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Explainable machine learning for hydrogen diffusion in metals and random binary alloys
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Hydrogen diffusion in metals and alloys plays an important role in the discovery of new materials for fuel
cell and energy storage technology. While analytic models use hand-selected features that have clear physical
ties to hydrogen diffusion, they often lack accuracy when making quantitative predictions. Machine learning
models are capable of making accurate predictions, but their inner workings are obscured, rendering it unclear
which physical features are truly important. To develop interpretable machine learning models to predict the
activation energies of hydrogen diffusion in metals and random binary alloys, we create a database for physical
and chemical properties of the species and use it to fit six machine learning models. Our models achieve root-
mean-squared errors between 98–119 meV on the testing data and accurately predict that elemental Ru has a large
activation energy, while elemental Cr and Fe have small activation energies. By analyzing the feature importances
of these fitted models, we identify relevant physical properties for predicting hydrogen diffusivity. While metrics
for measuring the individual feature importances for machine learning models exist, correlations between the
features lead to disagreement between models and limit the conclusions that can be drawn. Instead grouped
feature importance, formed by combining the features via their correlations, agree across the six models and
reveal that the two groups containing the packing factor and electronic specific heat are particularly significant for
predicting hydrogen diffusion in metals and random binary alloys. This framework allows us to interpret machine
learning models and enables rapid screening of new materials with the desired rates of hydrogen diffusion.
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I. INTRODUCTION

At present, there is a critical need for sustainable
carbon-free energy storage technologies that can address the
intermittent and “nondispatchable” character of renewable
energy resources. Hydrogen-based technologies satisfy such
requirements and are attainable solutions with a potential for
zero-carbon emissions. Hydrogen has the highest gravimetric
energy density (121 MJ kg–1) of any fuel, is naturally abundant
and can be converted into electrical energy via high-efficiency
fuel cells [1]. A major hurdle for the use of hydrogen as a
clean and efficient energy carrier is developing ways to store
and transport it safely and economically. Hydrogen can be
stored in gas or liquid form inside of high-pressure cylinders
[2], primarily for use as a fuel for vehicles, and new materials
for these cylinders require slow diffusion rates of hydrogen to
both limit leakage and the effects of hydrogen embrittlement
[3]. Currently, these tanks are often made of aluminum and
its alloys or steels [2]. Hydrogen can also be chemically
stored in metal hydrides in solid form [4,5], but efficient
hydrogen absorption and desorption requires fast hydrogen
transport through the bulk metal. Two common options are
Mg hydrides [6–9], which have high hydrogen storage capa-
bilities but extremely slow kinetics, and Pd hydrides, which
have been highly studied because they absorb hydrogen at
room temperature [10]. For all of these storage/transportation
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options, a quantitative understanding of the interactions of
hydrogen with various containment vessels and storage media
is essential in the ongoing efforts aimed at rational design of
new materials.

When hydrogen diffuses through metals and metal alloys,
hydrogen atoms migrate through the lattice of a host mate-
rial. At the initial stage, when hydrogen is in contact with
a metal surface, dihydrogen molecules absorb to the surface
through weak van der Waals interactions, with a low absorp-
tion energy of 3–5 kJ mol−1 [11]. The second step is chemical
absorption, which occurs with a relatively high enthalpy of
tens or hundreds of kJ mol−1, depending on the metal/alloy
[12]. Following chemical absorption, hydrogen atoms diffuse
sub-surface due to large concentration gradients. Hydrogen
in crystalline metals and alloys diffuses through the lattice
through interstitial diffusion, in which hydrogen atoms move
through the interstitial sites of the host metal. Hydrogen atoms
are precisely located in interstitials and in the diffusion pro-
cess they pass from one interstitial site to another. In metal
lattices, hydrogen atoms tend to be preferentially located at
BCC tetrahedral or FCC octahedral interstitial sites [11].

Traditional experimental and computational modeling ap-
proaches to determining hydrogen diffusion in metals and
metal alloys often consume tremendous time and resources
[13–31]. Random alloys, in particular, are costly to study
using density-functional theory (DFT) calculations because
they require multiple calculations to thoroughly sample all
of the possible configurations. To streamline the discovery
of new materials for hydrogen containment or transportation,
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accurate analytic models can be used to connect hydrogen
diffusion to other material properties that are easier to mea-
sure experimentally or using DFT. These models can be used
for rapid screening of new metals and alloys. Unfortunately,
while analytic models for hydrogen diffusion exist, they lack
quantitative accuracy. An elastic model for BCC metals by
Ferro [32] calculated the expected energy needed to distort the
lattice sufficiently for an atom to travel between neighboring
interstitial sites and predicted that the activation energy Q
could be described by

Q = 1.3NAGa(d − λ)2

(
1 − βnTD

10Tm

)
, (1)

where N is the number of atoms, A is a constant that converts
the units from mechanical energy to heat, G is the shear
modulus, a is the lattice constant of the host, d is the di-
ameter of the interstitial atom, and λ is the diameter of the
interstitial cavity. The last term in the parenthesis in Eq. (1)
describes a correction factor for the elastic modulus where
n is the number of atoms in the host that are displaced, TD

is the Debye temperature, Tm is the melting temperature, and
β = Tm

G
dG
dT . Unfortunately, this simple elastic description was

found to have at best only qualitative agreement with exper-
imental activation energies [33]. A later model by Flynn and
Stoneham [34] used quantum theory to calculate the transition
rate of localized eigenstates between interstitial sites where Q
is calculated by

Q = Mω2
Dd2

360

(
1 + ν

1 − ν

)2(
δV

�

)2

�(qmd, η), (2)

where M is the mass of a host atom, ωD is the Debye fre-
quency, d is the jump distance, ν is Poisson’s ratio, δV is
the lattice dilatation caused by each defect, and � is the
impurity atomic volume. The function � is specified by the
parameters qmd (qm is the radius of the Debye sphere in
reciprocal space) and η, which is the fraction of the volume
change from isotropic dilatation. While this model worked
well for BCC metals, the activation energies for FCC metals
were underestimated because they only considered the lattice
distortions at the interstitial sites and ignored any distortions
that may occur during the transition.

