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Glasslike thermal conductivity and narrow insulating gap of EuTiO3
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Crystals and glasses differ by the amplitude and the temperature dependence of their thermal conductivity.
However, there are crystals known to display glasslike thermal conductivity. Here, we show that EuTiO3, a
quantum paraelectric known to order antiferromagnetically at 5.5 K, is one such system. The temperature
dependence of resistivity and Seebeck coefficient yield an insulating band gap of ∼0.22 eV. Thermal conductivity
is drastically reduced. Its amplitude and temperature dependence are akin to what is seen in amorphous silica.
Comparison with nonmagnetic perovskite solids, SrTiO3, KTaO3, and EuCoO3, shows that what impedes heat
transport are 4 f spins at Eu2+ sites, which couple to phonons well above the ordering temperature. Thus, in this
case, superexchange and valence fluctuations, not magnetic frustration, are the drivers of the glasslike thermal
conductivity.
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I. INTRODUCTION

In most insulating crystals, the flow of heat can be
understood by considering the response of a gas of phonons
to a temperature gradient. This picture, first drawn by Peierls
[1], using a linearized Boltzmann equation, is remarkably
successful in describing the thermal conductivity, κ , of most
insulators [2,3]. It explains why at an intermediate temper-
ature, κ peaks [4], separating a high-temperature decrease
by warming (due to anharmonicity), and a low-temperature
decrease by cooling (due to phonon depopulation). In amor-
phous solids, on the other hand, there is no such peak in
κ (T ) and heat diffuses thanks to off-diagonal coupling across
harmonic branches [5–8].

Some crystals, however, display glasslike thermal conduc-
tivity [9–15]. The thermal conductivity of these materials can
be very low and/or feature a monotonic temperature depen-
dence (lacking the T −1 decrease at high temperature). They
are sought after, since a low lattice thermal conductivity would
lead to a large thermoelectric figure of merit [16].

EuTiO3 (ETO) is a perovskite with a cubic structure at
room temperature [17]. Its electric permittivity increases upon
cooling without giving rise to a ferroelectric instability. This
quantum paraelectric behavior [18] is akin to what has been
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seen in other ABO3 compounds such as SrTiO3 (STO) and
KTaO3 (KTO). In contrast to them, however, it magnetically
orders at TN = 5.5 K, with an antiferromagnetic alignment
of the nearest neighbor Eu2+ spins [19,20]. Like STO, but
at higher temperatures, it also goes through an antiferrodis-
tortive (AFD) transition where adjacent TiO6 octahedra rotate
in opposite directions [21]. Upon doping, either with oxygen
vacancies [22] or La substitution of Ti [23], it becomes a dilute
metal [22–24], but without a superconducting ground state.

Here, we show that the temperature dependence of thermal
conductivity in ETO is glasslike and its amplitude, over a
broad temperature range starting from room temperature and
extending to cryogenic temperatures, is lower than in STO
and KTO. The drastic attenuation of thermal conductivity
occurs well above the Néel temperature and when the mag-
netic entropy is saturated to its expected value. This points
to an unusual version of spin-phonon coupling such as the
phonon-paramagnon hybridization postulated by Bussmann-
Holder et al. [17].

Evidence for spin-lattice coupling in ETO has been around
for more than two decades [20]. However, it was restricted to
temperatures comparable to the magnetic ordering. According
to our findings, the phonon mean free path is affected by spins
at Eu sites even at high temperature when there is neither a
magnetic order nor a field-dependent entropy.

Monitoring the temperature dependence of electrical con-
ductivity and thermopower in insulating EuTiO3, we find an
activation gap of 0.11 eV, indicating that the intrinsic transport
band gap in EuTiO3 is as low as ∼0.2 eV, much smaller than
the gaps found by optical studies, but close to what is expected
by ab initio calculations [25,26].

The narrow gap between the chemical potential and Eu2+

energy level and the random orientation of large magnetic
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moments in the paramagnetic state emerge as principal sus-
pects shortening the lifetime of heat carrying phonons at
elevated temperatures in the paramagnetic state.

