustic branches are degenerate along the
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entire �-P-H-� paths with degeneracy for all three branches
at the P and H points [Fig. 1(a)]. Therefore the phase space
available for phonon scattering is relatively small in tungsten
as compared with other bcc metals with phonon branches that
have a wider separation in frequencies at particular points
in the Brillouin zone. The wider separation in frequencies
and thus bigger phase space for phonon-phonon scattering
increase the anharmonicity by opening up emission or
absorption channels, which can lead to the reduction in the
lattice thermal conductivity [7].

The agreement between our MLP MD-predicted room-
temperature thermal conductivity of tungsten and the results
from solving the BTE with three-phonon processes under am-
bient conditions suggests that higher-order processes (which
are inherently included in MD simulations) do not signifi-
cantly influence the lattice-driven thermal transport in tung-
sten. This is reinforced by the κp ∝ T −1 dependence obtained
from our MD simulations, which indicates the strong role of
three-phonon anharmonic processes in dictating the tempera-
ture dependence of κp of tungsten in the 300–1100 K range.

In contrast to the decreasing κp with temperature, the
electron-driven thermal conductivity increases monotonically
across the entire temperature range as shown in Fig. 1(b).
In the simple kinetic theory description of thermal transport,
thermal conductivity is given as κ = (1/3)(Cv	), where C is
the heat capacity, v is the velocity, and 	 is the mean free path
of the energy carriers. Although the average 	 of electrons at
the Fermi level decreases with increasing temperature while
the Fermi velocity remains constant, the heat capacity of elec-
trons increases by more than a factor of 4 when temperature
is increased from room temperature up to 1100 K [inset of
Fig. 1(c)]. This leads to the monotonically increasing electron
thermal conductivity with temperature and also results in the
dominant role of electrons in the total thermal conductivity
in unpressurized tungsten. Taken together with the decreasing
trend in the lattice thermal conductivity due to increasing an-
harmonic effects, the phonon contribution decreases to ∼8%
at 1100 K [Fig. 1(d)]. Along with the increase in anharmonic
phonon-phonon scattering, the electron-phonon scattering
also increases with temperature (albeit much less dramatically
for the temperature range studied), thus slightly reducing the
phonon lifetimes, τ , as shown in the inset of Fig. 1(d). Note
that although the increase in the scattering rate of electrons
due to electron-phonon interactions with temperature is more
pronounced (see Fig. S11 of the Supplemental Material [63]),
the increase in the electronic heat capacity compensates for
the decrease in electron lifetime. Consequently, the contrast-
ing temperature trends between the two subsystems ultimately
result in the decrease of the total thermal conductivity with
increasing temperatures (which is in agreement with prior
results) [8,38]. Next, we consider the effect of pressure on
the electronic- and lattice-driven thermal transport in tung-
sten. As shown in Fig. 2(a), the total thermal conductivity
of tungsten increases monotonically from ∼200 W m−1 K−1

at ambient pressure to ∼505 W m−1 K−1 at 100 GPa. This
increase can mainly be ascribed to the enhanced phonon con-
tributions, whereby κp increases more than fourfold while the
increase in κe is not as substantial. Thus the application of
pressure raises the phononic contribution to the total thermal
conductivity from ∼30% at ambient pressure to almost 70% at
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FIG. 2. (a) Contributions from phonons and electrons to the total
thermal conductivity of tungsten as a function of pressure. While the
electron thermal conductivity has negligible change with pressure,
the phonon-driven thermal conductivity increases monotonically.
(b) The phonon contribution to the total thermal conductivity in-
creases from ∼30 to ∼70% with pressures increasing from ambient
pressure to 100 GPa.

100 GPa [Fig. 2(b)]. In what follows, we will attempt to bet-
ter understand the contrasting responses from the electronic
and phononic subsystems under high-pressure conditions in
tungsten, which shows a unique transition (away from any
phase transitions) from an electron-driven heat conduction to
a phonon-driven heat conduction as pressure is increased.