Due to the lack of accurate theoretical models for mate-
rial transport properties, machine learning approaches have
been introduced recently and have successfully been used
to predict light element diffusion in FCC, BCC, and HCP
metals [35], solute diffusion in FCC metals [36], and solute
diffusion in FCC, BCC, and HCP metals [37,38]. However,
existing machine-learning methods fail to accurately predict
hydrogen diffusion due to the scarcity of data and the lack of
a suitable set of features to capture the complex behavior of
hydrogen in metals. Machine learning methods have instead
been used in conjunction with kinetic Monte Carlo [39] and
path-integral molecular dynamics [40] to calculate hydrogen
diffusion activation energies for a single material.

The first key requirement for successful machine learning-
based materials modeling is target property data in sufficient
quantity and accuracy. For other applications involving
hydrogen-metal interactions, e.g., storage or compression
with alloys, it can become an intractable task to obtain the fig-

ures of merit (hydrogen plateau pressures) with first-principles
accuracy at the scale needed for training ML models; con-
sequently, several studies have relied on a database of
accumulated experimental metal hydride data to train thermo-
dynamic models and facilitate discovery of promising alloys
[41–43]. Therefore the first key contribution of this work is
the construction of a database containing activation energies
for hydrogen diffusion in metals and binary alloys that we
extracted from previous work. This will provide a useful
community tool moving forward to build upon the current
work.

A second key requirement is generating a sufficiently
representative featurization that captures the key physical,
chemical, or electronic material characteristics needed for
successful learning of the target property. One powerful yet
simple approach is the development of so-called composi-
tional ML models, where all features are derived purely from a
composition’s element’s properties and molar fractions, which
are combined through simple mathematical operations [44].
Such a featurization combined with standard ML approach
can accurately model properties like formation energies of
inorganic compounds [45] but are not always sufficient.
Other more complex, crystal-structure based featurization
strategies like graph neural networks [46] are powerful but
more difficult to implement when crystal structures inherently
contain substitutional disorder, e.g., alloys vs. intermetallic
compounds. Therefore the second key contribution of this
work is to augment this typical compositional ML feature
vector with domain-specific features (including manually se-
lected crystal structure-related information) that are needed
to improve predictions of hydrogen diffusion activation
energies.

After meeting these two requirements, we investigate the
performance of a variety of model types (k-nearest neighbors,
Gaussian process, random forest, gradient boosting, positive
ElasticNet, and Bayesian Ridge) and measure their perfor-
mance with different train-test split strategies to provide a
comprehensive outlook on predictive capabilities. Using our
final models, we calculate importance of each feature. In this
paper, to both improve agreement between the models and
allow for interpretability, we group our features into correlated
feature groups. Thus, as the final key contribution in this work,
we obtain critical physical insights on hydrogen diffusion in
metals and binary alloys using these correlated feature groups.
Within this framework, future additions/improvements to our
database, featurization strategies, model development, and in-
terpretability analyses will provide new tools moving forward
to understand and design materials with targeted hydrogen
diffusion properties.

II. METHODS

A. Database and features

The database used in this work to fit machine learning
models for hydrogen diffusion consists of 28 metals and 14
different elemental combinations of binary alloys, as shown
in Fig. 1. For our database entries, we choose to use only data
measured experimentally at high temperatures above 250 K
to reduce quantum mechanical effects like tunneling and to
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FIG. 1. Elements and binary solid solutions included in the
hydrogen diffusion database. The saturation shows the range of com-
positions present in the database, and entries with two colors have
data corresponding to different crystal structures. Data for Mn are
only present in Pd-Mn alloys; no elemental data are available. All of
the data come from experimental measurements, except elemental
Rh and Ru, which are from DFT. The majority of alloy data are
Pd-based alloys.

exclude any non-Arrhenius behavior. Because experimental
data was chosen, small concentrations of crystallographic
defects are implicitly included. Since experimental data are
unavailable for Rh and Ru, we include the activation energies
for these two metals from density functional theory (DFT)
calculations to improve coverage of high activation barriers.
The DFT calculations included have used techniques that have
agreed with previous experimental measurements done for
different metals, even though these calculations were done
for perfect crystals with no defects. Since the activation en-
ergies are significantly larger than the other metals, it may be
possible that there is some deviation from the experimental
results due to the lack of crystallographic defects. No other
theoretical calculations were included. For metals with more
than one source, we use the average value of the reported
activation energies. The alloy compositions in our database,
which make up 72 total entries, span a range of 37 atomic
percent for each elemental combination on average, with a
maximum of 89 atomic percent for TiV. While all other alloys
have at least two compositions, there is only one for TiAl
(Ti88Al12). Pd-based binary alloys dominate the alloy data
with 42 Pd alloys in the dataset, of which 40 contain at least
50 atomic % Pd. The next most prevalent elements are Fe, Ni,
and Ti, which have 15 entries each. Therefore the database is
biased towards transition state metals and our models, while
still applicable to other metals, should have smaller errors for
the transition state metals.

