
PHYSICAL REVIEW MATERIALS 7, 093805 (2023)

Quasicrystals predicted and discovered by machine learning
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Quasicrystals represent a class of ordered materials that have diffraction symmetry forbidden in periodic
crystals. Since the first discovery of quasicrystals in 1984, approximately 100 thermodynamically stable qua-
sicrystals have been synthesized. The discovery of new quasicrystals has led to the observation of novel physical
phenomena, such as robust quantum criticality, fractal superconductivity, and peculiar long-range magnetic
ordering. However, the pace of discovery of new quasicrystals has significantly slowed down, which is attributed
to the lack of design principles for exploring new quasicrystals. Here, we demonstrate that machine learning
can greatly accelerate the process of material discovery. Our model can predict stable quasicrystalline phases
with high accuracy. With this model, we discovered three stable decagonal quasicrystals through an exhaustive
screening of more than 1000 ternary aluminum alloy systems.
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I. INTRODUCTION

A large area remains unexplored in materials space, given
experimentally known materials to date. To discover innova-
tive materials from such a vast search space, machine learning
has attracted tremendous attention as a key technology for
exploring new frontiers in materials science. To date, the
discovery of new materials using machine learning has been
reported for a variety of material systems, including soft mat-
ters [1–5] and inorganic solid-state materials [6,7]. However,
in quasicrystal (QC) research, the use of machine learning
has not significantly progressed. In this study, we proved that
machine learning can predict the chemical compositions that
form stable quasicrystalline phases. To be specific, three QCs
were newly synthesized based on guidance by the machine
learning algorithm.

Since the metallurgist D. Shechtman and his co-workers re-
ported the discovery of the first QC in 1984 [8], approximately
100 stable QCs have been discovered to date [9,10]. However,
a vast area remains unexplored in the materials space, which
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may contain semiconducting or antiferromagnetic QCs that
no one has yet discovered. Even considering only ternary
aluminum–transition metal (Al–TM) systems, more than 1000
systems are yet to be explored. According to our survey, the
presence or absence of quasicrystalline phases is currently
known for only approximately 60 systems. Although almost
40 years have passed since the first QC was discovered,
the mechanism of QC formation remains largely unknown.
Finding new materials from such a vast search space is con-
siderably difficult without solid design guidelines. Therefore,
efficient alternatives to time-consuming, traditional trial-and-
error approaches need to be established.

The Al-Mn icosahedral QC (IQC) was the first QC dis-
covered by Shechtman et al. [8] and was synthesized as a
metastable phase by a rapid melt-quenching method. A few
years later, thermodynamically stable IQCs with Bergman-
type clusters were found first in the Al-Li-Cu system by
Sainfort and Dubost [11]. Tsai and his co-workers succes-
sively discovered stable IQCs with Mackay-type clusters in
Al-Cu-(Fe, Ru, Os) [12,13] and Al-Pd-(Mn, Re) [14] sys-
tems. Tsai’s group also discovered stable decagonal QCs
(DQCs) in Al-Ni-(Fe, Co, Rh) [15,16], Al-Cu-Rh [17], and
Al-Pd-(Ru, Os) [18]. Luo et al. [19] reported the first stable
IQCs with Bergman-type clusters in the Zn-Mg–rare earth
metal systems. Following this, Tsai’s group discovered sta-
ble Bergman-type IQCs in the Zn-Mg-(Y, Tb, Dy, Ho, Er)
systems [20] and DQCs in the Zn-Mg-(Y, Dy, Ho, Er, Tm,
Lu) systems [21,22]. Furthermore, Tsai’s group found the first
stable binary IQC with Tsai-type clusters in Cd-Yb [23] and
its ternary variants in the Cd-Mg-(Gd, Tb, Dy, Ho, Er, Tm,
Yb, Lu) systems [24,25]. Subsequently, various derivatives
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of these IQCs and DQCs have been synthesized by several
scientists and classified into the Mackay-/Bergman-/Tsai-type
clusters for IQCs and two-/four-/six-/eight-layer periodicity
for DQCs, thereby establishing a foundation for current qua-
sicrystal science [10].

As described above, most QCs studied to date were dis-
covered by Tsai and co-workers based on serendipity. They
considered QCs as electronic compounds stabilized via the
Hume-Rothery mechanism [26] and searched for new com-
pounds using the electron per atom ratio (e/a) as a guideline.
As a result, e/a has been found to assume specific values for
different types of IQCs [9]. However, the applicability domain
of Hume-Rothery’s law remains limited to a few groups of
materials, and it does not hold universally for all QCs. Further-
more, no practically established design principle exists other
than the e/a rule.