The application of pressures of up to 100 GPa is shown to
considerably stiffen the lattice leading to phonon hardening
(Fig. S17) [63]. As mentioned above and explored in more
detail in the following analyses, although the effect of this
hardening has significant influence on the phononic heat con-
duction, κe has a less pronounced effect. This has its origins
in the pressure dependence (or the lack thereof) of the mass
enhancement parameter, λ = 2

∫ ∞
0 (α2F (ω)/ω)dω, that de-

scribes the strength of electron-phonon coupling in tungsten
as shown in Fig. 3(a). Here, α2F (ω) is the Eliashberg spectral
function, and ω is the phonon frequency. For comparison, we
also include λ values for three other metals (calculated with
a similar parameter-free first-principles approach) from our
prior work in Ref. [28]. While the pressure dependencies of
λ for Al, Au, and Ag reduce considerably with increasing
pressure, λ for W shows negligible change with pressure.
Considering their respective electronic densities of states
(eDOSs), it becomes evident that the transition metal (W)
has a completely different eDOS around the Fermi level as
compared with the free-electron metals (Al, Au, and Ag) with
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FIG. 3. (a) Mass enhancement parameter, λ, describing the
strength of electron-phonon coupling as a function of pressure for
tungsten. For comparison, we also include the calculations for free-
electron-like metals (Al, Au, and Ag) taken from Ref. [28]. (b) The
Eliashberg spectral function for tungsten at 0 and 80 GPa pressures.
Although the phonon spectrum broadens with pressure, the peaks in
the spectral function do not vary drastically, which results in similar
values of λ across the entire pressure range as shown in (a). (c) The
average Fermi velocity and the average mean free paths at the Fermi
level increase monotonically with pressure, while the electronic heat
capacity has a negligible change. This leads to a monotonically
increasing electronic thermal conductivity that increases by ∼25%
at 100 GPa. (d) Comparison of electron thermal conductivity of
tungsten as a function of pressure with the free-electron-like metals
[28]. While the electronic thermal conductivity increases drastically
with pressure for the free-electron metals, for tungsten the increase
is not that pronounced since the electron-phonon coupling strength
has negligible variations with pressure as shown in (a).

the relatively flat eDOS around the Fermi level (Fig. S18)
[63]. Moreover, while the eDOS at the Fermi level is lowered
monotonically for the free-electron-like metals with increas-
ing pressure, for W the eDOS does not vary significantly with
pressure at the Fermi level (Fig. S19) [63].

As shown in Fig. 3(b), our calculations of the electron-
phonon spectral functions, α2F (ω), under ambient and
80 GPa pressure conditions show that although phonon hard-
ening leads to the broadening of the spectral function to
higher phonon frequencies, the height of the peaks in the
spectral function has negligible change with pressure. As a
consequence, the calculation of the overall electron-phonon
coupling strength [λ = 2

∫ ∞
0 (α2F (ω)/ω)dω] does not signif-

icantly change for W as compared with the free-electron-like
metals [28]. As such, the average mean free paths of elec-
trons around the Fermi level only increase by up to 10% at
100 GPa pressure [Fig. 3(c)]. Moreover, we also find that the
heat capacity of electrons has negligible change with pressure

(Fig. S8) [63] while the Fermi velocity increases by ∼15%,
whereby it monotonically increases from ∼0.94×106 m/s at
ambient pressure to ∼1.13×106 m/s at 100 GPa (Fig. S9)
[63]. Therefore, as shown in Fig. 3(c), κe shows a modest
and monotonic increase by ∼1.25 times across the entire
range of pressure studied in this paper. This is in contrast to
the relatively higher increases in κe of the free-electron-like
metals [Fig. 3(d)] [28], which highlights the important role of
the electronic band structure in dictating the pressure response
of the electronic heat conduction in elemental metals.