Table I lists the activation energies for the pure metals
organized by crystal structure. The activation energies for
the metals depend heavily on the crystal structures, and the

TABLE I. Activation energy for hydrogen diffusion in pure met-
als. The values are sorted in order of increasing activation energy. In
the case of multiple measurements of activation energy, we provide
the average value. As mentioned in Fig. 1, both Rh and Ru values
come from density-functional theory.

BCC Q (eV) FCC Q (eV) HCP Q (eV)

Cr 0.020 [47] Pd 0.236 [48–51] Mg 0.250 [52]
V 0.046 [66–68] Pt 0.264 [53,54] Zr 0.427 [55–58]
Fe 0.069 [60,61] Au 0.273 [62,77] Hf 0.464 [63,64]
Nb 0.098 [65–69] Ag 0.312 [87] Y 0.496 [88–90]
Ta 0.152 [67–71] Cu 0.375 [77–81] Ti 0.508 [63,72]
Mo 0.185 [73–76] Ni 0.413 [80–86] Sc 0.540 [59]
Ti 0.273 [72,91] Th 0.419 [92] Lu 0.575 [93]
Zr 0.361 [56] Al 0.452 [94,95] Be 0.611 [96]
W 0.387 [97] Fe 0.460 [98] Ru 0.763 [31]

Co 0.507 [99]
Rh 0.892 [14]

BCC metals have 0.24 eV smaller activation energies on av-
erage than the close-packed FCC and HCP metals. For HCP
metals where the reported diffusion was anisotropic, we use
the effective activation energy by taking an average over the
activation energies in directions parallel and perpendicular
to the basal plane. Note that Fe has activation energies for
hydrogen diffusion in both BCC and FCC crystal structures,
while Ti and Zr have activation energies in both BCC and
HCP crystal structures. The mean activation energy is 0.31 eV
with a standard deviation of 0.15 eV. While the pure elements
shown in Table I have a larger mean of 0.38 eV and a larger
standard deviation of 0.20 eV, the opposite is true for the
binary alloys, which have a mean of 0.29 eV and a standard
deviation of 0.11 eV, so the alloys not only cover a smaller
composition range, but also a smaller range of activation en-
ergies.

Figure 2 shows the properties that are used as input into
our machine learning models and their correlations with the
hydrogen activation energy. For the binary alloys, no alloy
properties are included, but we use the averages of the ele-
mental properties weighted by the atomic percentages. These
properties come from two sources: theoretical models of in-
terstitial diffusion and broader elemental and stoichiometric
properties from the MAGPIE database [45]. For the MAGPIE
features we also include the standard deviations σ of the
features, and for metals, the standard deviations are set to 0.
By including these two types of features, we allow our model
to use known proponents to hydrogen diffusion, while also
picking out new features. We include features from models of
hydrogen diffusion: the electronic specific heat [100], thermal
conductivity [100], and the 15 features [101–109] that were
used to model C, O, and B interstitial diffusion in metals [35].
The electronic specific heat coefficient of the metal is included
because it has been found by Arnoult and McLellan [110] to
have an empirical linear relationship with the relative partial
enthalpy of hydrogen solubility. The thermal conductivity al-
lows us to take into account phonon modes in the metal. A
detailed description of the MAGPIE features and their sources
is found in the original paper [45]. The method of counting
valence electrons differs between MAGPIE and Zeng et al.
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FIG. 2. Hierarchical grouping of features using the Ward variance minimization. For the binary alloys, instead of alloy properties, we use
the weighted average of the elemental features by atomic composition and the standard deviations σ of the MAGPIE features. For metals, the
standard deviations are set to 0. When features from MAGPIE and different sources differ in value, we include both and denote the MAGPIE
version with an asterisk. Spearman rank correlations define the distance between individual features, which are shown in the upper triangle
of the right panel; the lower triangle provides the Pearson correlations. Using a greedy algorithm that groups the two closest features at every
step, Ward variance minimization creates groups of correlated features, shown in the left panel. We choose a distance threshold of 1 to define
groups, which are separated by black lines in both the left and middle panels. After grouping is complete, we name each group with the feature
with the highest absolute value of the correlation with the activation energy as shown in the middle panel; these representative features are
bolded in the labels on the left and used as labels in the correlation plot.

[35], so we have included both, and the MAGPIE version is
denoted with an asterisk. The MAGPIE version defines the
valence electrons by excluding any noble gas electron config-
urations from the total electrons, while Zeng et al. only count
the outermost shell. While we have renamed most features

so that their names are intuitive, four features are more dif-
ficult to understand. The stoichiometric 5-norm is defined as∑n

i=0(x5
i )1/5, where xi is the atomic fraction of each element,

�nws is the absolute difference of the electron density at
the boundary of the Wigner-Seitz cell between the host and
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hydrogen, Td/Tm is the ratio of the Debye temperature to the
melting temperature, and Q1 is obtained from an empirical
elastic model [111], which is a simplified version of Eq. (1):

Q1 = Ga(d − λ)2, (3)

where all the variables are the same as was defined in Eq. (1).
To reduce the impact of multicollinearity on our models, we
remove 11 features with correlations greater than 0.95 with
another feature. When two features were correlated strongly,
we kept the feature with the strongest correlation with the
activation energy. We also remove constant features that are
the same for all entries in the database. In the middle panel of
Fig. 2, we show the Pearson correlation between each feature
and the activation energy. The packing factor has the largest
correlation with the activation energy with a correlation value
of 0.54. For input into our machine learning models, we scale
all features so that they have a mean of 0 and a standard
deviation of 1.

