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Ranking Pareto optimal solutions based on projection free energy
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Based on available datasets prepared by numerical simulations and machine learning, maps of properties for
materials that have not yet been synthesized can be developed. These maps can be used to select promising
materials for synthetic experiments. With a single objective function, the ranking of the optimal solutions can be
simply obtained based on the values of the target property. However, applications with multiple target properties
require the calculation of Pareto optimal solutions to visualize trade-offs. These solutions are generally ranked
manually, selecting the weight of the multiple objectives based on prior knowledge. In this study, to provide
an automated ranking of Pareto solutions, we introduced the most-isolated Pareto solution (MIPS) score, which
is defined by a projection free energy. Using the MIPS ranking, it is possible to appropriately select the most
isolated materials predicted in the property space. To verify the effectiveness of the proposed method, we used
a database of semiconductors created by density-functional theory. Our method was able to correctly select and
rank the most isolated solutions in both convex and concave two-dimensional Pareto frontiers, outperforming
the most relevant outlier detection methods. We also demonstrated that our approach can be easily extended to
three-dimensional property spaces.
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I. INTRODUCTION

The increasing computational power of high-performance
computers and the development of automated techniques for
numerical simulations have facilitated the calculation of the
properties of a growing number of materials [1]. As a result,
many accessible computational material databases have been
developed for inorganic materials [2,3], organic materials [4],
and molecules [5,6]. In addition, the use of machine learn-
ing in materials science has contributed to remarkable results
[7–11]. By applying machine learning models to experimental
data, the properties of unknown materials can be predicted
with high accuracy. Predicted properties can then be used as a
reference to select promising new materials, which will be the
target of forthcoming experiments.

If we consider a single target property, it is sufficient to
select the material with the highest (or lowest, depending on
the context) predicted property value. However, in the design
process, materials are generally selected considering multiple
desired properties at the same time. Moreover, the selection of
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materials often leads to trade-offs (i.e., the enhancement of a
property implies the worsening of another one). To treat such
trade-off problems, multiobjective optimization methods can
be used [12–14]. Because a single solution does not exist for
this type of problem, these methods find multiple Pareto opti-
mal solutions (see Fig. 1), each of which is an optimal solution
obtained by varying the balance of the objective functions.
In general, the Pareto solutions are ranked using an arbitrary
weighted sum [15–19]. The weights of the objectives are
adjusted manually, thus requiring previous field knowledge.
A systematic method for determining the balance of objective
functions was discussed in Refs. [20,21], where the central
part of the Pareto frontier was regarded as that including the
best solutions. This means that the Pareto solutions are ranked
based on the proximity to the center of the frontier, which
is too simple. In general, without the direct use of human
knowledge, it is difficult to automatically select promising
materials when multiple objective properties are considered.

In this study, we develop a method to automatically provide
the ranking of Pareto solutions based on projection free en-
ergy. Considering a material from the Pareto solutions, if there
are few others with similar properties in the property space
(i.e., isolatability is high), then the material can be regarded
as having unique properties (i.e., it is a curious material). To
evaluate the isolation of each Pareto solution, we introduce
the most-isolated Pareto solution (MIPS) score, inspired by
the definition of free energy (see Fig. 1). Using the MIPS
score, the ranking of Pareto solutions is provided. Note that
the ranking of the Pareto solutions considered in this study is

2475-9953/2023/7(9)/093804(9) 093804-1 Published by the American Physical Society

https://orcid.org/0000-0002-0349-358X
https://orcid.org/0000-0003-3914-248X
https://orcid.org/0000-0002-3506-1028
https://orcid.org/0000-0002-4288-1606
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.7.093804&domain=pdf&date_stamp=2023-09-19
https://doi.org/10.1103/PhysRevMaterials.7.093804
https://creativecommons.org/licenses/by/4.0/


TAMURA, TERAYAMA, SUMITA, AND TSUDA PHYSICAL REVIEW MATERIALS 7, 093804 (2023)

FIG. 1. Schematics of Pareto solutions minimizing two objective
functions and MIPS score. Based on the MIPS score, the ranking of
Pareto solutions (orange) that are isolated from other datapoints are
determined automatically.

different from the Pareto ranking used by genetic algorithms
[22]. In the Pareto ranking, all the solutions are ranked and all
the Pareto solutions are located at the highest rank.