We now turn our focus to the increasing role of the phonon-
driven thermal transport in tungsten with increasing pressures.
To gain more insight into this, we perform SED calculations to
understand the variations in the phonon-mode-specific prop-
erties with the application of high pressures. Briefly, the SED
calculations can unravel the anharmonic phonon dispersions
and lifetimes of individual phonon modes [64]. In the ab-
sence of anharmonic interactions between vibrational modes,
assuming a purely harmonic system, the evaluation of the
SED would precisely reproduce the harmonic phonon disper-
sion. However, anharmonic effects become evident through
a broadening of the SED profiles and an increase in the
contrast in shading. Thus the higher contrast in the shading
(or the higher magnitude of the SEDs) represents increased
anharmonicities of those modes. As shown in Fig. 4(a), high-
frequency modes in tungsten possess higher SEDs at ambient
and high pressures, especially at the Brillouin zone edge. This
is consistent with broadened linewidths of phonon modes due
to enhanced electron-phonon interactions highlighted in the
bottom panel of Fig. 1(a) at the “dip” in the phonon dispersion
(which is at the H point in the Brillouin zone).

From our SED calculations, we calculate higher phonon
lifetimes across the entire phonon spectrum in tungsten with
the application of high pressures as shown in Fig. 4(b). For
comparison, we also plot the phonon lifetimes that we calcu-
late for silicon, which is a prototypical semiconductor with
high lattice thermal conductivity. Even at high pressures, the
phonon lifetimes in tungsten are comparably much narrower
with respect to the broader spectrum in silicon involving
higher-frequency modes. Furthermore, the phonon lifetimes
in silicon are much higher than in unpressurized tungsten
throughout the phonon spectrum. However, for pressurized
tungsten [as shown for the 80-GPa case in Fig. 4(b)], the
phonon lifetimes are more comparable to those of silicon,
and this helps explain the high phonon thermal conductivity
(which is comparable to the thermal conductivity of silicon)
[65] which we calculate for pressurized tungsten with our
MLP-based MD simulations. Note that although silicon is a
semiconductor where electron-phonon coupling plays a neg-
ligible role at room temperature, the comparison is mainly to
highlight that the phonon lifetimes in tungsten (an elemental
metal) can be engineered to approach that of a semiconductor
with a high lattice-driven thermal conductivity. Furthermore,
the application of pressure increases the slope of the phonon
branches, thus leading to higher group velocities for phonons
across the entire spectrum with increasing pressure [Fig. 4(c)].
Therefore both the increase in phonon group velocities
and the increase in phonon lifetimes lead to the mono-
tonically increasing κp in tungsten with the application of
pressure.
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FIG. 4. (a) Spectral energy density calculations under ambient and 80 GPa pressure conditions. (b) Phonon lifetimes obtained from the
SED calculations show an increase with pressure in tungsten. At high pressures, the phonon lifetimes in tungsten are comparable to those of
silicon, a semiconducting material with high lattice thermal conductivity. (c) Phonon group velocities also increase with increasing pressures
as shown for the cases of 0 and 80 GPa. (d) Phonon lifetimes due to electron-phonon (e-p) interactions in tungsten at 0 and 80 GPa pressures.
Although the lifetimes of the low-frequency phonons are almost an order of magnitude higher than the lifetimes obtained from our SED
calculations, the lifetimes for higher-frequency phonons (> 5 THz) are comparable to our SED calculations.

It is also interesting to note that the phonon lifetimes of
the lower-frequency modes are mainly dictated by phonon-
phonon scattering since the electron-phonon-scattering-based
lifetimes are almost an order of magnitude of higher
[Fig. 4(d)]. Only for higher frequencies does electron-phonon
scattering lead to a significant reduction in their lifetimes.
This is also clear from the phonon linewidths presented in the
bottom panel of Fig. 1(a) for the 0-GPa case (and Fig. S23
for the 80-GPa case) [63], where electron-phonon scatter-
ing mainly affects the higher-frequency phonon modes at
the Brillouin zone edge, especially near the “dip” at the H
point. For the lower-frequency phonons, although phonon-
phonon scattering dictates their lifetimes as compared with
electron-phonon scattering, from the phonon dispersions at
the various pressures, it is also evident that the isotropic nature
and the high degree of degeneracy of the phonon branches
in tungsten result in phonon lifetimes that are comparable to
those in silicon due to reduced phonon-phonon scattering. In
fact, from harmonic calculations we find that the phase space
(for three-phonon scattering in the lower-frequency region) is
reduced with the application of pressure and, in comparison
to a more anharmonic metal such as gold, the phase space
for scattering in tungsten is considerably reduced (Fig. S22)
[63]. Therefore, along with the increase in phonon lifetimes
and group velocities, the application of extreme pressures
(of up to 100 GPa) results in a monotonic increase in the
contribution from the lattice to the total thermal conductiv-
ity from ∼30% at ambient pressure to ∼70% at 100 GPa
for tungsten. We note that our result of increasing phonon
thermal conductivity with pressure is in disagreement with
the pressure-independent lattice thermal conductivity for W
predicted from first-principles-based BTE calculations in-
cluding three-phonon interactions in Ref. [38]. The pressure
independence was argued to originate from the lower trans-
verse acoustic phonon branches along the �-N direction
becoming relatively softer than other branches under pressure,
thus increasing the phase space for scattering. Our calcula-
tions do not show such differences in the pressure response