Aiming to accelerate the process of discovering new QCs,
in a previous work [27], we developed a machine learning
algorithm to predict the chemical compositions that form ther-
mally stable QC phases. The input variable for the model is the
chemical composition, and the output variable is a class label
representing QCs, approximant crystals (ACs), and others in-
cluding any ordinary periodic crystal phase. The model was
trained using the chemical compositions of QCs, ACs, and
ordinary periodic crystals that have been discovered so far.
The predicted QC phases were comprehensively compared
with known experimental phase diagrams in the literature.
It was reported that the prediction performance reached a
significantly high level. In particular, the binary classifica-
tion of the combined QC/AC class versus ordinary periodic
crystals was shown to be almost perfectly predictable. Fur-
thermore, by analyzing the behaviors of the trained model, we
noticed that Hume-Rothery’s electron-concentration law was
autonomously learned by our algorithm. In aluminum alloys.
most predicted regions of QCs and ACs overlap the region
of e/a = 1.8, indicating that our model recognizes the rule
of thumb that was the origin of Tsai’s serendipity based only
on the list of materials discovered to date. Thus, our model
is called TSAI (artificial intelligence as an alternative to Tsai’s
serendipity).

This work presents a proof-of-concept study of Liu et al.
[27]. We demonstrate the successful discovery of QCs based
on machine learning. Based on the predictions of TSAI, high-
throughput virtual screening was performed on the entire
composition space of ternary aluminum–transition metal sys-
tems. Among the 185 systems in which the presence of QCs
was hypothesized, we selected Al-Ni-Os, Al-Ir-Mn, and AlIr-
Fe systems, and we succeeded in finding the three DQCs.

II. METHODS

A. Machine learning workflow

The problem was formulated into a supervised learning
framework to classify any given chemical composition into
one of three different phases: QCs, ACs, and others including
any ordinary periodic crystal phase [Fig. 1(a)]. In this paper,
we use QC, AC, and OTHERS to denote these three different
phases, respectively. Constituent elements in a given compo-
sition were characterized by 58 element features, including

the atomic number, bond radius, van der Waals radius, elec-
tronegativity, thermal conductivity, band gap, polarizability,
boiling point, and melting point (see Supplemental Material
Table S2 for the full list of the element features). By taking
four different summary statistics (weighted mean, weighted
variance, max and minpooling) for each of the 58 element
features, an input composition was translated into a 232-
dimensional (= 58 × 4) descriptor vector that represents the
physicochemical features of the constituent elements (see
Supplemental Material [28] for details). As a training dataset,
a list of 80 thermodynamically stable QCs (QC) and 78 ACs
(AC) discovered to date was compiled from the Crystallog-
raphy of Quasicrystals handbook [10], and 10 000 periodic
crystal chemical compositions were randomly extracted from
the Materials Project database [29] as others (OTHERS). In
addition, 90 compositions from failed laboratory experiments
on the synthesis of QCs were added to the dataset in the class
OTHERS. For each class, approximately 80% of the overall
samples were randomly selected to train the model (66, 60,
and 8072 for QC, AC, and OTHERS, respectively), and the
masked remaining samples were used as a test set to evaluate
prediction performance (14, 18, and 2018 for QC, AC, and
OTHERS, respectively).

We tested various supervised learning algorithms, such as
random forests and neural networks, to build predictive mod-
els to learn the mapping from the vectorized compositions to
the three different phases. Because there were no significant
differences in prediction performance between the various
algorithms, we decided to use the random forest classifiers to
build our predictive model.

Here, note that, to handle the highly unbalanced class
labels, the crystal data were undersampled from the overall
instances in the Materials Project database. The performance
sensitivity of the classifiers when undersampling and over-
sampling (ADASYN [30] and Borderline-SMOTE [31]) the
crystal data to various sample sizes is reported in Sup-
plemental Material Tables S3 and S4. In summary, there
were no significant differences in performance measures with
respect to sample size changes in undersampling. When over-
sampling was applied, the performance of the classifiers
was significantly lower than that of the classifiers based on
undersampling.

B. Generalization capability

In the binary classification to predict a combined QC/AC
class versus OTHERS, these two phases were almost perfectly
predictable as the precision and recall rates reached 0.997
and 0.999, respectively. In addition, the learned model was
demonstrated to have the ability to discriminate between QCs
and ACs although the classification performance degraded
slightly [Fig. 1(b)]. The precision and recall were 0.722 and
0.602 for QC and 0.731 and 0.608 for AC, respectively (see
Supplemental Material [28] for the definition of precision and
recall).

