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Thermodynamic stability of β-phases in Zr-Nb alloys
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We investigate the contribution of mixing enthalpy, configurational entropy, vibrational entropy, and electronic
entropy towards the thermodynamic stability of β-(Zr,Nb) phases, to explain discrepancies in experimental
observation of irradiated Zr-Nb alloys. Mixing enthalpy, configurational entropy, and electronic free energy
alone are insufficient to explain the relative stability of these phases. This emphasises the need for accurate
determination of the vibrational free energy contributions, which we calculated using ab initio molecular
dynamics. Including vibrational free energy contributions predicts β-Zr decomposition in to HCP-Zr and β-Nb at
temperatures below ∼880 K, in line with experimental observations. The relative energy difference between β-Zr
decomposition between 600 and 1200 K is small (<0.1 eV/atom) and may explain the wide range of apparently
stable β phases observed in neutron and proton irradiated Zr-Nb alloys. Other factors that may contribute towards
the stability of these phases are also discussed.
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I. INTRODUCTION

Zr-Nb alloys with 0.5–2.5 wt% (∼0.49–2.45 at.%) Nb are
used as nuclear fuel cladding in nuclear reactors due to a
combination of favorable neutronic, mechanical, and corro-
sion properties [1–3]. Nb alloying addition provides improved
oxidation and hydrogen-pickup resistance. Nb-containing Zr
alloys include ZirloTM(∼1 wt% Nb) [2], M5 (∼1 wt% Nb)
[3], Zr-1%Nb, Zr-1.5%Nb, and Zr-2.5%Nb. Depending on
the processing conditions and the irradiation conditions, Nb
can be accommodated in a range of different phases with
conflicting reports in the literature, suggesting that the ther-
modynamics of these competing phases are not yet fully
understood.

Figure 1 shows the Zr-Nb phase diagram from literature
[4,5]. In all Zr alloys, Nb is soluble in the α phase, and
when added above its solubility limit (∼0.4 wt%), Nb pre-
cipitates into β-Nb particles [6–9], which are β-(Zr,Nb) solid
solutions with up to 90 wt% Nb [8,9]. In alloys annealed
at higher temperatures, e.g., Zr-2.5%Nb, the metastable β-Zr
phase (50–80 wt% Zr) forms due to alloy annealing above the
monotectoid temperature of 610 ◦C [10,11]. The metastable
β-Zr phase is also present in Zr-1.0%Nb, Zr-1.5%Nb, and
Zr-2.0%Nb alloys annealed at 640 ◦C, which is above the
monotectoid temperature [12]. The β-Zr phase can be retained
at low temperatures as a metastable phase, but heat treatment
under the monotectoid temperature decomposes in to either ω

phase or β-Nb with heat treatment below 530 ◦C [13,14].
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The Nb content in the β-Nb phase is reported to re-
duce with exposure to neutron and ion irradiation, to varying
levels based on the irradiation conditions. Reduction up to
55–60 wt% Nb is reported under neutron irradiation in M5
alloys up to 22 dpa [9]. In Zr-1.5%Nb alloy, a reduction to
82.83 wt% is reported with dpa level of 2.66 [15]. In Zr-1%Nb
alloy, reduction to 50 wt% Nb under neutron irradiation is
reported at 8.5 dpa [16]. In low-Sn Zirlo, proton irradiation
causing 2.3 dpa reduced the Nb content in the native β-Nb
precipitates to 40% [17].

A third Nb-containing phase has also been reported in
Zr alloys exposed to neutron or proton irradiation. These
irradiation-induced precipitates are nm-sized and have a
platelet morphology. In-reactor neutron irradiation (>1 MeV
at 350 ◦C and fluence of 1.1 × 1026 nm−2) in M5 at dam-
age level of 22 dpa induce Nb-rich precipitates containing
up to 60 at.% Nb [18]. These precipitates have also been
observed for dpa levels ranging from 4–22 dpa in similar
in-reactor irradiation [9]. Similar precipitates have also been
observed during in-reactor irradiation of Zr-2.5%Nb alloys
[19]. The similar composition observed between post irra-
diation native β-Nb particle and platelet-like precipitates at
high fluences is considered to be the equilibrium concentra-
tion of these particles under irradiation, which is different
than the thermodynamic equilibrium at similar temperatures.
This is due to the change in solubility caused by irradiation-
enhanced diffusion controlled by migration of nonequilibrium
irradiation-induced point defects [20,21]. On the other hand,
proton irradiation (2 MeV at 350 ◦C, up to 1 dpa, flux of
3.67 × 1013 ion/cm2 s and dpa rate 2.62 × 10−6 dpa/s) is
reported to induce precipitates only containing 10–40 at.%

2475-9953/2023/7(11)/113607(12) 113607-1 ©2023 American Physical Society

https://orcid.org/0000-0003-4796-9110
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.7.113607&domain=pdf&date_stamp=2023-11-16
https://doi.org/10.1103/PhysRevMaterials.7.113607


TULI, BURR, CLAISSE, AND CAZORLA PHYSICAL REVIEW MATERIALS 7, 113607 (2023)

FIG. 1. Zr-Nb phase diagram. Modified from [4,5].

Nb [22,23], and larger in size (20–100 nm vs 2–10 nm in
length).