of the phonon branches, where the isotropic nature of the
phonon dispersion is still preserved under high-pressure con-
ditions (see Fig. S22) [63]. Thus the phase space for scattering
does not increase in our calculations, and therefore we do
not observe pronounced phonon-phonon scattering at higher
pressures as was conjectured in Ref. [38].

Finally, we discuss the influence of pressure on the Lorenz
number in tungsten. Figure 5 shows the ratio of the calculated
Lorenz number based on our total thermal conductivity to the
Sommerfeld value (Ltotal/L0) and the ratio of the electronic
thermal conductivity to the Sommerfeld value (Le/L0). A
value of unity represents the scenario where the mean free
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FIG. 5. Ratio of the Lorenz number based on the total thermal
conductivity to the Sommerfeld value (Ltotal/L0) and the ratio of the
electronic thermal conductivity to the Sommerfeld value (Le/L0).
The Lorenz number calculated based on the total thermal conductiv-
ity deviates considerably from the Sommerfeld value with increasing
pressure and is more than 3×L0 at 100 GPa pressure.
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paths of free electrons for heat and charge conduction are the
same. Not surprisingly, the ratio of the electronic part (Le)
to the Sommerfeld value does not deviate from unity for the
entire pressure range. However, for the ratio involving the
total thermal conductivity considering both the phonon and
electronic contributions, the Lorenz ratio increases to more
than 3 at 100 GPa. Although prior work revealed a departure
from the predictions of the Wiedemann-Franz-Lorenz law in
tungsten by 30% at ambient pressure [8], our work highlights
the prominent role played by the lattice heat conduction in
dictating the breakdown of this universal law by as much as
300% at pressures approaching 100 GPa.

Our results presented in this paper not only are of signif-
icance from the standpoint of a fundamental understanding
of condensed matter, but also can be important from an
applicative standpoint. For example, in microchips where
metallic nanowires are highly sought-after for interconnect
materials, the thermal transport properties are crucial for
their design and implementation. The electrical resistivity of
these wires increases through enhanced boundary scattering
as their characteristic dimension is decreased, and the fur-
ther miniaturization of integrated circuits, which mostly use
Cu interconnects, increases approximately by an order of
magnitude when the dimension is reduced down to 10 nm
[12]. Therefore, when the characteristic size is comparable
to the electronic 	, the transport properties are highly influ-
enced by size effects. As such, downscaling is beneficial for
W nanowires as compared with the conventionally used Cu
nanowires since the electronic 	 ∼ 15.5 nm as predicted from
our parameter-free DFPT calculations for ambient conditions
is much shorter than that in Cu (39 nm) [37]. We have shown
that pressure has a negligible influence on the electron scat-
tering rates (and therefore 	; see Figs. S12–S14) [63], and
as such, our results could be significant for understanding
the transport properties of the next generation of tungsten
nanointerconnects, where, at the nanoscale, inherent strain
effects might originate from interfaces and grain boundaries
[66].