Here, we noticed one interesting fact. By analyzing the
predicted phase diagrams of Al-TM systems, it was found
that Hume-Rothery’s electron-concentration law was au-
tonomously learned by our algorithm [Fig. 1(c)]. It is known
that IQCs and their ACs in Al-TM systems with Mackay-type
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(a)

(c)

(d)

(b)

FIG. 1. Machine learning for predicting QC-forming chemical compositions. (a) Schematic of the machine learning workflow. (b) Confu-
sion matrix (top) and three performance metrics (bottom: precision, recall, and F1 scores) summarize the predictive ability of the machine
learning algorithm with respect to test datasets. The mean (standard deviation) of each performance metric across 100 models trained
on different datasets is shown. (c) Predicted phase diagrams of three aluminum alloys, Al-Ir-Mn, Al-Ir-Fe, and Al-NiOs. The predicted
QC-/AC-forming regions are denoted by navy- and light-blue areas, respectively. Straight lines for the rule of e/a = 1.8 are overlaid. Newly
synthesized DQCs are colored in green. (d) Five rules for the formation of QC/AC phases, proposed by the machine learning algorithm, are
represented by the straight lines on the predicted phase diagrams.
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clusters tend to appear around the region of e/a = 1.8 [9]. It
was noticed in a post hoc analysis that most of the predicted
regions of QCs and ACs overlap the region of e/a = 1.8,
indicating that our model recognizes the rule of thumb that
was the origin of Tsai’s serendipity based only on the list of
materials discovered to date.

In addition, we analyzed how TSAI recognizes the for-
mation and stabilization of QCs beyond the e/a rule and
extracted five rules from the black-box model of TSAI. The
five rules are related to the weighted mean of the van der
Waals radius, electronegativity, first ionization energy, num-
ber of valence electrons in the p orbitals, and energy per atom
in the ground state of constituent elements. To be specific,
Liu et al. [27] showed that in the compositional space of
ternary aluminum alloys, the mapping from the compositional
descriptors to the structure classes (QC, AC, and OTHERS), as
determined by the black-box machine learning model, can
be locally approximated by the solution of the following si-
multaneous equations (see Supplemental Material [28] for an
explanation of the derivation process):

3∑

i=1

ciηen(Si ) ≈ 0.15 ± 0.00,

3∑

i=1

ciηp(Si ) ≈ 0.71 ± 0.06,

3∑

i=1

ciηvdW(Si ) ≈ 409.05 ± 3.37 [pm],

3∑

i=1

ciηie(Si ) ≈ 6.49 ± 0.09 [eV],

3∑

i=1

ciηgs(S
i ) ≈ −4.57 ± 0.18 [eV]. (1)

Here, (c1, c2, c3) denotes the compositional ratio of
the three elements (S1, S2, S3). The five element features,
ηen, ηp, ηvdW, ηie, and ηgs represent Ghosh’s electronegativity
scale, the number of valence electrons in p orbitals, van der
Waals radius, first ionization energy, and energy per atom in
the T = 0 K ground state calculated by density functional
theory, respectively. The QC phase is formed in the compo-
sitional space where the weighted mean of each of the five
element features is approximately equal to the value on the
right-hand side of Eq. (1). These rules are represented by
five straight lines on a phase diagram, as shown in Fig. 1(d).
We confirmed that in aluminum alloys, most of the predicted
quasicrystalline phases appear near the junction of the five
straight lines.

C. Virtual screening

With TSAI, we performed a high-throughput virtual screen-
ing of 1080 systems including all of the Al-TM[4,5]-TM[4,5]

and Al-TM[4,5]-TM[6] systems, where the numbers in square
brackets denote the periods of TM elements. A ternary phase
diagram was gridded with 20 301 points by dividing the inter-
val of the composition ratio from 0 to 1 by 200 equally spaced

grid points. A label exhibiting the maximum probability was
assigned to each grid point in the diagram. Consequently,
one or more QC phases were predicted to be present in 185
systems. To further narrow the candidates, we excluded the
46 systems for which the existence of QCs or phase diagrams
has been reported in the literature. Then, among the remaining
systems, we selected 30 systems in which the predicted QC-
phase regions are relatively large compared to other systems.
As a first trial, we selected Al-Ni-Os, Al-Ir-Mn, and Al-Ir-Fe
systems from the 30 systems and succeeded in finding the
three DQCs.