We combine our features into ten groups using their corre-
lations in Fig. 2, and the three largest groups (packing factor,
electronic specific heat, and stoichiometric 5-norm) roughly
split the features into structural and energetic, electronic, and
alloy standard deviation property groups. The hierarchical
tree shown in the left panel forms correlated feature groups
using Ward’s minimum variance method to minimize the vari-
ance between elements in the same cluster [112]. Groups are
formed by choosing a threshold, which we choose to be 1 (the
maximum value of the distance metric between two elements).
This distance threshold creates a suitable number of groups
to improve interpretability of our features. Having too many
groups is difficult to interpret, while too few groups makes
each group too broad. To define the distance, we used the
Spearman rank correlation to take into account any nonlinear,
monotonic relationships between the features as the majority
of our models are nonlinear. Shown in the right panel, the
Spearman rank correlations in the upper right triangle are
also stronger than their Pearson counterparts in the bottom
left, which allows us to form groups with stronger intra-group
correlations. We named each of the 11 groups after the rep-
resentative feature with the strongest absolute value of the
correlation with the activation energy. The three largest groups
are “stoichiometric 5-fold” (14 features), “packing factor”
(11), and “electronic specific heat” (9). The stoichiometric 5-
fold group contains the standard deviations of the features that
measure how the elemental properties vary, the packing factor
group contains energetic and structural information, and the
electronic specific heat group contains electronic properties.
The standard deviations of the properties are spread over 5
out of the 11 groups (fcc σ , lattice c/a, filled p electrons, sto-
ichiometric 5-fold, and ground state atomic volume σ ) in the
bottom half of Fig. 2. These groups improve interpretability
of our features by reducing the feature set.

B. Machine learning models

In this paper, we use six different machine learning mod-
els that work well on small data sets: k-nearest neighbors,
Gaussian process, random forest, gradient boosting, positive
ElasticNet, and Bayesian Ridge. All models are trained using
scikit-learn [113], a PYTHON package for machine learning.

1. k-nearest neighbors

The k-nearest neighbors models find the closest k training
samples from an input data point, and then assign the new
point a linear combination of its neighbors’ values [114,115].
The distance between points used is the Euclidean distance.
Because it is an algorithm that uses all of its training data
and does not build a model, k-nearest neighbors models
do not generalize well to unseen data. They also suffer
from the curse of dimensionality, where the amount of data
needed to get accurate predictions increases exponentially
with the dimensionality of the data [116]. We choose to opti-
mize two hyperparameters: weighting scheme and number of
neighbors. The two weighting schemes, uniform or distance,
determine how to weigh the k neighbors’ activation energies
when assigning one to a new point. The uniform weighting
scheme gives equal weights to all neighbors, while the dis-
tance weighting scheme assigns a weight that is proportional
to the distance to the new point.

2. Gaussian process

The Gaussian process model creates a prior distribution
over possible functions, then uses Bayesian interference to
update the posterior based on new training data [117,118].
These models define the covariance of their prior distribution
using kernels, and train a Gaussian posterior distribution over
functions whose mean is used for predictions. We assume that
the prior distributions for the noise is the GaussianN (0, α−1)
and the prior distribution for the weights w isN (0, λ−1) where
α−1 is the variance, 1 is the identity matrix, and λ−1 is a
covariance matrix. Given a function φ(x) where x is an input
data point, the model is described as

f (x) = φ(x)ᵀw.

We then combine the φ(x) into a matrix �(X ) that includes
all the training data and then define the posterior function for
the weights as

p(w|�(X ), y) ∼ N (αA−1�(X )y, A−1), (4)

where A = α�(X )�(X )ᵀ + λ1 and y is the target output.
Instead of explicitly defining the basis functions, we use the
kernel trick to make the calculations faster. For our models,
we choose to use two different types of kernels: white kernels
and radial basis function (RBF) kernels. The noise level on the
white kernel denotes the size of the random noise fluctuations
in the data, while the RBF kernel’s length scale denotes the
length scales of the fluctuations. While the actual value of
these hyperparameters is optimized by the model, we choose
a starting value with nested crossvalidation to reduce the
chances of falling into a local minimum where all deviation
in the activation energies is considered random noise.

3. Random forest

Random forest models are ensemble methods that take an
average over independent decision trees [119]. Each tree is
trained on a random sample of the complete dataset and acts
as a weak learner. Even though each individual decision tree
often overfits, using random samples of the data and averaging
over the trees allow errors to cancel out. The hyperparameters
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TABLE II. Hyperparameters used for the models. We choose the optimal values for each parameter using crossvalidated grid search. The
splitting scheme for the crossvalidation uses the leave-one-group-out method, acting on the element groups, which are shown as the rows and
columns in Fig. 1.

Model Hyperparameter Start End Step Size Optimal value

Number of neighbors 1 8 1 2
K-Nearest Neighbors

Weighting scheme Distance, Uniform Distance
Length scale (RBF) 5 50 5 35

Gaussian Process
Noise level (white) 10−5 1 10× 10−2

Number of estimators 40 90 10 70
Random Forest

Maximum depth 3 14 1 10
Learning rate 0.1 1 0.1 0.3

Gradient Boosting Number of estimators 100 170 10 150
Maximum depth 2 8 1 2
Ridge penalty α 0.001 1 ≈2× 0.01

Positive ElasticNet
l1 ratio 0.025 1.0 0.0125 0.05

α1 10−6

α2 10−6

Bayesian Ridge
λ1 10−6

λ2 10−6

of a random forest model are the total number of trees and the
maximum depth of each tree.