III. CONCLUSIONS

In conclusion, by comprehensively investigating the re-
sponses of the electronic and phononic subsystems subjected
to high pressures in tungsten, we have shown that the thermal
transport transitions from an electron-dominated heat transfer
(with ∼70% contribution of κe under ambient conditions) to
a phonon-dominated heat transfer at elevated pressures (with
up to ∼70% contribution to the total thermal conductivity
from κp at 100 GPa). This is due to the fact that while
κp increases monotonically with pressure, κe shows negli-
gible variation with increasing pressures. We have ascribed
this relative insensitivity of the electronic thermal transport
to the intrinsic band structure in tungsten, which differs
considerably from the band structure of other metals such as
free-electron-like metals, where κe has a dramatic increase
with pressure. The phonon contribution to the total thermal
conductivity increases due to lattice stiffening leading to en-
hanced phonon group velocities and lifetimes with increasing
pressures. Unique to tungsten, this enhanced lattice contribu-
tion can be prescribed to its characteristically isotropic and

degenerate phonon branches, which lead to reduced phonon-
phonon scattering leading to the severe breakdown of the
Wiedemann-Franz law, especially under extreme pressures.
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APPENDIX A: FIRST-PRINCIPLES CALCULATIONS
OF ELECTRON-PHONON INTERACTIONS

The electron-phonon matrix elements are calculated uti-
lizing the EPW (derived from “electron-phonon Wannier”)
package [6] and the QUANTUM ESPRESSO (QE) package [67],
which are used to perform the density functional perturbation
theory (DFPT) calculations. The densely packed phonon and
electron wave vectors (i.e., q and k, respectively) in the Bril-
louin zone are crucial for the calculation of the Eliashberg
function describing the spectral electron-phonon coupling
strength, which is given as

α2
trF (ω) = 1

N (εF)

∑
q j

∑
knm

|gq j
k+qm,kn|2δ(h̄ω − h̄ωq j )

×δ(εkn − εF)δ(εk+qm − εF)ηk+qm,kn, (A1)

where j stands for the branch index of q, N (εF) denotes the
density of states (DOS) of electrons at the Fermi level, and
gq j

k+qm,kn are the electron-phonon (e-p) matrix elements that
quantify the scattering of an electron at the Fermi surface from
the state |kn〉 to the state |k + qm〉. The efficiency factor,

ηk+qm,kn = 1 − vkn · vk+qm

|vkn|2 , (A2)

considers different scattering directions to account for the
anisotropic behavior. The efficiency factor is dependent on the
electron velocity vkn and differentiates between the spectral
function α2F (ω) and the transport spectral function.

The imaginary parts of the electron and phonon self-
energies are calculated as [5,6]

Σnk(ω, T ) =
∑
mν

∫
BZ

dq
�BZ

|gmn,ν (k, q)|2

×
[

Nq,ν (T ) + fmk+q

ω − (εmk+q − εF) + ωq,ν + iδ

+ Nq,ν (T ) + 1 − fmk+q(T )

ω − (εmk+q − εF) − ωq,ν + iδ

]
, (A3)

Πqν (ω, T ) = 2
∑
mn

∫
BZ

dk
�BZ

|gmn,ν (k, q)|2

× fnk(T ) − fmk+q(T )

εmk+q − εnk − ω − iδ
, (A4)

where Nq,ν is the Bose-Einstein distribution, fnk(T ) is the
Fermi-Dirac distribution at band n, δ is a small positive real
parameter to avoid numerical instabilities and thus guarantee
the correct analytical structure of the self-energies, and the
integrals are extended over the Brillouin zone of volume �BZ

[5,6].
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For highly accurate calculation of Eq. (A1), dense q
and k grids in the Brillouin zone are paramount. This is
accomplished by the interpolation of the e-p matrix ele-
ments, the phonon modes, and the band energies from initial
coarse grids of 10×10×10 and 5×5×5 to uniform grids of
90×90×90 and 35×35×35, for electron and phonon wave-
vector grids, respectively. The interpolation is achieved by
employing maximally localized Wannier functions from the
Bloch energy bands [40]. For these calculations, we use a
Bachelet-Hamann-Schlüter-type (BHS-type) scalar relativis-
tic, norm-conserving pseudopotential taken from the legacy
QE pseudopotential (PP) table [68] with the Perdew-Zunger
[local density approximation (LDA)] exchange-correlation
functional and consider 5d and 6s bands with six electrons
for tungsten. We implement a plane-wave cutoff of 1632.7 eV
(120 Ry) for these calculations for a single body-centered-
cubic unit cell of the metals.