Even though such a wide range of β phases have
been observed in Zr-Nb alloys, there is a lack of
fundamental understanding of the thermodynamics of the
β-(Zr,Nb) system. The fact that a variety of phases have been
reported under relatively similar conditions suggests that the
stability of these phases may be dictated by small differences
in energies governing the relative stability of these phases.
This requires complex modeling approaches to obtain accu-
rate and precise thermodynamic information. Previous studies
on the thermodynamic stability of β-(Zr,Nb) solid solutions
have either not included vibrational free energies or have only
considered harmonic approximations towards vibrational
frequencies [24,25]. BCC-Zr is known to be strongly anhar-
monic [26,27]. This creates a challenge when calculating the
vibrational free energy contributions towards pure BCC-Zr or
Zr-rich BCC solid solutions at finite temperatures as the sta-
bilizing effects of anharmonic vibrations cannot be ignored.
Ab initio molecular dynamics has been shown to accurately
capture the anharmonic vibrational frequencies of a wide
range of metals and intermetallics [28–31]. A previous
study done on the β-(Zr,Nb) system has resorted to an
extension to the ground-state theory—density functional
perturbation theory (DFPT), which only considers harmonic
approximations to the vibrational frequencies. It has
been shown that DFPT may not be efficient in capturing
anharmonic effects in systems with strong anharmonicity,
leading to the need to explicitly model Zr-rich BCC solid
solutions at high temperatures [24].

Previous studies have used atomic scale simulations to
accurately capture the individual contributions towards Gibbs
free energy of formation of a range of systems. For instance,
the study by Hossain et al. showed that single-phase rock
salt structured high-entropy carbides are thermodynamically
stable above 3000 K with configurational entropy contribution
being two orders of magnitude larger than the electronic and
vibrational entropies [32]. The study by Manzoor et al. on
a range of high-entropy alloys showed that relying solely on
enthalpy of mixing enthalpy may not lead to correct phase
stability predictions and including entropy contributions are
critical for accurate predictions [33]. The study by Fan et al.
used atomic scale simulations to show that in addition to
just the mixing enthalpy, accurate electronic, vibrational, and

magnetic entropy contributions are important to explain the
Fe-Y phase diagram [34]. Atomic scale calculations have also
been used to compute the Gibbs free energy of iron-based
binary alloys, providing insights into phase transitions under
different conditions [35,36]. These examples highlight the im-
portance of atomic scale calculations in accurately calculating
the Gibbs free energy contributions, providing valuable in-
sights for materials science and engineering. Here we explore
the thermodynamics of the β-(Zr,Nb) system, to quantify the
contributions from mixing enthalpy, configurational entropy,
electronic free energy, and vibrational free energy.

II. METHODS

This study involved calculating the free energy of forma-
tion of β-(Zr,Nb) phase containing 0, 25, 75, and 100 at.%
Nb. The 25 and 75 at.% Nb compositions were selected to
represent β-Zr and β-Nb phase, respectively. The relative
stability of the two β phases were calculated considering the
β-Zr decomposition reaction

β-Zr −→ HCP-Zr + β-Nb, (1)

where the Gibbs free energy of the reaction (�G) was calcu-
lated as

�G(T ) = GHCP−Zr + Gβ-Nb − Gβ-Zr. (2)

The Gibbs free energy is the fundamental driving force behind
the phase formation reaction, and is defined as

G(T ) = U + PV − T S, (3)

where U is the internal energy, P is the pressure, V is the
volume, T is the temperature, and S is entropy. U and S in
Eq. (3) can be approximated by their key components

G(T ) = (UDFT + Uelec + Uvib) + PV

− T (Sconf + Selec + Svib), (4)

where the subscripts vib, elec, and conf stand for vibrational,
electronic, and configurational respectively. It is worth noting
that the translational and rotational free energies have been
ignored as they are expected to have really small contributions
towards G in solid-state phases. The contribution of creating
an interface with the bulk of the alloy was out of scope for this
study, as we aim to study the fundamental thermodynamics of
the Zr-Nb system.

Equation (4) can also be written as

G(T ) = UDFT + PV − T Sconf + Felec(T ) + Fvib(T ), (5)

where Fvib and Felec are the Helmholtz vibrational and elec-
tronic free energies.

HCP-Zr was modelled as a pure Zr cell, while β-Zr and
β-Nb were modelled as disordered solid solutions using two
approaches: special quasirandom structures (SQS) and con-
figurational ensemble. SQS structures represent the features
of an ideal solution with maximal disorder, thus it is ap-
propriate to assume maximum configurational entropy, Sconf

(i.e., ideal gas) in the absence of exact configurational en-
tropy information. This can be calculated using the Stirling’s
approximation [37]

Sconf = −R(xZrlnxZr + xNblnxNb), (6)
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where R is the gas constant and x is the fraction of solute
in β-(Zr,Nb) solid solution. The toolkit used to generate the
SQS structures was the MCSQS code in the alloy theoretic
automated toolkit (ATAT) developed by Van de Walle et al.
[38]. On the other hand the configurational ensemble ap-
proach provides exact configurational entropy information of
the simulated ensemble. The tool used for the implementation
of configurational ensemble is the site-occupancy disorder
(SOD) code developed by Grau-Crespo et al. [39]. The SOD
approach considers all possible configurations at each compo-
sition, while exploiting the space group operations to reduce
the configurational space to symmetry-unique sets. The proba-
bility (Pn) of each symmetrically distinct configuration to exist
is calculated as