Let us explain the physical background of the idea that the
isolation of each Pareto solution can be evaluated in terms of
free energy. First, we consider two simple physical systems
A and B whose ground states are not degenerated, and they
have the same number of discrete states. We also assume that
system A has few low-energy excited states and system B
has many low-energy excited states. Examples of a density
of states (DoS) representing these systems are shown in the
left panels of Fig. 2(a). Focusing on the ground state, system
A has fewer low-energy excited states, so it can be assumed
that this ground state is more isolated from the other solutions
if the value of the energy is used as a measure of distance.
System B, on the other hand, has many excited states in the
neighborhood of the ground state, and the ground state can
be considered as nonisolated. Using the DoS, the temperature
dependence of the Helmholtz free energy can be calculated
for each system and is shown in the right panel of Fig. 2(a).
System A has a larger free energy, indicating that it is more
unstable than System B, and has an isolated ground state. In
this way, ground state isolation can be measured in terms of
free energy.

Next, we consider the relationship between the isolation of
the Pareto solution and the projection free energy. To apply the
above idea, it is necessary to consider a projection into a one-
dimensional space from the space in which multiple objective
functions are defined. This projection is defined so that each
Pareto solution becomes an optimal solution with the smallest
value in the projected one-dimensional space, i.e., the ground
state. The simplest projection is to focus on only one of the
objective functions. For example, let us consider the dataset
with two objective functions as shown in Fig. 2(b). In this
case, if we make a projection considering only one objective
function, the projected DoS is shown in Fig. 2(b). Note that

FIG. 2. (a) Examples of density of states for system A having
few low-energy excited states and system B having many low-energy
excited states. The temperature dependence on free energy results
are shown for systems A and B. (b) Examples of two-dimensional
Pareto frontier and projected one-dimensional DoS. For top and right
DoS, objective functions 1 and 2 are only considered, respectively.
These cases correspond to the Tchebycheff decomposition defined
by Eq. (2) with α = 1 and 0, respectively. The Pareto solutions
highlighted by red and green dotted circles correspond to the ground
state (optimal solution) for top and right DoS cases, respectively. If
a projection with different α is performed, different Pareto solution
becomes optimal solution.

these are the same DoS considered above, that is, for objective
functions 1 and 2, the DoS is the same as the systems A and B,
respectively. For each projection, the Pareto solution that lies
in the optimal solution is different. Thus, by estimating the
free energy in each case and comparing its magnitude [free
energy results are shown in Fig. 2(a)], we can compare the
isolation for different Pareto solutions. Here, the free energy
defined in this projected space is called the projection free
energy. In this example, via the projection free energy, we can
conclude that the Pareto solution considering only objective

093804-2



RANKING PARETO OPTIMAL SOLUTIONS BASED ON … PHYSICAL REVIEW MATERIALS 7, 093804 (2023)

function 1, highlighted by the red circle, is more isolating
than the Pareto solution considering only objective function
2, highlighted by green circle. For other Pareto solutions,
we search for a one-dimensional space in which each Pareto
solution becomes an optimal solution and calculate the pro-
jection free energy. By comparing the projection free energy,
the ranking of Pareto solutions based on the isolation can
be created. Here, the projection to one-dimensional space is
performed by Tchebycheff decomposition. Note that the rela-
tionship between the difficulty in the optimization problems
and the shape of DoS has been discussed [23,24].

A detailed definition based on projection free energy of the
MIPS is provided in Sec. II. In Sec. III, we report the results
of the material selection based on the MIPS using a dataset of
semiconductors obtained by density functional theory (DFT).
In Sec. IV, we present the discussion and summary of our
findings.