4. Gradient boosting

Another ensemble method, gradient boosting models build
each tree sequentially, so that each tree reduces the bias of
the final combined estimator [120,121]. This allows it to per-
form better than the random forest model where the trees are
independent. Gradient boosting models, which work well on
small data sets, have been used to design explainable models
for other material properties like thermodynamic properties
of hydride formation in alloys and intermetallics [42] and for
interstitial diffusion, not including hydrogen, in metals [35].
We optimized the learning rate of each tree and the complexity
of the trees through the number of estimators and maximum
depth.

5. Positive ElasticNet

The positive ElasticNet model is an ordinary least squares
estimator with an additional Ridge and lasso penalty [122]. It
assumes that the models are linear, while also penalizing the
size and number of nonzero coefficients, which makes it more
stable than a simple least squares estimator. To make sure
that all predicted activation energies are positive and therefore
physical, we further constrain all coefficients to be positive,
scale all the features between 0–1, and include a reversed
version of all the features so that for each feature x, we include
a new feature x′, where x′ = 1 − x. This allows us to include
negative correlations between our features and the activation
energy, while still constraining the activation energies to be
positive. We choose to enforce positive results by using posi-
tive coefficients instead of using a nonlinear transformation to
maintain its interpretability. A log transformation would turn
the ElasticNet model into a product of terms, instead of a sum,
reducing the physical relevance. We optimize the size of the
Ridge penalty α and the l1 ratio between the Ridge and lasso
penalty.

6. Bayesian Ridge

Bayesian Ridge models are probabilistic, linear models
that tune the weights and regularization parameters from an
uninformative prior [123] where the prior distributions for the
noise is a Gaussian N (0, α−1) and the prior distribution for
the weights is N (0, λ−11) where λ−1 is the variance and 1 is
the identity matrix. Given an input matrix X of features and a
desired output y, the posterior distribution for the weights w
is defined as

p(w|X, y) ∼ N (αA−1Xy, A−1), (5)

where A = αXXᵀ + λ1. Note that these are identical to the
Gaussian process except that the matrix of basis functions
�(X ) is replaced with simply X . The four hyperparame-
ters α1, α2, λ1, and λ2 define the prior Gamma distributions
from which the regularization parameters are chosen. In
this work, we use 10−6 for the four hyperparameters to
guarantee a flat, uninformative prior distribution so that the
expectation-maximization algorithm can adjust the precision
of the weights and noise without bias. Because no negative
predictions were made, we did not add any additional con-
straints to guarantee positive activation energy predictions for
the Bayesian Ridge models.

III. RESULTS

A. Model fitting

In order to ensure that our results are independent of the
chemistry of our training set, we tune the hyperparameters
(see Table II) via nested crossvalidation by leaving out all
data that contain a certain element (alloy split) [124] at each
iteration and then choosing the optimal hyperparameter as
the median over all iterations. Within each iteration, we per-
form a 80%–20% split and perform a grid search to find the
hyperparameters that lead to the smallest mean squared error
between the predicted and experimental activation energies.
The start and end values are the upper and lower bounds,
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FIG. 3. Schematic showing the difference between the random 80%–20% train-test split and the alloy split. The alloy train-test split (shown
on the right) works by grouping every entry in the database that contains a certain element, then using one of these groups as the testing data.
Binary alloys are included in two groups. These alloy groups drastically differ in size, as the Pd group contains 43 entries while others (Be,
Hf, Lu, Mg, Mo, Pt, Ru, Sc, Ta, Th, Y, and W) only have one.

and each hyperparameter varies by step size increments. Be-
cause the Bayesian Ridge’s hyperparameters define the prior
Gamma distributions from which the optimal values are cho-
sen, we choose the values manually instead of through nested
crossvalidation. We also performed a sensitivity analysis of
our hyperparameters shown as Table S1 of Ref. [125], and
other than the learning rate for the gradient boosting tree
model, the RMSEs on the testing data changed by less than
10 meV when all other hyperparameters were increased or
decreased by one step size. Decreasing the learning rate by
a single step (0.1) led to the RMSE decreasing by 19 meV
as smaller learning rates can reduce the amount of overfitting,
thus improving predictions on the test set. To make sure that
no positive bias is introduced to our error predictions, the orig-
inal hyperparameter is used. As an additional measure of the
possible bias in our hyperparameter choice, we recalculated
the test RMSEs for the alloy split so that all test data is not
used to also select the hyperparameter and found a less than
7 meV deviation between the two RMSEs as shown in Table
S2 of Ref. [125]. This implies that there is no positive bias
introduced from reusing data, and that our models are not
overfitting to the hyperparameters.

Using our optimal hyperparameters, we train six models
with three different train-test splits and obtain similar root-
mean-squared errors (RMSEs) for the 80%–20% split and
alloy split; the test RMSE of the alloy split is, on average,
18 meV higher than the 80%–20% split. A schematic detail-
ing the two train-test splits is shown in Fig. 3. Each model
is trained 100 times (with different random splits for the
80%–20% train-test split), and the average testing RMSEs
are reported. The error of the training predictions (leftmost
column of Fig. 4) shows the ideal performance of our models
when it is trained on the entire dataset. In the middle and
right columns of Fig. 4, we plot only predictions on the test
set, and no training data is shown. For the alloy split, shown
in the right column of Fig. 4, we choose to plot only the
binary alloy predictions from the model where the dominant
element is removed from training (or the average of the two
predictions for equiatomic systems) instead of plotting both
predictions from each of the alloy splits. The 80%–20% train-