Pm = 1

Z
�me

−Em
kBT , (7)

where the Em and �m are the reduced energy and degeneracy
information of each configuration respectively. Z is the parti-
tion function defined as

Z =
M∑

m=1

�me
−Em
kBT . (8)

The SOD approach also allows us to calculate the configura-
tional average of physical properties of the ensemble such as
configurational entropy (Sconf ) of the system

Sconf = (
∑M

m=1 EmPm) − (−kBT lnZ )

T
. (9)

Three SQS were created per composition, using 128 atom
supercells with interactions considered up to the third-nearest
neighbors and the SOD structures contained 16 atoms. Pure
BCC-Nb and BCC-Zr were represented by 120 atom super-
cells, while HCP-Zr was represented by a 150 atoms supercell.
These structures were fully relaxed using DFT simulations
carried out using the VASP code [40,41] with the PBE ex-
change correlation functional, a consistent plane wave cut off
energy of 350 eV. Atoms were described with PAW pseudopo-
tentials from the VASP 5.4 repository. Partial occupancy were
treated with a first-order Methfessel-Paxton smearing function
of width 0.1 eV.

The mixing enthalpy �Umix of disordered structures (solid
solutions) was calculated as

�Umix = U ss
DFT − xZrU

BCC−Zr
DFT − xNbU

BCC−Nb
DFT , (10)

where ss signifies solid solution made up of BCC-Zr and
BCC-Nb. UDFT signifies the DFT energies and all supercells
contain equal number of atoms to ensure mass balance. The
formation enthalpy �Uf was calculated with respect to BCC-
Nb and HCP-Zr as HCP-Zr is the ground-state allotrope of Zr,

�Uf = U ss
DFT − xZrU

HCP−Zr
DFT − xNbU

BCC−Nb
DFT . (11)

The electronic free energy was calculated from single-point
energy calculations of the relaxed HCP-Zr, BCC-Nb, and
SQS structures representative of β-(Zr,Nb) phases. In these
simulations the electronic bands were smeared with a Fermi
distribution of width kBT, and all other parameters were kept
the same as above.

The vibrational free energy was calculated by integrating
the vibrational density of states [g(ω)], which was com-
puted as the Fourier transform of the velocity autocorrelation
function [c(t )] of ab initio molecular dynamics (AIMD) tra-
jectories. c(t ) is a time-dependent correlation function that
relates the velocity of an atom j at time t to its initial velocity
and is calculated as a scalar product, which is averaged over
the number of particles

c(t ) = 1

N

N∑
j=1

〈v j (t ) · v j (0)〉. (12)

c(t ) from all simulations were calculated as a mean of individ-
ual VACFs from 5 ps segments of the entire simulation length.
The first segment was from the first step to the 2500th step,
and each subsequent segment starts one step after the start of
the previous segment. This results in 7500 sections of 5 ps in
a 20-ps run. This increases the precision of the c(t ) with the
amount of data available by mitigating the impact of random
noise and short-term fluctuations.

The Fourier transform of velocity autocorrelation function
of particle j, c j(t), gives us the power spectrum |v j (ω)|2 [42].
We know that c j is an even function, therefore only the real
part of the FFT calculated using the equation below was
considered

|v j (ω)|2 =
∫ ∞

−∞
c j (t )e− jωt dt . (13)

Finally, g(ω) over N particles is directly proportional to the
power spectra

g(ω) = 1

3N

N∑
j=1

|v j (ω)|2. (14)

Now if all atoms are considered as independent simple har-
monic oscillators, the temperature-dependent Helmholtz free
energy of an atom can be calculated as a one dimensional
quantum harmonic oscillator

Fqm(T ) = h̄ω

2
+ kBT ln(1 − e

−h̄ω
kBT ), (15)

where h̄ is the Planck’s constant and h̄ω
2 is quantum zero-point

energy, which is due to Heisenberg’s uncertainty principle and
increases the classically derived ground-state energy. Now, if
all atoms are considered to be coupled harmonic oscillators,
we can approximate the Helmholtz vibrational free energy
(Fvib) of the system by summing over all wave vectors in three
dimensions [43,44]

Fvib(T ) = 3 ×
∫ ∞

0
g(ω)Fqmdω, (16)

where g(ω) is normalized such that the area under the DOS
is 1. Fvib was calculated for all 7500 segments used for c(t )
calculations. The mean values and standard deviations of Fvib

have been reported in the Sec. III.
AIMD simulations to obtain vibrational free energy were

used for the stability analysis of β-(Zr,Nb) phases containing
0, 25, 75, and 100% Nb. The analysis was limited to these
two solid solution compositions because they are closest to the
experimentally observed β-phase compositions. Additionally,
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FIG. 2. �Umix of β-(Zr,Nb) calculated with respect to BCC-Zr
and BCC-Nb. The bar represents the median �Umix value and the
width of the box represents the Q1–Q3 interquartile range. The
whiskers represent the 95% confidence interval and the point rep-
resents outlier. Also shown are the �Umix values from literature
calculated using DFT energies of a single-SQS structure per com-
position [25].