II. METHODS

We define the MIPS based on the concept of projection free
energy. We consider a multiobjective optimization approach
based on the Tchebycheff decomposition [25–27] with two
objective functions. Here, we assume that these are minimized
simultaneously. It follows that the optimization problem in the
d-dimensional space defined by x ∈ Rd can be described as
follows:

min
x

gα (x), (1)

where gα (x) is constructed using the two objective functions
f1(x) and f2(x) so that

gα (x) = max[α f1(x), (1 − α) f2(x)]. (2)

The value of α (0 � α � 1) determines the balance of the two
objectives. Note that the role of α is similar to that of the
coefficient of a weighted sum [i.e., α f1(x) + (1 − α) f2(x)].
When α is small, f2(x) has more relevance than f1(x); when
α is large, the situation is reversed (see Fig. 1). When α is
fixed, all data points are projected to one-dimensional data
via gα (x). Thus, a one-dimensional histogram can be drawn
depending on α, and one of the Pareto solutions is located at
the optimal solution depending on α.

For the analysis target of materials, the dataset of material
descriptors D = {xi}i=1,...,N is given. Here, index i indicates
the materials and D includes N types of materials. We con-
sider the case in which ∀i the values of the objective functions
{ f1(xi ), f2(xi )} are predicted by numerical simulations or ma-
chine learning. Thus, in our problem setting, the materials
in the Pareto frontier can be easily determined. Note that a
material with x∗ belonging to the Pareto optimal is one that
satisfies the following condition: there is no xi for which
fk (xi ) < fk (x∗) for ∀k. We impose a min-max normalization
for f1(x) and f2(x) defined as follows:

f ′
1(x) = f1(x) − min{ f1(xi )}i=1,...,N

max{ f1(xi )}i=1,...,N − min{ f1(xi )}i=1,...,N
, (3)

f ′
2(x) = f2(x) − min{ f2(xi )}i=1,...,N

max{ f2(xi )}i=1,...,N − min{ f2(xi )}i=1,...,N
. (4)

The normalization ensures that the two objective functions
have the same range of values, thus contributing equally to

the target function that can be redefined as follows:

g′
α (x) = max[α f ′

1(x), (1 − α) f ′
2(x)]. (5)

We perform an additional normalization so that the values
of the target function are in the range [0, 1] for each α:

Hα (x) = g′
α (x) − min{g′

α (xi )}i=1,...,N

max{g′
α (xi )}i=1,...,N − min{g′

α (xi )}i=1,...,N
. (6)

Here, Hα (x) is regarded as the Hamiltonian function depend-
ing on α from which we evaluate the projection free energy.
The partition function depending on the temperature T is
defined as follows:

Zα (T ) =
N∑

i=1

exp [−Hα (xi )/T ]. (7)

Thus, the projection free energy depending on α is given by

Fα (T ) = −T log Zα (T ) (8)

= Eα (T ) − T Sα (T ), (9)

where Eα (T ) and Sα (T ) represent the energy and entropy
terms in the original definition of free energy. When T = 0,
only the ground state with Hα (x) = 0 contributes to the free
energy calculation and Fα (0) = 0. As T is increased, the con-
tribution of excited states is augmented in Fα (T ). In particular,
for small T , the contribution of the excited states close to the
ground state is important. When there is a limited number of
other data points near the ground state, the free energy Fα (T )
with small T becomes large, corresponding to a low entropy
value (see Fig. 2). Since the ground state is one of the Pareto
solutions, we can use the free energy with small T when con-
sidering the isolation from other solutions in the neighborhood
of the Pareto solution. Here, a sufficiently small temperature
T ∗ is predetermined, and the MIPS score is defined as follows:

MIPS(α) = Fα (T ∗). (10)

A Pareto solution with a large MIPS(α) can be regarded as
isolated from the other data points. Note that, in this paper,
T ∗ = 0.01 is utilized, and this value was determined by cal-
culating the T ∗-dependence of the ranking (see Fig. S1 [28]),
which will be discussed later.

The following is a procedure to determine a ranking of
Pareto solutions using the MIPS score.

(1) For a given α, project all data into one-dimensional
space.

(2) Calculate the MIPS score according to Eq. (10). The
MIPS score represents the performance measure of the Pareto
solution located in the optimal solution within the projected
one-dimensional space.

(3) Repeat steps 1 and 2 while varying the value of α.
In this case, the same Pareto solution may be the optimal
solution for different values of α. Therefore, each Pareto solu-
tion can have multiple MIPS scores corresponding to different
α values. In such cases, the highest MIPS score among the
multiple scores is chosen as the score for corresponding Pareto
solution.