test split has smaller RMSEs than the alloy split for all six
models due to significantly more accurate alloy predictions
because of similar training and testing sets. Alloy activation
energy predictions have 85 meV smaller RMSEs on average
when we use the 80%–20% split instead of the alloy split,
while elemental predictions have 6 meV larger RMSEs. The
Gaussian process, positive ElasticNet, and Bayesian Ridge
model have two smallest RMSEs for the alloy split and
are the best at generalizing to unseen data. This is because
these three models are the only continuous models that have
in-built regularization and reduce overfitting, especially with
the small database used in this study. The Gaussian process
model also deals effectively with noisy data by controlling
the length scale of the RBF kernel, which ensures that small
fluctuations below this length scale in the training data are
ignored [123]. These average RMSEs are greater than the
errors from typical DFT calculations for hydrogen diffusion
which usually lie within a few 10s of meV from experimental
values [13–30]. Because the average RMSEs for the models
are greater than the isotope effect, our models are unable to
accurately predict activation energies for deuterium and tri-
tium. Because more complex models will overfit to the small
amount of deuterium and tritium data, we instead fit a separate
linear model with a single feature in Sec. S2 of Ref. [125].

Even though the activation energies are predicted with rela-
tively small RMSEs, our machine learning models are limited
because they overemphasize crystal-dependent features over
element-dependent features for the alloy train-test split (right
column of Fig. 4). This is most obvious for the FCC Pd alloys
and elemental Rh, which are predicted to have activation en-
ergies close to the mean for their crystal structure (0.34 eV)
but in reality, their activation energies are the lower and upper
bounds. Pd and its alloys, which consist of a third of the
total database, have activation energies that are systematically
overestimated especially on the Pd-rich side with smaller ac-
tivation energies. Therefore, when the Pd alloys are excluded
from training in the alloy-split validation method, the models
learn to predict values that are closer to the average for their
crystal structure even though it leads to incorrect predictions
on the Pd test set. This leads to the prominent “clump” of
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FIG. 4. Predicted vs experimental activation energies for hydro-
gen diffusion from the six models. Element placement in the periodic
table determines the color-coding scheme, with the colors denoting
rows, and the saturation denoting columns. The left column shows
models trained on the entire dataset. In the middle column, we show
validation sets from models trained with random 80%–20% training-
validation samples split. On the right, we plot validation sets from
models trained while removing all metals and alloys that contain
a certain element at a time. The blue points in the experimental
activation energy range of 0.22–0.46 eV are Pd alloys and elemental
Ag, and the largest outliers are Ru (0.76 eV) and Rh (0.89 eV).
The alloy train-test split performs worse than the random train-test
split for all models, but the smallest RMSE difference between the
train-test splits occurs for the Gaussian process and Bayesian Ridge
models.

blue Pd alloys in the range of 0.36–0.46 eV in Fig. 4. Rh,
an outlier with the largest activation energy, is drastically un-
derestimated and has the largest errors for all six models. This
behavior is because strong correlations between the activation

FIG. 5. Verification of the uncertainty quantification on the test-
ing data for the Gaussian process and Bayesian Ridge models from
coverage percent. The coverage percent is the fraction of observed
model errors within a given confidence interval. The dashed line
corresponds to coverage percent that matches the confidence interval:
curves that lie below the line overestimate the error while curves that
lie above the line underestimate the errors. For the Gaussian process
all training model, 3% of the observed errors lie in a 20% confidence
interval while for the Bayesian Ridge, 7% of the observed errors lie
in the same interval. While both models overestimate the errors for
the all training train-test split due to high variance but low bias in the
models, the Bayesian Ridge also underestimates errors in the alloy
train-test split due to worse performance on unseen data.

energy and the packing factor can dominate effects that are
only significant for a few specific elemental systems, such
as Pd and Rh having smaller atomic radii compared to other
elements in their row, which has been shown to have an effect
on the speed of solute diffusion in Ni [126]. This limitation of
our machine learning models is likely due to a lack of other
metals or alloys in our training database with such extreme
activation energies.

B. Uncertainty quantification

For models which explicitly quantify uncertainty (Gaus-
sian process and Bayesian Ridge), it is important to under-
stand the reliability of these uncertainty estimates, especially
if one is predicting new materials containing previously seen
elements (80%–20% test split) or entirely unseen elements
(alloy test split). The uncertainty quantification in Fig. 5
reveals that the predicted standard deviations for the Gaus-
sian process model accurately predicts the observed errors,
but the Bayesian Ridge model’s predicted standard devia-
tions are only reliable on testing data that is similar to its
training data. Instead of a single solution, the models fit a
posterior distribution described in Eqs. (4) and (5) whose
standard deviations depend heavily on hyperparameters that
are learned through the data—either the noise level on the
white kernel for the Gaussian process or the precision of
the weights and noise for the Bayesian Ridge. The average
sizes of the predicted standard deviation for the Gaussian
process model are 27, 80, and 172 meV for the all training,
80%–20% split, and alloy split respectively, while for the
Bayesian Ridge model, the average standard deviations are 48,
72, and 120 meV for the three train-test splits. As expected,
the uncertainty increases for train-test splits with different
elemental compositions than the training data. In Fig. 5, we
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perform this analysis by comparing the predicted standard
deviations from the model uncertainty quantification with the
observed errors by plotting the coverage percent, which in-
dicates the fraction of data points within a given confidence
interval. The confidence intervals are calculated assuming that
the predicted standard deviations are accurate. If the p values
are uniformly distributed (the dashed line in Fig. 5), then the
observed errors sample the same Gaussian distribution as the
predicted standard deviations. Curves that lie above the line
suggest that observed errors sample a broader Gaussian than
the predicted standard deviations, so the predicted error bars
are too small. For curves that lie below the line, the observed
errors are too large, and the predicted standard deviations are
too conservative. The all training models both overestimate
the error, and in both models, less than 10% of the predicted
values (3% for Gaussian process and 7% for Bayesian Ridge)
fall more than 1.28 standard deviations away (the 20% confi-
dence interval) from the true experimental value. This likely
arises because the models have large amounts of variance,
and there is a wide distribution of possible functions with
low bias, so the mean ends up being close to the true value
[116]. While both models’ predicted standard deviations de-
viate from the observed errors for the alloy split case, the
predicted standard deviations on the 80%–20% split for both
the Gaussian process and Bayesian Ridge agree strongly. The
Gaussian process slightly overestimates the error, and almost
all of its observed errors are within one predicted standard
deviation, but it recovers to the ideal distribution after the
30% confidence interval. On the other hand, the Bayesian
Ridge model heavily underestimates the observed errors for
the alloy split. This can be understood by interpreting the
Bayesian Ridge model as a simpler Gaussian process model
whose kernel choice forces it to only use a limited prior.
This makes the posterior distribution too concentrated, which
leads to overconfidence as it cannot recognize that the new
data are different than its training data [116,127]. Therefore
the Gaussian process model’s predicted standard deviations
can be trusted with new elemental compositions, but the
Bayesian Ridge’s predictions can only be trusted for similar
data.