In contrast to many other crystals displaying glasslike con-
ductivity, ETO is not a spin liquid candidate, but a simple
G-type antiferromagnet and there is no magnetic frustration.
In this context, the glassy behavior could be framed in a pic-
ture of off-diagonal coupling across harmonic modes [7,15],
which in this case would be phonons and paramagnons.

II. RESULTS

A. Activation and band gap

Figure 1(a) shows the temperature dependence of electrical
resistivity ρ in as-grown EuTiO3 (ETO) single crystals. One
can see that ρ increases by seven orders of magnitude upon
cooling from 360 K to 50 K.

An Arrhenius activation behavior becomes visible by plot-
ting lnρ as a function of the inverse of temperature [Fig. 1(b)].
The activation gap � is ∼0.11 eV. The Hall resistivity (see
the Supplemental Material [27]) also shows an Arrhenius be-
havior with a comparable �. At low temperature, resistivity
begins to saturate when the Hall carrier density is as low
as 1010 cm−3 (see the Supplemental Material [27]). This im-
plies an extremely low level of extrinsic donors. An activated
behavior in longitudinal and Hall resistivities of as-grown
ETO crystals was previously reported by Engelmayer et al.
[22], whose study focused on the emergence of metallicity in
oxygen-deficient ETO.

This activated behavior is also confirmed by our mea-
surements of the Seebeck coefficient [see Fig. 1(c)] and the
temperature dependence of the electric permittivity [22].

The thermoelectric power has a negative sign and an
amplitude in the range of mV/K, typical of a narrow gap
semiconductor. The Seebeck coefficient in an intrinsic semi-
conductor is expected to be ≈ kB

e
�

kBT [28]. Thus, by plotting
S as a function of T −1 (see the inset), one expects to see
a straight line whose slope yields �. As seen in the inset
of Fig. 1(c), this is indeed what our data yields, with � ≈
0.1 eV. Note that this temperature dependence is qualitatively
distinct from what is expected in extrinsic semiconductors
[29] as seen, for example, in the case of Nb-doped STO [30].

Thus, the temperature dependence of the electric conduc-
tivity and the Seebeck coefficient both point to a similar
energy gap between the chemical potential and the conduction
band. The Hall and the Seebeck coefficients are both negative,
indicating that carriers are electronlike and thermally excited
to live in the conduction band originating from Ti-d orbitals.

Both ρ and S show an anomaly near 260 K, which we
identify as the temperature of the structural transition in ETO
[17,31]. Like STO [32], this transition makes ETO tetragonal
[33]. We cannot rule out a very small difference in the ampli-
tude of the activation gap between the cubic and the tetragonal
phases [see the inset of Fig. 1(b)]. We also detected an unex-
pected and reproducible hysteresis near this phase transition.
Taken at its face value, this indicates that this structural phase
transition is first order (see the Supplemental Material).

Assuming that the chemical potential is halfway between
the valence and conduction bands leads us to conclude that
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FIG. 1. Electrical resistivity, thermopower and activation gap of
EuTiO3. (a) Resistivity, ρ, as a function of temperature in two single
crystals of EuTiO3 in a semilogarithmic plot. The inset shows the unit
cell (in the cubic phase). (b) Arrhenius plot of the same data: lnρ vs
T −1. The solid blue line corresponds to � = 0.11 . The inset shows
the temperature variation of � = −kBT 2 ∂ ln ρ

∂T , with an arrow pointing
to TAFD, the temperature of antiferrodistortive transition. (c) Seebeck
coefficient, S as a function of temperature. The data is restricted to
T > 120 K, below which measurement becomes problematic. The
inset shows S as a function of T −1. The solid blue lines correspond
to � = 0.1 eV. The arrow points to TAFD.

the band gap of ETO is ≈0.22 eV. This is remarkably smaller
than the 3.2 eV gap of STO [34], but only slightly smaller than
what a recent DFT calculation [26] found (0.27–0.33 eV).
According to another and earlier theoretical study [25], the
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FIG. 2. Thermal conductivity of two EuTiO3 crystals. Thermal
conductivity, κ , as a function of temperature in two EuTiO3 crystals
in a log-log plot. The arrow points to a minimum near the Néel
temperature. The inset shows a linear plot, with an arrow pointing
to TAFD.

magnitude of the band gap in ETO depends on the amplitude
of the Hubbard repulsion energy (U ). A realistic U (5–6 eV)
would lead to a band gap of 0.2–0.4 eV. Thus, the narrow gap
detected by our transport studies is close to what is intrin-
sically expected in this solid. Optical probes, however, have
detected a larger gap (0.8–0.9 eV) [35,36]. Such larger energy
scales are possible indications that the density of states (DOS)
near the Eu- f level is not featureless [26].