the mixing enthalpy results shown in Fig. 2 indicate that
the 50 at.% Nb solid solution is least likely to exist and
DFT energies obtained at high Zr concentrations are unre-
liable due to dynamic instabilities of the β-(Zr,Nb) system
at 0 K. 25 and 75 at.% Nb structures were created as spe-
cial quasirandom structures. The simulation length was set
at 20 ps with 2-fs time steps. Gamma-point only version of
VASP was used to run these simulations. Single-k point (�)
provides a reasonable compromise of accurate forces and sim-
ulation length [45,46]. All structures for AIMD were 3 × 4 ×
5 supercells containing 120 atoms. The choice of 3 × 4 × 5
supercell is based on the sensitivity analysis presented in the
Supplemental Material [47], and was found to provide a good
balance between computational requirements and accuracy.
In particular, anisotropic supercells were found to capture
long range effects more efficiently that isotropic supercells,
in agreement with previous reports [48].

The volume corresponding to zero pressure was found with
a linear regression between volumes and pressures at each
temperature. While the pressure-volume relationship is known
to a quadratic function, a linear approximation is valid in a
region of small change in volume [49]. Three volumes were
simulated for all compositions at 600 K and 1200 K, except
for BCC-Nb, where four volumes were simulated.

The linear regression between Helmholtz free energy and
volume is calculated by taking a weighted linear fit (weight-
ing factor is inversely proportional of standard deviation of
Helmholtz energies at all volumes) between the energy and
volumes. Zero-pressure Fvib is obtained as per

Fvib = mV0 + c, (17)

where, m and c represent the slope and intercept of the
weighted linear regression, and V0 represents the zero-
pressure volume. The residual standard error (ε), which

represents the error bars is given by

ε =
√∑n

i=1(Fvib − F̂vib)

n − 2
, (18)

where, the numerator signifies the difference between the
actual and predicted value (linear fit value) of vibrational free
energy at same volume. n signifies the number of data points
provided to calculate the linear fit.

III. RESULTS

A. Internal energy of mixing, configurational entropy, and
electronic free energy

�Umix of the β-phase formation reaction was calculated
using the difference between DFT energies of the product
[β-(Zr,Nb)] and the reactants (BCC-Zr and BCC-Nb). Here
we consider the two BCC end members instead of the ground-
state HCP-Zr phase as we first present the mixing enthalpy as
per the standard definition, which allows us to compare our
results with available literature. The energy associated with
the formation of β phase from the HCP allotrope is included
later. Figure 2 shows the �Umix contribution towards the for-
mation free energy of the β-(Zr,Nb) phases from structures
created using two methods—SQS [38] and SOD [39]. The
overall positive energy values across the composition range
indicate that, like most metals, a miscibility gap is expected at
low temperatures and that entropy plays a crucial role in sta-
bilizing the solid solution. Experimentally it has been shown
that the �Umix for Zr-Nb solid solutions is positive [50,51] and
this positive �Umix is also common for other metallic solid
solutions [52,53]. We observe negative values for �Umix at
high Zr concentrations in the solid solution (∼87.5 at.%), in
agreement with previous reports [25,54]. This negative �Umix

may be due to the dynamic instability of the Zr-rich β-(Zr,Nb)
system at 0 K, making the results somewhat unreliable as the
simulation cells undergo displacive distortions during relax-
ation. Even though the SQS and SOD results were obtained
using different approaches, we observe common trends in
both set of results. Most of the SQS �Umix values are also
within the whiskers of SOD results; this is expected as the en-
semble approach can describe all configurations between the
full order and the full disorder limits, while the SQS method
is designed to model an atomic configuration representative of
complete disorder.

Figure 3 shows the contribution of configurational entropy
towards the stability of β-(Zr,Nb). SQS calculations assume
maximal configurational entropy, while SOD results include
the exact configurational entropy of the ensemble. A consid-
erable peak in energies is also observed for the SOD results
at 50 at.% Nb composition at lower temperatures. This is
due to the fact that at low temperatures the configurational
average is dominated by the lowest energy configuration.
As temperature increases, the configurational ensemble gets
closer to ideal mixing (which is assumed in the SQS system)
and the dip in energy is less pronounced. While the T �Sconfig

values significantly reduce the free energy of the solid solu-
tions, the values become commensurate with the �Umix values
only above 900 K. Moreover, the internal energy difference
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between HCP-Zr (ground-state allotrope of Zr) and BCC-Zr,
UHCP-Zr − UBCC-Zr = −0.085 eV, further increases the value
of �Umix, thus mixing enthalpy and configurational entropy
alone do not explain the experimental observation of β-Nb in
Zr-Nb alloys below the solvus temperature.

Figure 4 shows the electronic free energy contributions
towards the stability of β-(Zr,Nb). Electronic free energy
contributions are of similar magnitude for both Zr-rich and
Nb-rich phases, and increase with increasing temperature.
Thus, adding the electronic free energy contributions to the
formation enthalpy and configurational entropy contributions
does not significantly affect the relative stability of β-Nb
and β-Zr. Next we consider vibrational enthalpy and entropy
contributions to the formation free energy.
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FIG. 4. Felec contribution to stability of β-(Zr,Nb).