C. Model explainability

Strong correlations between features lead to wide varia-
tions of feature importances calculated for different models,
making physical interpretation of the models difficult as
shown in Fig. 6. We use the permutation importance, which
measures how much the R2 value changes after shuffling the
features, to measure the importances of each feature. Scaling
the permutation importances within each model to sum to 1
enables comparisons between the models. Even though the
importance is measured using the same metric for all six
models, we find large variation in the feature importances;
just listing the top three features from each model leads to a
total of ten different features—none of which are consistent
for all the models. The models agree most when identify-
ing the importances of the packing factor, as it is the most
important feature for all except for the k-nearest neighbors
model. The k-nearest neighbors model assigns nearly equal
importances to all features due to it being a nonparametric

model that only takes into account distances between points
rather than a model-building method. This wide variation in
the importances of individual features arises from correlated
material properties and makes interpretation difficult, but af-
ter grouping the features using the greedy algorithm shown
in Fig. 2, we find that specific feature groups are selected.
Similar behavior can be seen in previous work on modeling
solute diffusion in metals [36,124], which saw varying feature
importances by using different models and crossvalidation
techniques. Thus it becomes clear that using the individual
permutation importances (or other metrics of feature impor-
tances like the Shapley additive explanations [128] shown in
S3 of the Supplemental Material [125]) for individual features
do not offer as much information on important features as
grouping analyses do.

The feature groups in Fig. 6 lead to stronger agreement
between the models, and when we then sum the importances
to rank the groups, the two most important ones are the pack-
ing factor and electronic specific heat. Here, we ignore the
k-nearest neighbor model because its grouped importance is
ultimately just a measure of the group size, but the other five
models agree that the packing factor and electronic specific
heat are the two most important groups. Agreement depends
on sparsity as more sparse models, like the gradient boosting
tree and positive ElasticNet models, conclude that the packing
factor group is more important, while less sparse models,
like the Gaussian process and Bayesian Ridge models, assign
the packing factor and electronic specific heat more similar
importances. The Bayesian Ridge model is the only model to
swap the ranks of the packing factor and the electronic specific
heat groups because it assigns a large importance to many
features in the same group. The packing factor group contains
energetic and structure information like the vacancy forma-
tion energy and lattice constant, which are directly related
to hydrogen diffusion. While the packing factor and crystal
structure determine what kind of interstitial sites are available
to form the diffusion pathways, the vacancy formation energy
has an strong empirical correlation with the activation energy
[106]. The electronic specific heat feature group, which con-
tains electronic properties and the bulk modulus, is dominated
by features that measure hydrogen’s interaction with the bulk.
The top two groups are followed distantly by the maximum
oxidation state, then the Q1, lattice c/a, stoichiometric 5-
norm, and fcc σ groups, which all have effectively the same
importances.

A reduced feature set with only each group’s represen-
tative feature (Fig. 7) has RMSEs similar to the fits using
the whole feature set while using only features in the top
two groups (Fig. 8) has significantly larger RMSEs. Out of
the three feature sets, trained models using the representative
feature set have the best transferability because the RMSEs
for the alloy split are the smallest. This is because while
the representative feature set is the smallest, the removed
features are correlated with the representative feature that
is kept, so little information is lost. The top two groups
feature set, on the other hand, has significantly worse predic-
tions on the alloy split, especially for the Gaussian process,
positive ElasticNet, and Bayesian Ridge models. This is a
result of extremely poor predictions of the activation ener-
gies for the Pd alloys. Due to the larger importances for the
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FIG. 6. The permutation importances for the six models averaged over 200 repetitions, shown for all features. The raw permutation
importances are shown in the top row. While the packing factor is the most important feature for 4 of the 6 models, there is wide deviation
between the rankings. Using the feature groups as shown in Fig. 2, we sum permutation importances between feature groups as shown in the
bottom subfigure. Permutation importances are scaled so that they sum up to 1. The two most important feature groups are the packing factor
and electronic specific heat.