Let us keep in mind the contrast between ETO on one hand,
and STO and KTO on the other hand. The first has a valence
band originating from Eu- f orbitals close to the chemical
potential, while the two others have a valence band emanating
from O-p orbitals and much further away from the chemical
potential.

B. Thermal conductivity

Figure 2 shows the temperature dependence of thermal
conductivity, κ , of two ETO crystals from slightly above room
temperature down to dilution refrigerator temperatures. We
measured several crystals and found that the thermal conduc-
tivity of all lies somewhere between the two cases shown
in this figure. Moreover, we could not detect a correlation
between the amplitude of κ and a weak variation of the sat-
uration magnetization observed across various ETO samples
(see the Supplemental Material [27]).

In contrast to typical crystalline insulators [4], κ does not
show a prominent peak. As seen in the inset, there is a clear
anomaly at TAFD, and below this temperature κ rises by ten
percent increase with cooling. However, there is no sign of a
kinetic regime with κ ∝ T −1, as seen in many other insulators
[37,38].

C. Crystals, glasses, and glasslike crystals

In order to put our observation in a proper context, we
compare our data with what has been reported in the case

FIG. 3. Comparison with crystals, glasses, and glasslike crystals.
Thermal conductivity as a function of temperature in crystalline
quartz, in vitreous silica [39], in EuTiO3, and in the frustrated magnet
Tb2Ti2O7 [11]. The latter two crystalline compounds conduct heat
like a glass rather than like a crystal. Also shown is the crystallike
thermal conductivity of nonmagnetic EuCoO3 [43].

of SiO2, which shows a spectacular difference in the thermal
conductivity in its crystalline and amorphous structures [39].
As seen in Fig. 3, κ in amorphous silica monotonically de-
creases with cooling, in contrast to crystalline quartz, which
has a prominent peak. At any given temperature, the crys-
tal conducts heat at least an order of magnitude more than
the glass [4]. Not only the thermal conductivity of ETO is
similar to silica in temperature dependence, but also in the
cryogenic temperature range surrounding the Néel tempera-
ture (TN � 5.5 K), the ETO crystalline samples conduct heat
less than amorphous silica. The order of magnitude of ther-
mal conductivity and its temperature dependence in ETO is
comparable with other crystalline solids displaying a glasslike
thermal conductivity, such as Tb2Ti2O7 [11], Tb3Ga5O12 [40],
Na4Ir3O8 [41], Pr2Ir2O7 [42], and La0.2Nd0.4Pb0.4MnO3 [9].
In order to allow a direct comparison, Fig. 3 includes the data
for Tb2Ti2O7 [11], the compound with the lowest thermal
conductivity among these frustrated magnets. Note that in
contrast to other members of this club of materials, EuTiO3

is a G-type antiferromagnet and is not frustrated.
As a further comparison, we also include κ of EuCoO3

[43], which displays a temperature dependence typical of a
crystalline insulator. EuCoO3 is a perovskite like ETO, but it
has an orthorhombic symmetry, and the valence is Eu3+ with
only six electrons in the 4f shell. According to Hund’s rules,
this causes a vanishing magnetic moment (J = L − S = 0),
in agreement with the experimentally observed van Vleck
susceptibility [44], drastically different from the large local
moments of 7 μB/Eu2+ in ETO.