B. Vibrational free energy

The vibrational free energy is calculated using AIMD.
It is common to attain the vibrational free energy using
lattice dynamics through DFT-based calculation of phonon
dispersion relations within the QHA [55,56]. However, within
this approach the main assumption that the potential energy
surface expanded only up to second-order terms is tempera-
ture independent fails when anharmonic effects are important.
This becomes a severe issue when applied to crystal structures
that are dynamically unstable at 0 K [26]. This is illustrated
in Fig. 5, which shows imaginary frequencies for the calcu-
lated g(ω) for β-(Zr,Nb) containing 87.5 at.% Zr calculated
from DFT using the small displacement method [57]. The
use of AIMD simulations to explicitly model materials at
high temperature, introduces temperature and volume effects
on phonon interactions. This overcomes the limitation of the
traditional DFT-based approach. However, AIMD simulations

FIG. 5. g(ω) for (Zr,Nb) solid solution containing 87.5% Zr,
obtained through DFT+QHA.
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FIG. 6. Box and whiskers plot showing P-V relationship for
(a) BCC-Zr and (b) BCC-Nb at 1200 K. Width of the box represents
the Q1–Q3 interquartile range and points represent outliers.

are computationally expensive and require optimization of in-
put parameters to reduce computational cost while accurately
capturing the dynamics of the system. Some careful sensitivity
analysis was required to ensure our AIMD simulations find
a balance between computational time requirements and ac-
curacy in capturing the vibrational dynamics of the system.
Extensive simulation parameter convergence has been shown
in the Supplemental Material [47].

The vibrational free energy was calculated from g(ω),
which in turn was obtained from a Fourier transform of av-
eraged c(t ) of AIMD simulations carried out in the NVT
(canonical) ensemble with the Nose-Hoover thermostat [58].
The Nose-Hoover thermostat’s inclusion of additional degrees
of freedom that couple the system with the heat bath, avoids
the random noise added to the results due to the stochastic
nature of the Langevin thermostat (NpT ensemble). Since
all simulations were carried out with the NVT ensemble,
they were all at a nonzero-pressure state. Multiple AIMD
simulations were carried out for each composition to iden-
tify the zero-pressure volume. Figure 6 shows the aggregate
volume-pressure behavior for BCC-Zr and BCC-Nb simula-
tions carried out at 1200 K. The results show a near-linear
relationship, as expected by the P-V equation of state by
Birch–Murnaghan and Rose-Vinet in the volume range of
∼3% [49,59,60]. The linear fit is created with a confidence
interval of 0.999 (the confidence interval is thinner than the
linear thickness). This high quality of linear fit is due to the
large number of points available at each pressure, with each
set of data (box and whiskers) representing 10 000 AIMD data
points (one pressure value at each time step) for each volume.

Similar trends were observed for the other compositions and
temperatures simulated.

The lattice parameters of zero-pressure volumes for
BCC-Zr and BCC-Nb are found by calculating the intercept of
the linear fit line at zero pressure in the P-V relationships and
are shown in Table I. The table also shows literature values
for lattice parameters of BCC-Nb and BCC-Zr at 1200 K,
which are in great agreement. Similarly, the lattice parameters
for β-Zr (25 at.% Nb) phase and β-Nb (75 at.% Nb) phases
are shown to follow Vegard’s law of linear weighted average
of the lattice parameter of the solid solutions’ end members
[61,62].

Figure 7 shows the pressure-temperature-energy relation
for BCC-Zr and BCC-Nb at 600 and 1200 K. Interestingly
in the case of BCC-Zr, analyzing the evolution of energy
over the 20 ps run at 600 K showed possible transformation
towards lower-energy structure. Interval common neighbor
analysis [66], revealed that the structure distorted into a partly
HCP configuration. As BCC-Zr is not stable at 600 K and
∼500 MPa pressure, this provides confidence that the 20 ps
AIMD simulations, with our carefully converged simulation
parameters (see the Supplemental Material [47]), can cap-
ture the correct dynamics of the system. Due to this phase
transformation, the results for BCC-Zr at 600 K were not
considered for the purpose of this analysis. As expected, no
such displacive transformation was observed at 1200 K. Fur-
ther analysis of the 25 at.% Nb structures at 1200 K also
confirmed that for all three volumes, the structure exhibits a
quasi-BCC structure, where the average atomic position over
several picoseconds result in a BCC structure. This is not
abnormal behavior in MD for stable BCC structures, with
similar structure previously observed for BCC-Zr simulated
at 1000 K using classical MD [67].