APPENDIX B: AB INITIO MD AND MACHINE
LEARNING POTENTIAL FOR MD

We use diverse training data sets based on ab initio MD
simulations to formulate interatomic potentials to be em-
ployed in our extensive classical MD simulations. For high
accuracies, we note that we develop two different potentials:
The first interatomic potential is specifically developed to cap-
ture the correct vibrational physics at ambient pressure across
the 300–1100 K temperature range. The second interatomic
potential is developed to perform MD simulations under high-
pressure conditions (spanning 0–100 GPa).

All our ab initio MD simulations are performed using the
QUANTUM ESPRESSO package [67]. For our first MLP, the
atomic coordinates, forces, energies, and cell parameters are
obtained by taking snapshots of the ab initio MD trajectories
during finite-temperature simulations from ambient temper-
ature to 1100 K. This is done to sample the configurational
space as far as practicable since the predictive capability of the
machine learning potential highly depends upon quality and
diversity of training data set. The energy cutoff for plane-wave
expansion and the energy convergence for the self-consistent
field (SCF) are set to 25 Ry and 10−6 a.u., respectively. We
ensure that the choice of 25 Ry for the plane-wave energy
does not influence our results by considering cutoffs in the
range 25–125 Ry, which showed no change in the converged
energies in our SCF calculations. Moreover, the agreement
between the DFT-calculated phonon dispersion with 125 Ry
as the plane-wave cutoff and the phonon dispersion calculated
based on the MLP developed with our choice of 25 Ry for our
ab initio MD suggests that the cutoff does not influence the
lattice dynamics of tungsten in our classical MD simulations.

The Brillouin zone is sampled over a 4×4×4 Monkhorst-
Pack mesh. Fermi-Dirac smearing is used to account for
temperatures ranging from 300 to 1100 K. The cell pa-
rameters are allowed to relax in all of our ab initio MD
simulations using the isobaric-isothermal ensemble. All ab
initio MD simulations are performed on a 2×2×2 supercell.
For the first potential, the pressure is fixed to zero for each
simulation using a Parrinello-Rahman barostat [69], and tem-
perature is held constant by using the rescaling technique
for temperature-based simulations at 0 GPa. Ab initio MD

simulations were performed at various temperatures ranging
from 300 to 1100 K to develop an interatomic potential that is
accurate across the entire temperature range. For the second
interatomic potential, the pressure is changed gradually from
0 to 100 GPa with a step of 10 GPa. A time step of 2 fs is used
in all of our ab initio MD simulations. A total of 11 825 data
sets are generated by ab initio simulations for the temperature-
based machine learning potential. A set of 1000 data frames
that were not included in the training data set is used as a
validation data set to assess the accuracy of the model. For the
second interatomic potential to describe thermal transport un-
der high-pressure conditions, a total of 8000 data sets obtained
are split into training as well as validation data sets. From this,
7200 data sets are used as the training data set, and 800 data
frames that are not used in the training are used to infer the
accuracy of the MLP as the validation data set.

For the purpose of accurately mapping the position space
of atoms with their energy space, a deep learning framework
(DEEPMD) [70] is used to construct a deep potential–smooth
edition (or DeepPot-SE) neural model by training the data
set, which considers both radial and angular components to
produce the descriptors for training. We utilize the DEEPMD

package’s deep learning framework TENSORFLOW for train-
ing and testing the machine learning interatomic potential
used in our MD simulations performed with the Large-Scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
package [71]. The cutoff radius is set to be 6 Å, and the
descriptors decay from 0.5 to 6 Å to remove the discontinu-
ity introduced by the cutoff. The neural architecture consists
of two neural networks: one to convert the atomic coordi-
nates to descriptors and the other to map the descriptors to
their respective atomic energies. The former is known as the
embedding network, and the latter is known as the fitting net-
work. The embedding network consists of three hidden layers
with sizes of 25, 50, and 100 following residual-network-like
(ResNet-like) architecture [72]. The fitting network consists
of three hidden layers with 240 neurons each. The cost func-
tion optimization is achieved by using the adaptive moment
estimation (ADAM)–stochastic gradient descent approach.
The learning rate is varied from 10−3 to 10−8 with an expo-
nential decay in 1 000 000 steps for our temperature-based
model and 10 000 000 steps for our pressure-based model.
The prefactors of energies and forces are set as Pstart

e = 0.01,
Pstart

f = 1000, Plimit
e = 1, and Plimit

f = 1, respectively.
The training accuracy increases with the number of steps.