D. ETO compared to its nonmagnetic sisters

Figure 4 compares the thermal conductivity of ETO and
two other ABO3 perovskites. SrTiO3 (STO) and KTaO3

(KTO) are also quantum paraelectric, but not magnetic solids.
Our new data on these two materials is in good agreement with
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FIG. 4. Thermal conductivity of three quantum paraelectric
solids. Thermal conductivity of the two EuTiO3 samples in a linear
scale compared with thermal conductivity of SrTiO3 [45] and KTaO3

[12,46]. Note the drastic reduction of thermal conductivity in the
paramagnetic EuTiO3. The visible sample dependence of the data for
each material is much smaller than the difference between the three
compounds.

previous studies of heat transport in STO [45,47,48] and in
KTO [46–48]. In both cases, there is also a visible sample de-
pendence, which is more pronounced near the peak. However,
this sample dependence is much smaller than the difference
between the three compounds. At room temperature, this
difference is small, yet visible: κ (300 K) is ≈9 W/(K m)
in ETO, ≈11 W/(K m) in STO, and ≈17 W/(K m) in KTO.
Much more drastic is the difference in the temperature depen-
dence between the three sister compounds. The enhancement
with cooling observed in the other perovskites is absent in
ETO. This difference extends over the full temperature range
above the magnetic ordering. The difference is somewhat at-
tenuated below the ordering temperature. Above the ordering
temperature (say, at 10 K) the thermal conductivity of STO is
50 times larger than the thermal conductivity of ETO. Below
the Néel temperature (say, at 1 K), the difference between the
two is only a factor of two.

It is instructive to scrutinize the specific heat of the three
sister compounds. Figure 5(a) shows that C/T of STO, ETO,
and KTO approach each other toward room temperature and
reach C ≈ 100 J/(mol K). With five atoms, one expects the
specific heat saturating to the Dulong-Petit value of 5 ×
3NAkB = 124.6 J/(mol K). Here, NA is the Avogadro number
and kB the Boltzmann number. The specific heat of STO,
heated to 1800 K approaches this value [49]. This is a remark-
ably high temperature, broadly compatible but twice larger
than the highest energy scale in the phonon spectrum of these
solids (≈100 meV) [31,50]. A systematic difference in the
specific heat evolves at lower temperatures. As seen in the in-
set of Fig. 5(a), all three solids show a peak in the temperature
dependence of C

T 3 . In the case of STO, this peak is known to
be caused by the presence of Einstein modes [51,52]. Similar
peaks are visible for KTO and for ETO, and the position of
this peak shifts with the increase in the molar mass. In STO
(184 g/mol), it occurs at 30 K, in ETO (248 g/mol) at 25 K,
and in KTO (267 g/mol) at 12 K. In the case of ETO, a
distinct additional contribution shoots up below 15 K, which

1 10 100
0

1

2

3

4

1 10 100
10-5

10-4

10-3

C
/T

(J
m

ol
-1

K-2
)

Temperature (K)

(a)

C
/T

3
(J

m
ol

-1
K-4

)

T (K)

ETO
KTO
STO

0 10 20 30
0

1

2

3

4

0 10 20 30
0

5

10

15

C
m

ag
/T

(J
m

ol
-1

K-2
)

Temperature (K)

(b)

B =
0
1
2
5

10 T

S m
ag

(J
m

ol
-1

K-1
)

T (K)

NAkB ln(8)ETO

FIG. 5. Specific heat in three quantum paraelectric solids.
(a) Temperature dependence of the total specific heat in KTaO3,
SrTiO3, and EuTiO3 plotted as C/T vs T . The inset is an enlarged
view of the same data shown as Cp

T 3 vs T . Note the presence of
Einstein modes in all three solids and the additional magnetic specific
heat in ETO emerging below 15 K. (b) Evolution of Cmag/T of ETO
for different magnetic fields up to 10 T. The inset shows the cor-
responding magnetic entropy Smag = ∫

Cmag/T dT of ETO and the
maximum magnetic entropy NAkB ln(2S + 1) of a spin 7/2 system is
indicated by the dashed line.

signals strong magnetic fluctuations above the Néel ordering
temperature of the Eu2+ spins.