Figure 8 shows the g(ω) as a function of composition,
computed using the MD trajectories of the 1200 K simulations
with volumes closest to the zero-pressure volume. Also shown
is the partial vibrational density of states (pvDOS) contribu-
tions from Zr and Nb in the solid solutions. The pvDOS curves
have been normalized by the atomic fraction of the species in
the solid solution. The results show an increase in the phonon
density at higher frequency with increasing Nb concentration.
This is expected as with increasing Nb content the outer elec-
trons per atom ratio increases resulting in stiffer bonds, and an
increase in stiffness would result in higher phonon frequen-
cies [68–71]. The pvDOS corresponding to both Zr and Nb
have similar phonon distributions at the range of frequencies

TABLE I. Lattice parameters for BCC-Zr, BCC-Nb, and β-(Zr,Nb) solid solutions obtained from AIMD simulations.

at.% Nb Temperature (K) Simulated lattice parameters (Å) Literature (Å) Vegard’s law (Å)

0 600 N/A
0 1200 3.626 3.629 (exp.) [63]
25 600 3.535 3.535
25 1200 3.553 3.555
75 600 3.392 3.397
75 1200 3.408 3.414
100 600 3.329
100 1200 3.343 3.335 (AIMD) [64]
100 295 3.320 (exp.) [65]
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FIG. 7. Pressure-temperature-energy relations for BCC-Zr at (a) 600 K and (b) 1200 K and BCC-Nb at (c) 600 K and (d) 1200 K. Each
point represents the pressure and energy at each step of AIMD simulation for all volumes over 20 ps.

FIG. 8. g(ω) obtained from 20 ps AIMD runs for 0, 25, 75, and
100 at.% Nb at 1200 K.

probed, with peaks and valleys at similar frequencies, thus
signifying similar lattice dynamics in both species.

Figure 9 shows the Helmholtz vibrational free energy Fvib

obtained by integrating, at both 600 and 1200 K, the g(ω)
obtained using the 600 K and 1200 K AIMD simulations of
75 at.% Nb structure. Similar trends were also observed for
25 at.% Nb and 100 at.% Nb. Integrating the g(ω) obtained
from AIMD trajectories with ensemble temperatures of 600 K
or 1200 K yielded equivalent Fvib values. This suggests that
the difference in g(ω) between 600 K and 1200 K is negligi-
ble, at least in the frequency range relevant to the integrating
temperatures, provided that the structure is stable at that tem-

FIG. 9. Fvib calculated using g(ω) obtained from 600 K and
1200 K AIMD simulation, integrated at (a) 600 K and (b) 1200 K.
The points show the mean value of Fvib calculated over 5 ps segments
and the error bars show the standard deviations.
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FIG. 10. Zero-pressure vibrational free energy of BCC-based phases as a function of (a) composition and (b) temperature. Linear regression
added (a) with a confidence interval (shaded region) of 95%. Error bars in (a) are given by ε from Eq. (18).

perature. Thus, here we used g(ω) constructed from 600 K
AIMD trajectories for all compositions except pure BCC-Zr,
which displayed a phase transformation as outlined above. In
the latter case, the AIMD g(ω) calculated at 1200 K was used
instead.

In the range of volumes considered, and within the standard
deviations of our data, the relationship between Fvib and V
is described by a linear fit. Thus, the vibrational free energy
at volume corresponding to zero-pressure is obtained, at any
temperature, through a linear regression of Fvib with V to
identify the intercept with V0, the volume corresponding to
zero-pressure at that temperature, identified from Fig. 6.

The vibrational free energy at zero pressure of β-(Zr,Nb)
phases at any temperature was calculated from the g(ω). The
zero-pressure volumes at any temperature can be calculated
by accounting for the linear thermal expansion coefficient of
BCC-Nb and BCC-Zr to get the respective lattice parameters
at any temperatures. At all temperatures, the coefficient of
thermal expansion for BCC-Nb and BCC-Zr were taken as
7.1 × 10−6 K−1 [72] and 10−5 K−1 [73] respectively. As a
check, applying the experimentally observed thermal expan-
sion coefficient to the lattice parameter obtained at 600 K
for BCC-Nb in order to extrapolate this value to 1200 K and
room temperature, results in lattice parameters of 3.343 Å and
3.326 Å respectively. These are in great agreement with the
values supplied in Table I.

Figure 10(a) shows the vibrational free energy at zero-
pressure of all four phases (BCC-Zr, BCC-Nb, β-Zr, and
β-Nb) at multiple temperatures between 600 and 1200 K. The
change in Fvib with composition appears to increase linearly
with increasing Nb content, providing an estimate of Fvib at
arbitrary compositions. It is observed that the 95% confidence
interval of this linear regression fits inside the uncertainty of
the data points at the four phases studied. As expected the
zero-pressure vibrational free energy decreases with increas-
ing temperature, see Fig. 10(b).

C. β-Zr decomposition reaction energy

With Fvib(T ) calculated for β-phase solid solutions and
BCC-Nb, these values can be added along with Felec(T ) to
Eq. (2) to get the complete �G at zero pressure. Felec(T )
was also calculated at all the temperatures probed for Fvib(T ).
This time we calculate �G with respect to HCP-Zr and
β-Nb to mimic the decomposition reaction of β-Zr. Consid-
ering a high-quality interatomic potential by Ackland et al.
is available for HCP-Zr, F HCP-Zr

vib (T ) has been obtained by
running a classical MD simulation for 16 000 atoms super-
cell over 20 ps at 600 K and integrating the resultant g(ω)
at temperatures of interest [74]. This is assumed to be an
accurate depiction of the vibrational dynamics of HCP-Zr
while reducing the computational cost, as the Fvib obtained
for BCC-Zr through AIMD (120 atoms) and classical MD
(16 000 atoms) at 1200 K are in excellent agreement, with
values of–0.66 eV/atom and–0.65 eV/atom, respectively. It
is worth noting that the same potential was used for both HCP
and BCC-Zr [74] (see the Supplemental Material [47]).