III. RESULTS

Figures 1(c) and 1(d) show the phase diagrams of Al-Ni-
Os, Al-Ir-Mn, and Al-Ir-Fe systems predicted by TSAI and
the three synthesized DQCs, Al∼65Ni∼20Os∼15, Al78Ir17Mn5,
and Al78Ir17Fe5, which were successfully included in their
predicted phase regions. The straight lines overlaid on the
phase diagrams represent the compositional regions satisfying
e/a = 1.8 and the five formation rules derived from TSAI. In
these systems, TSAI predicted the existence of QC phases near
regions approximately satisfying all six rules. In terms of e/a,
the predicted QC-phase regions in Al-Ni-Os, Al-Ir-Mn, and
Al-Ir-Fe were distributed in the range of approximately e/a ∈
[1.5, 2.5], e/a ∈ [1.5, 2.1], and e/a ∈ [1.5, 2.3], respectively.
Note that e/a = 1.8 is the rule established for Mackay-type
IQCs. As described below, the QCs discovered in these sys-
tems are not Mackay-type IQCs but DQCs. The range of e/a
includes statistical uncertainty due to the inclusion of multiple
types of QCs in the dataset used to train TSAI, as well as to
predict the value of e/a for DQCs.

We experimentally investigated the compositional regions
in which the presence of QCs was predicted, and DQCs
were found in the samples with the nominal compositions of
Al70Ni20Os10, Al80Ir14Mn6, and Al79Ir16Fe5 (see Supplemen-
tal Material [28] for experimental details). Figures 2(b)–2(d)
show the electron diffraction patterns taken along the tenfold
(10f) and two kinds of twofold axes (2f ′ and 2f), respectively,
of the DQC found in Al70Ni20Os10 via transmission electron
microscopy (TEM). Almost perfect decagonal symmetry with
a large number of sharp diffraction spots was observed in the
diffraction patterns, and all spots were indexed with sextu-
plets of integers h1h2h3h4h5h6, where hi (i = 1, . . . , 5) and
h6 represent the components of a diffraction vector along a
quasiperiodic direction (in the quasiperiodic plane) and the
periodic direction (perpendicular to the quasiperiodic plane),
respectively [Fig. 2(a), and see Supplemental Material for
the details of the selection of basis vectors [28]]. Systematic
absences of h1h2h̄2h̄10l spots in Fig. 2(d), where l is an odd
integer, indicate the existence of c-glide planes perpendicular
to 2f axes [10]. Note that the occurrence of 00000l spots
in Fig. 2(c) is because of the multiple diffraction and, thus,
does not contradict the systematic absences. In Figs. 2(c)
and 2(d), intense spots among 00000h6 can be observed at
000002, where the corresponding lattice spacing d000002 is
approximately 0.2 nm. This indicates that the DQC has a two-
layer periodicity of approximately 0.4 nm along the periodic
direction. Electron diffraction patterns taken from the DQCs
found in Al80Ir14Mn6 and Al79Ir16Fe5 samples are shown in
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( )

FIG. 2. (a) Basis vectors used for indexing diffraction from DQCs. Selected area electron diffraction patterns taken along (b) 10f, (c) 2f ′,
and (d) 2f axes of a DQC found in an Al70Ni20Os10 sample. (e) Powder XRD pattern taken from an Al70Ni20Os10 sample with indices (and
direction if the diffraction vector is along 10f, 2f ′, or 2f) for the DQC phase. Filled triangles indicate the diffraction from phases other than the
DQC phase.

Figs. 3(a)–3(f). These patterns are interpreted in a similar way
to that above, except that the DQCs found in the Al80Ir14Mn6

and Al79Ir16Fe5 samples have an eight-layer periodicity of
approximately 1.6 nm along the periodic direction.

Figures 2(e) and 3(g) show powder x-ray diffraction (XRD)
patterns of Al70Ni20Os10, and Al80Ir14Mn6 and Al79Ir16Fe5

samples, respectively. For all the samples, most peaks were
indexed as reflections from the DQC phases identified via
TEM, and, thus, the DQC phases are the main phases in
these samples. The chemical compositions of the main phases
were analyzed. As shown above and in Figs. 1(c) and 1(d),
these compositions are Al∼65Ni∼20Os∼15, Al78Ir17Mn5, and
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( )

FIG. 3. Selected area electron diffraction patterns taken from (a) 10f, (b) 2f ′, and (c) 2f axes of a DQC found in an Al80Ir14Mn6 sample and
those taken from (d) 10f, (e) 2f ′, and (f) 2f axes of a DQC found in an Al79Ir16Fe5 sample. (g) Powder XRD patterns taken from Al80Ir14Mn6

and Al79Ir16Fe5 samples with indices (and direction if the diffraction vector is along 10f, 2f ′, or 2f) for the DQC phases. Filled triangles
indicate the diffraction from phases other than the DQC phases.