E. Field dependence

As reported previously [53], the specific heat in ETO dis-
plays a strong dependence on magnetic field. In order to
separate the magnetic Cmag and the phononic Cphon contribu-
tion, we subtracted from the total specific heat of EuTiO3 the
measured specific heat of SrTiO3 (with a temperature rescaled
by a factor of 0.83 such that the positions of the C/T 3 maxima
of both materials match). Note that this scaling factor is close
to the ratio of the molar masses

√
MSTO/METO = 0.86, the

expected ratio of their Debye temperatures. Figure 5(b) shows
the magnetic heat capacity Cmag/T of EuTiO3 for different
magnetic fields from 0 up to 10 T applied along a [100]c direc-
tion of the cubic room temperature phase. The sharp zero-field
anomaly signals the antiferromagnetic order at TN = 5.5 K
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FIG. 6. Field dependence of thermal conductivity in EuTiO3.
(a) κ vs. T from 2 K to 10 K for B = 0 T to 9 T. (b) Normalized
κ vs B for T = 2.4 K to 15.6 K for B//[001].

that gets strongly broadened already in a field of 1 T. This
reflects the magnetic-field-induced switching to the polarized
magnetic state, which sets in around 1.2 T in ETO (see, e.g.,
the Supplemental Material [27] or [54]) and, consequently, the
Cmag/T data in larger fields no longer signal a spontaneous
magnetic ordering transition, but a continuous evolution of
magnetic entropy as it is the case for ferromagnets in an
external magnetic field. In fact, the Cmag/T data of EuTiO3

strongly resembles the corresponding data obtained on the
Eu2+-based ferromagnet EuC2, which orders at TC = 14 K
[55]. The magnetic entropy obtained by integrating Cmag/T
is displayed in the inset of Fig. 5(b) and reveals that the full
magnetic entropy NAkB ln(2S + 1) of a spin 7/2 system is
reached above about 15 K for zero field and also for 1 T,
whereas for fields above 2 T the entropy evolution drastically
broadens and extends to much higher temperatures.

The field dependence of κ , shown in Fig. 6, further points
to an intricate coupling between Eu2+ spins and heat-carrying
phonons. Thermal conductivity begins to depend on magnetic
field below 15 K. Interestingly, as seen in the inset of Fig. 5,

FIG. 7. Thermal diffusivity of EuTiO3 and the mean free path
of phonons. Temperature dependence of thermal diffusivity, D, by
taking the ratio of thermal conductivity and the specific heat per
volume in sample C1. Note the drastic drop across the magnetic
transition. The insets shows the temperature dependence of the mean
free path in the paramagnetic phase, assuming that all phonons have
the same scattering time and velocity for the same sample. The red
solid line represents the inverse of the wavevector of the thermally
excited acoustic phonons.

this is the temperature below which there is a significant
magnetic entropy.

Above TN , magnetic field slightly amplifies κ , indicating a
weakening of the spin-induced localization of phonons. This
field-induced amplification of κ in ETO is modest, in contrast
to the thirtyfold field-induced amplification of the ultralow
thermal conductivity in Tb2Ti2O7 [11].

Below 3 K, well below the Néel temperature, the field
dependence becomes nonmonotonic (see Fig. 6). We leave
the quantitative understanding of the field dependence of κ

in EuTiO3 as a subject of study for future investigations.

F. Thermal diffusivity of EuTiO3 and the mean
free path of phonons

Replacing Sr by Eu reduces the thermal conductivity in a
wide temperature range and enhances the specific heat be-
low 15 K. Therefore, the ratio of thermal conductivity [in
W/(K m)] to specific heat per volume [in J/(Km3)], i.e., the
thermal diffusivity, D, (in m2/s) is drastically modified. It is
plotted in Fig. 7. The most striking feature of D (T ) is its two-
orders-of-magnitude drop at the Néel temperature. Within the
entry to the antiferromagnetically ordered phase, at 5.5 K,
it becomes exceptionally low. Its minimum, 0.03 mm2/s,
is almost two orders of magnitude lower than the thermal
diffusivity of a typical glass [56]. Note that this is not the
thermal diffusivity of phonons, but of the whole solid. Its low
amplitude, which is a consequence of the combination of an
unusually low lattice thermal conductivity and a very large
magnetic entropy, may find applications in heat management
in a cryogenic context.
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The thermal conductivity of an insulator can be written as

κ =
∑

s,q

Cs(q)v2
s (q)τs(q). (1)