(4) Arrange the Pareto solutions in ascending order of
their MIPS scores.
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FIG. 3. MIPS values (left column), representative DoS (middle column), and distribution of datapoints (right column) with a convex- or
concave-shaped Pareto frontier in the property space spanned by the band gap and electric dielectric constant. The first 20 solutions ranked by
MIPS are represented by blue datapoints. All DoS are summarized in Figs. S2 and S3 [28].

However, in our present implementation, there might be
some Pareto solutions for which the MIPS score cannot be
defined. Here, α is varied from 0 to 1 using discrete incre-
ments, not continuous ones. Then, for considering all discrete
α, there might be some Pareto solutions that do not become an
optimal (minimum) solution in the projected one-dimensional
space. In such cases, these particular Pareto solutions should
be ranked as the lowest in the ranking.

III. RESULTS

A. MIPS ranking in a two-dimensional property space

We test our ranking model based on the MIPS us-
ing a dataset of 1278 semiconductors obtained by density
functional theory (DFT) calculations [29]. We address the
well-known trade-off between the band gap and dielectric
constant of semiconductors. First, we consider the case in
which both the band gap and electric dielectric constant (εel)
are simultaneously minimized, which gives 33 Pareto solu-
tions. The MIPS are calculated by varying α from 0 to 1 using
0.001 increments. For seven Pareto solutions, the MIPS score
cannot be defined. In Fig. S1 [28], the transition of MIPS
ranking depending on T ∗ is shown. It can be seen that the
Pareto solutions in the top ranking do not change much when
T ∗ is changed from 0.001 and 0.01. Thus, we use T ∗ = 0.01,

which achieves that the ranking does not change significantly
as decreasing T ∗ and includes sufficient information around
Pareto solution. Note that from T ∗ dependency, the robustness
of ranking can be discussed (see Fig. S1 [28]). In Table I, the
MIPS ranking is summarized when T ∗ = 0.01, and for the
materials with 27th, an appropriate α cannot be found. The top
20 results with the largest MIPS are shown in Fig. 3(a). The
left column shows the MIPS values depending on the ranking.
In the middle column, some representative DoS (first, tenth,
and 20th in the ranking) are shown. Clearly, in the first DoS,
the number of materials with low values in the projected one-
dimensional space is small, indicating SiO2 is most isolated.
In addition, we can see that the number of materials with low
values on the projected one-dimensional space increases as
we focus on the lower ranking. Thus, there are only a small
number of materials around a Pareto solution with a high
MIPS. These results show that the ranking based on the MIPS
is in accordance with our purpose of providing a ranking of
Pareto solutions in terms of isolation. The distributions of the
selected Pareto solutions and other datapoints in the property
space are shown in the right column of Fig. 3(a), where it can
be seen that a variety of isolated solutions were selected from
a convex-shaped Pareto frontier using the MIPS ranking.

We also consider a similar problem with a concave-shaped
Pareto frontier. In this case, the band gap and electric dielectric

093804-4



RANKING PARETO OPTIMAL SOLUTIONS BASED ON … PHYSICAL REVIEW MATERIALS 7, 093804 (2023)

TABLE I. MIPS ranking for a convex-shaped Pareto frontier
when band gap and electronic dielectric constant (εel) are minimized.