105402-10



EXPLAINABLE MACHINE LEARNING FOR HYDROGEN … PHYSICAL REVIEW MATERIALS 7, 105402 (2023)

FIG. 7. Predicted and experimental activation energies for dif-
fusion using only the representative feature from each group. The
RMSEs for the alloy split test-train scheme are smaller than those
from the complete model, implying that there is some overfitting with
the larger feature set and that fitting with the representative feature
set gives the best transferability.

maximum oxidation state group for the Gaussian process and
Bayesian Ridge models, shown in Fig. 6, they rely more
strongly on the removed information than the others, so they
are more negatively impacted by reducing the feature set to
only the top two groups. For the positive ElasticNet model,
we reoptimized the hyperparameters using the same nested
crossvalidation technique for the two smaller feature subsets.

FIG. 8. Predicted and experimental activation energies for dif-
fusion using only the top two feature groups, packing factor and
electronic specific heat. The Bayesian Ridge and Gaussian process
models are the most negatively impacted by the smaller feature set,
which is a result of these two models having larger importances for
the maximum oxidation state group shown in Fig. 6.

If we use the same hyperparameters as we do for the full
feature set, we observe significant banding of alloy predictions
for both the 80%–20% train-test split and the alloy split due
to overzealous regularization as the size of the Ridge and
Lasso penalties are too large for the smaller feature set, which
leads to too many ignored features and small coefficients.
This suggests that any model for the activation energy of
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hydrogen in metals should contain at least one feature from
each group.

IV. DISCUSSION

In this paper, we create a database and fit six different
machine learning models to predict hydrogen diffusion acti-
vation energy in metals and random binary alloys and achieve
smaller errors than a similar, earlier machine learning model
for interstitial diffusion [35]. On the testing data, these mod-
els obtain a 92–102 meV RMSE for a random 80%–20%
train-test split, and a larger 105–124 meV RMSE for an alloy
leave-one-group-out train-test split, which measures how the
model performs on unseen elements. These errors are smaller
in magnitude than a gradient boosting model for interstitial
diffusion (C, O, B, and N) by Zeng et al. [35] who obtained
a final RMSE of 311 meV on testing data even though we
have similar elemental compositions and the sizes of our
databases were similar. Because Zeng et al. only used random
train-test splits, which we find to have smaller RMSEs than
the grouped alloy split by the host metal, and used a smaller
test set, we expect this RMSE to be a underestimation of the
error when applying the model to materials with elements not
existing in the training data. This difference in the RMSEs
is likely because the range of their activation energies 0.19–
2.45 eV was approximately 3 times larger than our range of
0.02–0.89 eV because they were dealing with multiple solute
types.

Comparisons between our importance analysis and other
analytic and machine learning models show that due to hydro-
gen’s small size, features that are included in Ferro’s elastic
model [32] are missing; otherwise, the involved material prop-
erties agree with the other models. By training our machine
learning models on the downselected feature sets, our machine
learning models behave akin to analytic models and can be
analyzed similarly. The interstitial model in Zeng et al. [35]
obtained four important features for predicting nonhydrogen
interstitial diffusion: electronegativity difference, total energy,
Q1 [see Eq. (3)] and thermal expansion. Other than Q1, these
features fall in the three most important feature groups for our
hydrogen diffusion model (electronic specific heat, packing
factor, and maximum oxidation state), pointing to fundamen-
tal similarities between hydrogen diffusion and that of other
small interstitial atoms. However, Q1 contains 3% of the over-
all importance, and the other material property that appears in
both our machine learning model and Ferro’s elastic model
[32] shown in Eq. (1), TD/Tm, is equally unimportant and
has less than 3% of the overall importance. This implies that
Ferro’s elastic model is less applicable to predicting hydrogen
diffusion, possibly due to its small size leading to smaller lat-
tice distortions. The quantum mechanical model by Flynn and
Stoneham [34] in Eq. (2) has fewer directly overlapping fea-
tures with our machine learning models, but similar physical
and electronic features appear. The lattice constant determines
the jump distance d in Flynn’s model, and the radius of the

Debye sphere qm, or screening length, is directly tied to the
strength of electronic interactions between the hydrogen and
the host metal—similar to the features found in the elec-
tronic specific heat feature group, which contains electronic
properties and the bulk modulus. Within this group, the elec-
tronegativity appears in the Miedema model [129], which has
been used to calculate the enthalpy of formation [130–132]
and the hydrogen content [133] for metal hydrides, and the
bulk modulus measures the compressibility of a hydrogen
atom into a crystal. Therefore, while electronic interactions
between the hydrogen and the bulk remain important for
predicting hydrogen diffusion, due to hydrogen’s small size,
elastic models are less applicable.

In this work we construct a database of material properties
for predicting hydrogen diffusivity, and grouped features to
interpret ML models on this task. Not only will our machine
learning models enable predictions of hydrogen diffusion in
metals or random alloys that have not previously been mea-
sured in experiments due to the wide variety of elements
included in our database, but the new physical insights into
the activation energies of hydrogen diffusion in metals and
binary alloys will help streamline the process for materials
discovery for fast-diffusing or slow-diffusing materials for
hydrogen containment or transportation. For ternary or qua-
ternary alloys, even though they were not directly included
in the training data, we anticipate that our machine learning
models will work within the estimated error bars, but more
importantly, the same features that were important for the
metal and binary alloys should still be physically meaning-
ful to screen for ideal hydrogen diffusivities. Because the
material properties used in this study are easy to measure
either experimentally or using DFT, the results will enable
data-driven screening of materials without needing explicit
measurements of the hydrogen diffusion. Additionally, the
technique of grouping the features into correlated feature
groups before analyzing feature importances can be applied
to other material property predictions, namely, for diffusion
and other temporal properties, and enable rapid screening for
other desired properties.
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