For the temperature-based model, training root-mean-square
errors (RMSEs) of 1.17×10−3 eV/atom and 8.02×10−3

eV/Å were achieved for energy and force, respectively. A
test data set of 1000 frames is used to infer the accuracy
of the trained potential. The test RMSEs of 2.25×10−3

eV/atom for energy and 2.21×10−2 eV/Å for force were
obtained indicating the accuracy of our MLP. Similarly, for
the pressure-based model training RMSEs of 1.19×10−3

eV/atom and 4.32×10−3 eV/Å were achieved for energy and
force, respectively. A test data set of 800 frames is used to
infer the accuracy of the trained potential. The test RMSEs
of 1.89×10−3 eV/atom for energy and 5.72×10−3 eV/Å for
force were obtained indicating the high accuracy of our MLP.

For our validation MD runs the time step is set as 1.0
fs, and the temperature and pressure are controlled using a
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FIG. 6. Comparison of (a) energies and (b)–(d) forces obtained
from our MLP MD simulations and ab initio MD for tungsten at
300 K. The low RMSE values, along with an R2 value of unity,
indicate an excellent agreement between our MLP and ab initio MD
simulations.

Nosé-Hoover thermostat and barostat, respectively [73]. The
damping parameters were set to be 0.1 and 1 ps for the thermo-
stat and barostat, respectively. Periodic boundary conditions
are used in all directions for all simulations. To verify the
accuracy of our MLPs, we compare the energies and forces
we obtain with our MLP-MD simulations and ab initio MD
simulations in Fig. 6. The great agreement between the two
methods (with the low root-mean-square errors and R2 values
close to 1) validates our potential and training procedure.

APPENDIX C: GREEN-KUBO AND SPECTRAL ENERGY
DENSITY CALCULATIONS

The MLPs are used with the GK formalism to determine
the phonon thermal conductivity of tungsten, which is re-
lated to the heat current autocorrelation function (HCACF)
expressed as

κx,y,z = 1

V KBT 2

∫ ∞

0
〈Jx,y,z(0)Jx,y,z(t )〉 dt, (C1)

where KB, T , V , and t are the Boltzmann constant, tempera-
ture, volume, and time, respectively, and 〈Jx,y,z(0)Jx,y,z(t )〉 is

the HCACF component along the x, y, or z directions. The
lattice thermal conductivities are calculated at various temper-
atures and pressures for our tungsten computational domains.
Firstly, the energies of our computational domains are min-
imized based on the conjugate gradient approach, and then
the cells are relaxed under the N-P-T ensemble (where the
number of atoms, pressure, and temperature are held constant)
for 1 ns with a target temperature and a pressure of 0 bars.
The system is then relaxed under the N-V -T ensemble for
another 1 ns. Finally, the N-V -E ensemble is used to collect
the heat current data for the calculation of the lattice thermal
conductivity according to Eq. (C1).

We determine the phonon lifetimes of our tungsten
structures through the calculation of the SED in our MD
simulations. The SED is obtained as a function of wave vector
q and frequency ω, which is given as [64]

�(q, ω) = 1

4πτNT

3∑
j

A∑
a

ma

∣∣∣∣∣
∫ τ

0

NT∑
nx,y,z

v̇ j

(
nx,y,z

a
; t

)

× exp

[
iq · r

(
nx,y,z

0

)
− iωt

]
dt

∣∣∣∣∣
2

, (C2)

where τ represents the total duration of the simulation, j
corresponds to the Cartesian direction, nx,y,z refers to a unit
cell in the crystal structure, NT represents the total number of
unit cells in the crystal, a denotes the label of an atom within
a specific unit cell, A is the atomic number in the unit cell, and
ma signifies the mass of atom a in the unit cell. The term v̇ j

represents the velocity of the atom labeled as a in the nth unit
cell along the j direction at time t . Additionally, r refers to the
equilibrium position of each unit cell.