The index s refers to different modes and q is the wave
vector. Cs, vs, and τs are specific heat, velocity, and scatter-
ing time. There are modes contributing to the total specific
heat (C = ∑

s Cs), but not to thermal conductivity, because of
their negligible velocity. Theoretically [17], paramagnons in
the paramagnetic state have no dispersion and therefore do
not carry heat. They can, however, reduce the phonon ther-
mal transport. In ETO, phonons not only dominate thermal
conductivity, but also, at least down to 15 K, the specific
heat. Therefore, one can simply write κ = 1/3Cvs�ph. This
neglects the q dependence of the scattering time and assumes
that all modes have the same velocity. Taking vs = 6.8 km/s,
the measured sound velocity in STO [57], and in reasonable
agreement with the dispersion of acoustic branches in ETO
[31], one can estimate �ph, shown in the inset of Fig. 7. Com-
paring it to the inverse of the wave vector of thermally excited
phonons qs = kBT

h̄vs
, one finds that below 20 K, qs�ph

∼= 1, rem-
iniscent of the Anderson localization. There is a drop at 15 K,
below which specific heat is no more phonon dominated.

III. DISCUSSION

Evidence for a coupling between spin and lattice degrees of
freedom in this compound was first reported by Katsufuji and
Takagi [20], who found that when the spins order at 5.5 K, the
electric permittivity of ETO drops by seven percent and this
drop is suppressed by the application of a magnetic field of
the order of 3 T. This magnetoelectric effect implies coupling
between Eu2+ spins and the soft mode governing the electric
permittivity. Reuvekamp et al. [58] have found a quantitative
agreement between the amplitude of the magnetoelectric ef-
fect and the low-temperature magnetostriction of the system.

Our main finding is that lattice-spin coupling drastically
attenuates the propagation of heat in ETO, even at tempera-
tures where magnetic ordering is absent and magnetic entropy
is practically saturated at its maximum value kB ln(2S +
1)/spin. This implies that even when the spins are ran-
domly oriented, heat-carrying phonons couple to Eu2+ states
and their large magnetic moments (6.9–7 μB). According to
Ref. [26], without incorporating the loss of spin symmetry,
the DFT calculations cannot explain the absence of metallicity
and the finite band gap of the paramagnetic phase.

The random orientation of magnetic moments at Eu sites
(see Fig. 8) is the most plausible source of phonon localiza-
tion. The superexchange interaction between Eu spins occurs
through Ti ions [59]. The interatomic force constant can
depend on the relative orientation of spins. The calculated
phonon frequencies for parallel or antiparallel alignment of
adjacent spins are not the same [60], which implies that
phonons cannot keep a well-defined dispersion in the presence
of random spin orientation.

The narrow energy separation between the Eu2+ energy
level and the chemical potential may also play a role. In
some Eu-based metals, the thermoelectric response has been
linked to the temperature dependence of Eu valence [61].
Remarkably, a theoretical study [62] has concluded that the

FIG. 8. Crystal structure of EuTiO3 in its paramagnetic phase.
Random magnetic moments at Eu sites are located between TiO6

octahedra, which are tilted off each other. Superexchange interaction
between these spins involves Ti and oxygen atoms. This can impede
phonons to have a well-defined wave-vector over long distances.

contribution of optical phonons to the overall lattice thermal
conductivity is unusually large in this lattice structure. The
energy of the highest optical phonon in this crystal structure
[63] and the distance between the Eu f level and the chemi-
cal potential are both ≈0.1 eV. This may facilitate coupling
between optical phonons and Eu valence fluctuations.

Inelastic neutron scattering is a promising probe of this
physics. In the case of Tb3Ga5O12, for example, it docu-
mented the coupling between spin and lattice [64]). A recent
study on STO [65] has found evidence for an unusual hy-
bridization between acoustic and optic phonon branches. No
neutron scattering data is presently available to compare ETO
with STO.

Finally, let us note that the glasslike thermal conductivity
of EuTiO3, in contrast to spin-liquid crystals, occurs in a solid
with a simple G-type antiferromagnetic ground state [19].
A formal theoretical treatment may be achieved by comple-
menting the picture drawn by Eq. (1) with an “off-diagonal”
coupling between different vibrational states [7,8,15]:

κod =
s �=s′∑

ss′,q

Css′ (q)v2
ss′ (q)τss′ (q). (2)

This equation was conceived for nonmagnetic crystals,
in which harmonic coupling occurs across phonon branches
[7,15]. It can be extended to magnetic modes.
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