Ranking Materials MIPS score Band gap εel

1 SiO2 −0.002270662 5.79 2.2
2 RbMnO4 −0.002309888 2.02 2.9
3 K3BiO4 −0.004522329 1.24 3.3
4 Na6PbO5 −0.007955985 1.1 3.6
5 Rb2Be2O3 −0.00853923 2.42 2.8
6 K4PbO4 −0.009820247 1.68 3.1
7 Na2Si2O5 −0.012068143 4.54 2.3
8 K4SnO4 −0.012493567 2.35 2.9
9 K2Na4Be2O5 −0.013082062 2.53 2.8
10 CsLi(B3O5)2 −0.013750656 5.15 2.3
11 KNa2BO3 −0.013784018 2.98 2.5
12 K3AuO −0.014702593 0.5 4.9
13 Na7Al3O8 −0.014925278 2.91 2.6
14 Na3BO3 −0.015025572 3.15 2.4
15 Na5BiO5 −0.015135497 1.03 3.9
16 K4HfO4 −0.01615541 2.78 2.7
17 Na4SiO4 −0.018832454 3.4 2.4
18 Cd2Sb2O7 −0.019424779 0.54 4.8
19 Rb5Au3O2 −0.019745257 0.9 4.1
20 Na4GeO4 −0.021150197 2.89 2.7
21 Na2SiO3 −0.023911928 3.99 2.4
22 KBO2 −0.024760391 4.12 2.4
23 Rb7Au5O2 −0.024863074 0.68 4.7
24 NaBO2 −0.025005608 4.19 2.4
25 NaCuO2 −0.025564282 0.79 4.6
26 SnO2 −0.026644142 0.86 4.5
27 AlAsO4 - 4.39 2.4
27 K4GeO4 - 2.78 2.8
27 Na4B2O5 - 3.92 2.4
27 Rb3NaPbO4 - 1.63 3.3
27 Na3AsO4 - 3.38 2.4
27 Rb4PbO4 - 1.6 3.3
27 CsCdBO3 - 1.69 3.1

constant are simultaneously maximized and 31 Pareto solu-
tions are defined. Since the definition of the MIPS is based
on the minimization of the objective functions, we consider
the corresponding negative values of the two properties of the
dielectric materials, so that the original maximization is trans-
formed into a minimization problem that can be addressed by
the proposed method. In this case, for four Pareto solutions,
MIPS score cannot be defined. In Table II, the MIPS ranking is
summarized when T ∗ = 0.01, and the results are presented in
Fig. 3(b). Note that in Fig. S1 [28], MIPS ranking depending
on T ∗ is shown. The first two materials (BeO and PtO2) with
the highest rank appear highly isolated. This result is correctly
reflected by the associated MIPSs. We conclude that the MIPS
ranking can be also used for problems with a concave-shaped
Pareto frontier.

B. Comparison with outlier detection techniques

Our ranking method can be used to extract isolated dat-
apoints from Pareto solutions. Outlier detection techniques
are used to perform the same task using machine learning.
To investigate the possible advantages of our ranking method,

TABLE II. MIPS ranking for a concave-shaped Pareto frontier
when band gap and electronic dielectric constant (εel) are maximized.

Ranking Materials MIPS score Band gap εel

1 BeO −1.48E-09 7.47 3.1
2 PtO2 −3.91E-07 0.95 12.5
3 ThO2 −0.00065343 4.45 4.8
4 HfSiO4 −0.000891161 5.66 3.7
5 In2Pt2O7 −0.001298629 2.48 6.9
6 ScTaO4 −0.00144392 4.08 5
7 ZrSiO4 −0.002396839 5.06 4
8 TaBiO4 −0.002783542 3.02 6.1
9 CaHfO3 −0.002949965 4.98 4.1
10 LaScO3 −0.003333902 3.87 5.1
11 V2HgO6 −0.003943528 2.09 7.3
12 ScNbO4 −0.00517729 3.53 5.5
13 Ta2Bi4O11 −0.005263738 2.77 6.2
14 TlPd3O4 −0.006784382 1.76 9.8
15 CaZrO3 −0.007067831 4.47 4.4
16 BeAl2O4 −0.007128697 6.27 3.2
17 Sc2Pt2O7 −0.007141839 2.24 7
18 Al2O3 −0.007150093 6.04 3.3
19 NaNb4Bi5O18 −0.007385994 2.49 6.4
20 TiO2 −0.007594438 2.94 6.1
21 Nb2CdO6 −0.007769357 3.54 5.4
22 TiCdO3 −0.007860211 3.03 5.8
23 SrHfO3 −0.008652802 4.68 4.1
24 TlPt3O4 −0.009422992 1.78 9.6
25 LaTaTiO6 −0.009535061 3.08 5.6
26 TiPbO3 −0.009952586 1.84 7.9
27 Bi2O3 −0.011299502 2.15 7
28 YZnAsO - 1.11 9.8
28 CaTa2Bi2O9 - 3.03 5.6
28 Ta4PbO11 - 3.5 5.5
28 Ta2CdO6 - 4.08 4.8