To perform our SED calculations, we create a supercell
with dimensions of 100×4×4 for our tungsten structures. For
the equilibration of our supercell structure, we initially em-
ploy the Nosé-Hoover thermostat and barostat (i.e., the N-P-T
ensemble) [73], where the number of particles, pressure, and
temperature of the system are kept constant at the desired
pressure (0 or 80 GPa) for 2 ns with a time step of 0.5 fs.
After completing the N-P-T integration, we continue the equi-
libration process under the N-V -T ensemble, where both the
volume and temperature are held constant for an additional
2 ns. To collect the necessary data for our SED calculation,
we extract the velocities and positions of each atom using the
microcanonical (N-V -E ) ensemble for a period of 1.5 ns.
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[69] R. Martoňák, A. Laio, and M. Parrinello, Predicting crystal
structures: The Parrinello-Rahman method revisited, Phys. Rev.
Lett. 90, 075503 (2003).

[70] H. Wang, L. Zhang, J. Han, and E. Weinan, DeePMD-kit: A
deep learning package for many-body potential energy repre-
sentation and molecular dynamics, Comput. Phys. Commun.
228, 178 (2018).

[71] S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comput. Phys. 117, 1 (1995).

[72] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for
image recognition, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (IEEE, Piscataway,
NJ, 2016), pp. 770–778.

[73] W. G. Hoover, Canonical dynamics: Equilibrium phase-space
distributions, Phys. Rev. A 31, 1695 (1985).

[74] F. H. Featherston and J. R. Neighbours, Elastic constants of
tantalum, tungsten, and molybdenum, Phys. Rev. 130, 1324
(1963).

[75] J. D. Noffsinger, The electron-phonon interaction from first
principles, Ph.D. thesis, University of California, Berkeley,
2011, https://escholarship.org/uc/item/9v2759zn.

[76] F. Giustino, M. L. Cohen, and S. G. Louie, Electron-phonon
interaction using Wannier functions, Phys. Rev. B 76, 165108
(2007).

[77] N. W. Ashcroft, Putting the squeeze on lithium, Nature
(London) 419, 569 (2002).

115001-11

https://doi.org/10.1021/acs.jpclett.2c03090
https://doi.org/10.1063/1.5064602
https://doi.org/10.1080/15567265.2016.1218576
https://doi.org/10.1103/PhysRevB.93.045202
https://doi.org/10.1103/PhysRevB.96.161201
https://doi.org/10.1103/PhysRevB.97.045202
https://doi.org/10.1103/PhysRevB.98.085205
https://doi.org/10.1126/science.aat7932
https://doi.org/10.1103/PhysRevB.100.144308
https://doi.org/10.1016/j.mtphys.2020.100181
https://doi.org/10.1103/PhysRevB.103.134301
https://doi.org/10.1088/2515-7639/ab7cbb
https://doi.org/10.1103/PhysRevMaterials.3.074603
https://doi.org/10.1063/5.0027643
https://doi.org/10.1016/j.commatsci.2021.110836
https://doi.org/10.7567/1882-0786/ab36bc
https://doi.org/10.1139/p76-215
https://doi.org/10.1103/PhysRevB.18.6483
https://doi.org/10.1038/s41524-019-0235-7
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.7.115001
https://doi.org/10.1103/PhysRevB.81.081411
https://doi.org/10.1063/1.4767516
https://doi.org/10.1063/1.5004118
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/PhysRevB.26.4199
https://doi.org/10.1103/PhysRevLett.90.075503
https://doi.org/10.1016/j.cpc.2018.03.016
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1103/PhysRev.130.1324
https://escholarship.org/uc/item/9v2759zn
https://doi.org/10.1103/PhysRevB.76.165108
https://doi.org/10.1038/419569a