Figure 11 shows �G for the decomposition reaction of
β-Zr (25 at.% Nb) into HCP-Zr and β-Nb (75 at.% Nb) phase,
as found in Zr-Nb alloys used in nuclear applications, calcu-
lated using Eq. (2). The results are also compared to results
showing contribution of formation enthalpy, configurational
entropy, and electronic free energy in order to gain a better
understanding of the effect of vibrational free energy on the
relative stability of these phases. This comparison shows us
that ignoring the contributions of Fvib, our results predict the
β-Zr phase decomposing at all temperatures. If the uncertainty
associated with our calculations are accounted for, adding
the contributions of Fvib makes the decomposition reaction
thermodynamically unfavorable at temperatures above the
monotectoid temperature (∼883 K), which is consistent with
experimental observations of the β-Zr phase only being ob-
served in alloys annealed above the monotectoid temperature.
The results also show the importance of Fvib in explaining

113607-8



THERMODYNAMIC STABILITY OF β-PHASES IN … PHYSICAL REVIEW MATERIALS 7, 113607 (2023)

S
O

D
S

Q
S

600 800 1000 1200

-0.10

-0.05

0.00

0.05

-0.10

-0.05

0.00

0.05

Temperature (K)

R
ea

ct
io

n 
en

er
gy

 Δ
G

 (
eV

/a
to

m
)

Contribution from

ΔUf − TΔSconf+ ΔFelec

ΔUf − TΔSconf+ ΔFelec+ ΔFvib

FIG. 11. �G for the β-Zr decomposition reaction between 600 and 1200 K. Error bars are calculated as
√

(ε2
β-Zr + ε2

β-Nb). HCP-Zr was not

considered in the error propagation due to limited statistics obtained from classical MD run.

the decomposition of β-Zr at lower temperatures, but not
above the monotectoid temperature. The energy of the decom-
position reaction also increases with increasing temperature,
showing that the chances of the β-phase decomposing reduces
with increasing temperature.

IV. DISCUSSION

The thermodynamic stability of β-(Zr,Nb) phases was ana-
lyzed by first considering the contributions from �Umix and
configurational entropy. It is shown that, as expected with
most metallic solid solution, the �Umix is positive over most
of the Zr/Nb compositional range. �Umix values are in great
agreement with the available literature as well. Adding the
contribution of configurational entropy (−T �Sconfig) lowered
the overall energy of the β-(Zr,Nb) phases, but not suffi-
ciently to explain the observed stability of β phases in Zr-Nb
alloys.

�Felec contributions were also considered while analyz-
ing the thermodynamic stability of the β-(Zr,Nb) system.
The contribution of �Felec to �G was found to be quite
small at lower temperatures with a difference of only 4% be-
tween �G and �G − �Felec values at 600 K. This difference
increases to 39% at 1200 K. This observation is commen-
surate with prior literature suggesting that contribution of
electronic free energy (relative to HCP-Zr) on the stability of
BCC-Zr at high temperatures (∼1000 K) cannot be ignored
and that Felec plays a bigger role than Fvib close to melting
temperature [75].

The bulk of the work done here concentrated on using
AIMD to calculate the contribution of �Fvib towards the rela-
tive thermodynamic stability of β-Zr and β-Nb. As shown in

the Supplemental Material [47], relatively small (120 atoms)
anisotropic supercells were used to accurately capture the
dynamics of the β-(Zr,Nb) system. This is verified by the ac-
curate depiction of BCC-Zr instability at 600 K and capturing
the effects of Nb as a beta-stabilizing agent. The excel-
lent agreement between the available literature and simulated
lattice parameters of pure BCC-Zr and BCC-Nb as well as
β-(Zr,Nb) phases further validates the choice of supercell
and AIMD simulation parameters. It is also shown that g(ω)
obtained at a single temperature that is sufficiently high to sta-
bilise the BCC structure can be used to obtain the vibrational
free energies at a range of temperatures, further reducing the
computational cost of these simulations.

When all major free-energy contributions and the relative
uncertainty (0.05 eV at 600 K and 0.1 eV at 1200 K) are taken
into account, the relative stability of β-Zr and β-Nb phases
appear to be dictated by small energy changes, of the order
of ∼0.1 eV/atom. The thermodynamics of the Zr-Nb system
presented here might also explain the presence of differing
compositions of β phases in Zr-Nb alloys. Since the difference
in energies is so small, small differences in the microstruc-
ture, caused by thermomechanical processing or by radiation
damage, could change the preferred composition of these β

phases. This may explain the differences in β-phase composi-
tion observed between neutron and proton irradiated samples
[22,23]. It has previously been reported that the difference in
β-phase size and composition between neutron and proton
irradiated samples may be attributed to the irradiation dose
rate and diffusion kinetics [76,77]. Another possible reason
could be the interaction of irradiation species with the sample.
When proton irradiation causes small cascades, it impacts the
process of steady state size stabilization of β phases due to
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reordering caused by irradiation enhanced diffusion [77]. This
might explain the formation of larger but less dense platelet-
like precipitates [22,23].