we apply the outlier detection techniques, namely, isolation
forest [30], local outlier factor [31], and one-class support
vector machine (SVM) to solve the maximization problem of
band gap and electronic dielectric constant. The results are
presented in Fig. 4. We consider the following two cases: (1)
all data, including Pareto solutions, are used as the training
dataset; (2) only Pareto solutions are used as the training
dataset. Considering case (1), the isolation forest and one-
class SVM recognize a datapoint/solution as an outlier when
at least one of the objective functions is particularly small.
This means that these techniques cannot be used to define
the isolated Pareto solutions. Because the local outlier factor
correctly selects all the Pareto solutions, it is not suitable for
the ranking process. Considering case (2), only the solutions
located at the extremities of the Pareto frontier are selected
as outliers by the considered methods. These results indicate
that it is impossible to create the ranking of Pareto solutions
by using outlier detection techniques.

C. MIPS ranking in a three-dimensional property space

By extending the target function domain, we can apply our
method to a property space of more than two dimensions. In
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FIG. 4. Distributions of outliers (orange) and other datapoints
(gray) obtained using three types of outlier detection techniques (iso-
lation forest, local outlier factor, and one-class SVM) when all the
datapoints (left column) or the Pareto solutions only (right column)
are used in the training phase.

particular, in this section, we address the three-dimensional
case. In addition to the band gap and the electronic dielectric
constant, we consider the ionic dielectric constant as the third
property. We also consider the case in which these properties
are maximized and 70 Pareto solutions are determined. Here,
the target function inspired by the Tchebycheff decomposition
is as follows:

gα (x) = max[α1 f1(x), α2 f2(x), α3 f3(x)], (11)

where f1(x), f2(x), and f3(x) are the three objective func-
tions. Choosing the values of α1, α2, and α3, we apply two
constraints: αi > 0 (i = 1, 2, 3) and α1 + α2 + α3 = 1. Under
these constraints, the MIPS are calculated by varying αi from
0 to 1 using a 0.01 increments. In this case, for 15 Pareto
solutions, the MIPS score cannot be defined. The top 20
results with the largest MIPS are shown in Table III and Fig. 5.
From the distributions, it can be observed that a wide variety
of Pareto solutions are chosen.

TABLE III. MIPS ranking of top 20 for a three-dimensional
Pareto frontier when the band gap, and the electric (εel) and ionic
(εion) dielectric constants are maximized. The remaining ranking is
shown in Table S1 [28].

Ranking Materials MIPS score Band gap εel εion

1 BeO −1.48E-09 7.47 3.1 3.9
2 PtO2 −3.91E-07 0.95 12.5 1.2
3 TiPbO3 −1.05E-06 1.84 7.9 661.4
4 La3TaO7 −7.48E-05 3.63 4.8 73.4
5 Sr4Ta2O9 −0.000120481 4.4 3.7 32.7
6 CaHfO3 −0.000177427 4.98 4.1 17.2
7 Sr4As2O −0.000247042 1.06 8.3 62.8
8 CaZrO3 −0.000429054 4.47 4.4 22.5
9 Rb2Ti(WO4)3 −0.000444705 2.83 5.3 98.3
10 TaBiO4 −0.000463315 3.02 6.1 36
11 Ta4PbO11 −0.000495176 3.5 5.5 27.2
12 ThO2 −0.00065306 4.45 4.8 11.9
13 HfSiO4 −0.00089102 5.66 3.7 7
14 NaNb4Bi5O18 −0.000948134 2.49 6.4 48.2
15 Bi2O3 −0.001084116 2.15 7 24.9
16 TlPd3O4 −0.001142092 1.76 9.8 25.6
17 La3HfGa5O14 −0.00128972 3.8 4.1 53.4
18 In2Pt2O7 −0.00130258 2.48 6.9 5.4
19 ScTaO4 −0.001393008 4.08 5 16.9
20 Tl4O3 −0.001521282 0.72 10.2 32.5