Al78Ir17Fe5. Because these DQC phases were observed after
a long annealing process, they are considered to be in thermo-
dynamically stable phases. The lattice parameters determined
from the XRD peak positions and chemical compositions
of the discovered DQCs are summarized in Table I, along
with those of known stable DQCs with a two- or eight-layer

periodicity. Their lattice parameters are similar to those of the
known DQCs. Note that the mole fraction of aluminum tends
to be higher for DQCs having an eight-layer periodicity than
for those having a two-layer periodicity, and this tendency
also holds true for the new DQCs. Notably, the mole fraction
of aluminum in Al78Ir17Mn5 and Al78Ir17Fe5 is significantly
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TABLE I. Comparison of the composition (mole fractions) and (quasi)lattice parameters, aR and c, for Al-based stable DQCs with 0.4 or
1.6 nm periodicity.

Composition aR (nm) c (nm) Reference

0.4 nm (two-layer) periodicity
Al65Cu20Co15 0.2437(2) 0.41481(3) [32,33]
Al65.0Cu14.6Co20.4 0.247(3) 0.4121(7) [34]
Al61.9Cu18.5Rh19.6 0.2505(6) 0.4278(5) [34]
Al57.6Cu25.9Ir16.5 0.251(5) 0.4258(5) [34]
Al∼70Ni∼10Co∼20

a ∼0.245 ∼0.408 [35,36]
Al70.2(3)Ni24.5(4)Fe5.3(2) 0.2450(8) 0.4105(7) [37–39]
Al∼65Ni∼20Os∼15 ∼0.252 ∼0.424 This work

1.6 nm (eight-layer) periodicity
Al73Ir14.5Os12.5 0.2501(2) 1.6821(8) [40]
Al75Pd15Os10 0.25233(2) 1.6750(3) [40]
Al70Ni20Ru10 0.24828(4) 1.6539(3) [40]
Al78Ir17Mn5 ∼0.249 ∼1.67 This work
Al78Ir17Fe5 ∼0.249 ∼1.66 This work

aTypical composition over a wide formation range of the DQC phase.

higher than that of the known DQCs with the same periodicity.
This indicates that TSAI successfully predicted new DQCs
outside the compositional space in which DQCs have been
discovered to date.

IV. CONCLUSIONS

In this study, we demonstrate that machine learning can
predict new QCs. If the presence or absence of QC phase for-
mation could be predicted based solely on the compositional
patterns of previously synthesized materials, it would provide
a powerful new methodology for QC research. More new
materials are expected to be discovered in the future based on
the machine learning predictor, including ferromagnetic [41],
antiferromagnetic, and superconducting [42] QCs. To facili-
tate the process of validating the model and its practical use
in material exploration, we have made all data and PYTHON

codes publicly available.
Finally, we discuss several issues to be addressed. The use

of machine learning technologies in QC research currently
lags far behind in other material systems. This is mainly due
to the lack of data accumulation and sharing. In particular,
the lack of a comprehensive database of physical properties
and structural information limits the potential applicability of
machine learning in this area. In addition, most of the QCs
and ACs discovered so far are binary or ternary systems.
Therefore, the generalizability of the current model to multidi-
mensional systems where less or no data are available is quite
uncertain. Extending the predictability to multinary systems
will be the key to discovering QCs with novel properties.
Another challenge to overcome is to accelerate the process
of materials synthesis. For example, for periodic systems,
deep learning techniques are being developed to automate
the phase identification of multiphase materials from powder
x-ray diffraction patterns [43,44]. However, there has been
no research on automated phase identification of quasicrys-
tals, except for one previous study [45]. The potential of the

QC-forming composition predictor is synergistically en-
hanced when combined with techniques to automatically
determine the presence or absence of QC phases from mass-
produced multiphase samples in the laboratory. It is important
to create a platform for data-driven QC research by compre-
hensively taking these issues into account.

Data supporting the findings of this study are available
within the paper and its Supplemental Material. The digital
data of chemical compositions used for machine learning are
available at [46]. PYTHON codes for machine learning were
implemented with the XenonPy software [47–49], which is
available on GitHub [50].
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