The range of energies dictating the relative stability of
these phases fall within the limit of accuracy of DFT. It
is also likely that using classical MD on a 16 000 atom
supercell, at the equilibrated 600 K volume (without account-
ing for thermal expansion), to approximate the vibrational
free energy of HCP-Zr at multiple temperatures introduces
a small error in the results. Another possible source of error
is only sampling on the gamma-point in the reciprocal space
due to computational constraints. Even though it is known
that single gamma point sampling is good enough for big
enough supercells [78,79], the accuracy level required in this
case is quite high as the energies being analyzed are so small.
It has been reported that a k-point density as high as 5000
k-points/Å−3 is typically required to obtain an accuracy of
the total energy better than 1 meV per atom [80].

Work done here shows that the relative stability of these
β phases can be explained by accounting for �H , T�Sconf ,
�Felec, and �Fvib. Other factors that may further lower the �G
of β phases in Zr-Nb alloys must also be considered. These
include, but are not limited to, effect of interfacial energy,
impurities, and vacancies. While some irradiation induced
nano-sized precipitates are coherent, the pre-irradiation β-Nb
precipitates are often incoherent. Interfacial energy, at the
interface of coherent/semicoherent β-Nb and β-Zr phase and
bulk of the alloy, may also contribute towards the stability of
β phases. Fe is both a common alloying element in Zr alloys
and an impurity in Zr sponge. In binary Zr-Nb alloys, the con-
centration of Fe impurities is usually high (∼1000 ppm). Fe is
a β stabiliser, with limited solubility in HCP-Zr (50–80 ppm)
and higher solubility in the β phase with native β-Nb SPPs
in low-Sn Zirlo shown to contain about 1 wt% Fe [17,81,82].
These SPPs are also surrounded by a shell containing 6 wt%
Fe, with reduction to 1 wt% Fe postirradiation [17,83]. Fe
has also been reported to be present in the β-Zr phase [84].
Therefore, it is expected that further analysis of contribution
of Fe inside or in the shell surround the native β-Nb phase will
have an effect on the thermodynamic stability of these phases.
Accounting for the Fe impurity effect may further lower the
β-Zr decomposition reaction energy and increase the differ-
ence in energies between the values at 600 and 1200 K. Other
common impurities include O and H, which are α and β

stabilisers respectively. The concentration of these impurities
will have an impact on the energy of the decomposition reac-
tion as well.

The possible effect of vacancies on the stability of β phases
must also be considered. MD studies have suggested that
the vacancy formation energy in BCC-Zr is lower than in
HCP-Zr (∼1.6 eV vs 2.25 eV at 600 K) [85,86]. Moreover, in
the temperature range of 1200–2200 K, previous calculations
for equilibrium vacancy concentrations have shown that the
equilibrium vacancy concentration is considerably higher in
BCC-Zr and the vacancy concentration reduced more drasti-
cally in HCP-Zr than in BCC-Zr with decreasing temperature
[85]. The coherent or semicoherent interfaces of the irradia-
tion induced precipitates may lead to significant strain fields
[18,22,87], which might be accommodated more easily with
increasing vacancies (resulting in reduced bulk modulus) in

the β phases. It is worth noting that calculating the vacancy
formation energy using DFT (at 0 K) is a formidable task
since adding a vacancy in the BCC-Zr structure in DFT results
in the entire structure collapsing as BCC-Zr is dynamically
unstable at 0 K. The methodology presented here can be used
to simulate the effect of an increasing number of vacancies
in the β phases at the DFT level of theory by systematically
introducing them in to the structures being simulated using
AIMD. This will allow the approximation of the possibly sig-
nificant impact of vacancies on the thermodynamic stability
of β phases in Zr-Nb alloys.

V. CONCLUSIONS

This comprehensive analytical work done on the stability
of β phases present in Nb-containing Zr alloys has resulted in
a number of important findings. Results show that an accurate
depiction of the dynamics of the β-(Zr,Nb) system can be
obtained by running AIMD simulations for relatively small
anisotropic structures. This is further verified by the accurate
depiction of BCC-Zr instability at 600 K and capturing the
effects of Nb as a beta-stabilizing agent. This finding of us-
ing small anisotropic cells is important as this makes AIMD
simulations computationally feasible. It is also shown that
g(ω) obtained at a single temperature high enough to stabilise
the BCC structure can be used to obtain the vibrational free
energies at a range of temperatures.

Within the uncertainty of the calculations, results presented
here explain the experimental observation of the β-Zr phase
in alloys annealed at higher temperatures, and vibrational en-
tropy plays an important role in explaining these observations.
Finally, the small difference in the �G between composi-
tionally different β phases, of the order of ∼0.1 eV/atom,
can explain the presence of wide range of compositions of
these phases depending on manufacturing and irradiation con-
ditions.

Other possible factors contributing towards the stability of
β-(Zr,Nb) phases have also been discussed and these include
presence of Fe as an impurity in Zr-Nb alloys, strains induced
in the alloys due to β-phase precipitation, interfacial energy,
and vacancies. Calculating the exact contributions of these
factors towards the thermodynamics of the β-(Zr,Nb) system
can form the foundation of future studies.
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