High-k dielectrics are materials that have wide band gaps
and high dielectric constants [32,33]. For example, these
properties are crucial for gate dielectrics and capacitors in
semiconductor technology [34]. In this section, we focus on
a Pareto frontier to maximize both the band gap and dielec-
tric constants. This helps in searching for suitable materials
for high-k dielectrics. Among the top ten materials in the
MIPS ranking, there are some materials that have not been
thoroughly investigated through experiments. These materi-
als include Sr4Ta2O9, CaHfO3, Sr4As2O, Rb2Ti(WO4)3, and
TaBiO4. The MIPS ranking suggests that it would be in-
teresting to experimentally verify these materials. Sr4Ta2O9

and CaHfO3 are particularly promising materials as they pos-
sess wide band gaps and high dielectric constants and some
previous studies were conducted on these materials [35,36].
Rb2Ti(WO4)3 and TaBiO4 are also considered promising
because they exhibit significantly high dielectric constants
and their band gaps are comparable to those of BaTiO3 and
SrTiO3, which are commonly used in ceramic capacitor appli-
cations [37,38]. On the other hand, Sr4As2O has a narrower
band gap but a larger dielectric constant. Its inclusion in the
MIPS ranking adds diversity to the material choices. Ideally,
it would be beneficial to investigate all the materials that are
Pareto solutions, but in this case, there are 70 Pareto solutions.
The MIPS ranking provides a strategy to prioritize the order
in which these materials should be considered. In recent years,
the amount of data in computational materials databases have
increased drastically. Consequently, the number of Pareto
solutions in such databases is also expected to increase.
By utilizing these databases, the MIPS ranking is anticipated
to effectively facilitate the exploration of new materials.
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FIG. 5. MIPS values (left column), representative DoS (middle column), and distribution of datapoints (right column) with a three-
dimensional Pareto frontier in the property space spanned by the band gap, and the electric and ionic dielectric constants. The first 20 solutions
ranked by MIPS are represented by blue datapoints. All DoS are summarized in Fig. S4 [28]. Note that, since our model is developed to
minimize objectives, when a problem requires a maximization of the target properties we simply consider their values with the opposite sign.

IV. DISCUSSION AND SUMMARY

We proposed a method to automatically provide the rank-
ing of Pareto solutions in order of decreasing isolation. To
measure the isolation of each Pareto solution, we defined
the most-isolated Pareto solution (MIPS), which was defined
by the free energy. We used a multiobjective optimization
approach based on Tchebycheff decomposition to project
multiple objective functions to one-dimensional function. To
test the proposed method, we used a dataset of semiconduc-
tor and a two- and three-dimensional property spaces were
considered. Our results show that the most-isolated Pareto
solutions can be selected automatically using our ranking. The
implementation of our method can be found on GitHub [39] in
the PYTHON package called Ranking of Pareto solutions based
on Projection Free energy (RPPF).

The ranking of Pareto solutions based on the MIPS can
be used in several applications, for instance, in the anal-
ysis of simulation results and in association with existing
optimization methods. Numerical simulations for materials
design can be performed using large datasets of materials,
resulting in several Pareto solutions. Using a ranking method
for these Pareto solutions, materials with interesting prop-
erties can be selected among them. Subsequent research on
the selected solutions may deepen our understanding of the
unusual properties of materials and contribute to the estab-
lishment of guiding principles for the development of new
ones.

Moreover, our method can be used in cooperation with
black-box optimization [40], which uses machine-learning
predictions to select appropriate materials that have not yet
been synthesized or simulated [41–44]. Using the MIPS rank-

ing, it would be possible to select a wide variety of materials
from Pareto solutions predicted by machine learning. The se-
lected materials will be evaluated by conducting experiments
or simulations. Repeating the selection and evaluation pro-
cesses of the black-box optimization, desired materials will
be discovered. Using the MIPS would prevent the selection
of materials with similar properties. This could improve the
performance of batch experiments where robotic systems for
materials development are employed [45–49].

In this study, we focused only on trade-off problems of
semiconductors. However, several disciplines, including ma-
terials science, physics, and chemistry, aim at solving this type
of problem. Some relevant examples of trade-offs that could
be addressed by the MIPS ranking based on the projection free
energy are the efficiency and power trade-off in thermody-
namic systems [50], the permeability and selectivity trade-off
characterizing polymer membranes [51], and the cost and
performance trade-off in scientific research.
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