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Right band gaps for the right reason at low computational cost with a meta-GGA
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In density functional theory, traditional explicit density functionals such as the local density approximation and
generalized gradient approximations cannot accurately predict the band gap of solids for a fundamental reason:
They lack the exchange-correlation derivative discontinuity. By comparing Kohn-Sham and generalized Kohn-
Sham calculations, we here show that the nonempirical meta-generalized-gradient-approximation (meta-GGA)
TASK from Aschebrock and Kümmel [Phys. Rev. Res. 1, 033082 (2019)] predicts the right gaps for the right
reason, i.e., as a combination of a proper Kohn-Sham gap and a substantial derivative discontinuity contribution.
For many materials from small-gap semiconductors to large-gap insulators, the proper band gap is thus obtained.
We further study a group of metal-halide perovskites for which the band gap is notoriously hard to predict. For
these materials, TASK yields band gaps very similar to the nonlocal screened hybrid Heyd-Scuseria-Ernzerhof
functional, yet at a fraction of the hybrid functional’s computational cost. We discuss the influence of correlation
functionals, and open questions in the comparison of calculated band gaps with experimental ones.
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I. INTRODUCTION

The discovery of new materials is key for many applica-
tions [1] such as the next generation of solar modules [2–4],
catalysts with improved efficiency [5], or batteries for energy
storage [6,7]. For the computational screening of new mate-
rials, numerically efficient methods are required that predict
material properties with sufficient accuracy [7–9]. Density
functional theory (DFT) is very popular for such electronic
structure calculations due to its balance between useful accu-
racy and reasonable computational cost. An example for an
ongoing materials discovery quest is the search for nontoxic,
earth-abundant, and stable semiconductors that can serve as
light-converting materials in a wide range of applications.
Metal-halide perovskites are a broad family of materials
with outstanding chemical and electronic diversity that have
received a lot of attention because of their versatile and
highly tunable material properties [10–13]. The quintessential
metal-halide perovskite, methylammonium (MA) lead iodide
(CH3NH3PbI3), e.g., has been used in solar cells with certified
power conversion efficiencies exceeding 26% [14]. Since the
family of metal-halide perovskites comprises thousands of
stable materials [15,16], material-selection procedures have to
be based on suitable criteria. The band gap is one of the most
important properties for high-throughput material discovery
and should be slightly larger than 1 eV for single-junction
solar cells as a consequence of the detailed-balance limit [17].
Predicting the band gaps of perovskites with a reasonable reli-
ability, yet at the same time low computational cost such that
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many materials can be computationally screened, is therefore
an important task.

The (fundamental) band gap Eg of a system with N elec-
trons is defined by

Eg = I (N ) − A(N ), (1)

where I (N ) is the ionization potential and A(N ) is the electron
affinity of the N-electron system, respectively. In a DFT cal-
culation within the Kohn-Sham scheme, the band gap splits
[18,19] into the Kohn-Sham gap �KS and the exchange-
correlation (xc) derivative discontinuity �xc,

Eg = I (N ) − A(N ) = �KS + �xc. (2)

The Kohn-Sham gap

�KS = εKS
LU − εKS

HO (3)

stems from the orbital-dependent kinetic energy [20] and is
the difference between the lowest unoccupied (LU) and the
highest occupied (HO) one-electron energy. For occupation
numbers that respect the Aufbau principle, it is always non-
negative [21].

The xc derivative discontinuity on the other hand vanishes
for density functional approximations that explicitly depend
only on the density, or quantities directly derived from it,
e.g., its spatial derivatives [18,22–26]. Therefore the local
density approximation (LDA) [27] and generalized gradient
approximations (GGAs) [28,29] severely underestimate the
band gaps of semiconductors and insulators. The comparison
with Green’s-function-based quasiparticle calculations has led
to the estimate that the xc derivative discontinuity often is
responsible for 30–50 % or more of the band gap [30,31],
and recent reconstructions of the exact Kohn-Sham system
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for solids have confirmed the substantial contribution that �xc

makes to the gap [32].
Within the Kohn-Sham scheme, �KS would not generally

correspond to the fundamental gap even for the unknown
exact xc functional [22,30,32–35]. However, for orbital-
dependent functionals, the generalized Kohn-Sham formalism
offers an attractive alternative [36]. In generalized Kohn-Sham
theory the potential is no longer multiplicative. Depend-
ing on the xc approximation used, it leads to a set of
orbital-dependent differential (meta-GGA) or integral (exact
exchange) operators. This allows one to strive for xc approxi-
mations where the eigenvalue gap of the generalized partially
interacting reference system equals the fundamental gap, i.e.,
for which

�gKS = ε
gKS
LU − ε

gKS
HO = Eg. (4)

This is exploited, for example, in the range-separated
hybrid Heyd-Scuseria-Ernzerhof functional (HSE) [37,38],
where the short-range–long-range splitting parameter is used
to empirically find a good generalized Kohn-Sham system.
A more sophisticated choice of the generalized Kohn-Sham
system is made in the optimally tuned range-separated hybrids
[39,40], where a system-dependent parameter is fixed by en-
forcing the ionization potential (IP) theorem [41] for the N
and N + 1 electron systems as closely as possible. This tun-
ing amounts to choosing the generalized Kohn-Sham system
which minimizes �xc [40,42,43] and aims for �gKS = Eg.

Comparison of Eqs. (2) and (4) shows that for a given
xc functional, the difference between the generalized Kohn-
Sham gap and the Kohn-Sham gap equals the xc derivative
discontinuity,

�xc = �gKS − �KS. (5)

Note that Eq. (5) only holds under the assumption that the
orbitals do not change when switching from the Kohn-Sham
to a generalized Kohn-Sham formalism. The latter is at least
true in perturbation theory to first order [44].

In the past, local multiplicative potentials were constructed
yielding a Kohn-Sham gap that closely approximates the fun-
damental gap [45,46]. These constructions, however, lead to
other problems, e.g., divergences [47,48], too narrow bands
[49], the lack of an energy functional and therefore, e.g., no
prediction of bond lengths [45], a rather poor description of
energetic binding [50], and numerical issues [51]. In the light
of Eq. (2), one might interpret these issues as reflections of
intrinsic inconsistencies that result when trying to map the
effects of the nonlocal �xc into a local potential.

Meta-generalized-gradient-approximations (meta-GGAs)
[52–61] that depend on the kinetic energy density τ , and thus
on the occupied Kohn-Sham orbitals, can have a nonvanishing
xc derivative discontinuity [61–63], because the orbitals are
implicit, nonlocal functionals of the density. Thus meta-GGAs
in principle can improve band-gap prediction when evaluated
in a generalized Kohn-Sham scheme [63,64]. In practice,
however, the derivative discontinuity of many meta-GGAs
is relatively small [62,63,65], so that the band gaps are not
quantitatively accurate.

Therefore, so far functionals used for band-gap predic-
tion typically include exact exchange [38,39,66,67] and thus
come at a computational expense much larger than an LDA

or GGA calculation. As a consequence, they have rarely
been used for computationally demanding applications such
as extensive materials screening. Because meta-GGAs have
semilocal computational costs, they are the natural choice
for large-scale calculations, provided they achieve the desired
accuracy. Therefore understanding the nature of the xc deriva-
tive discontinuity in meta-GGAs and how it relates to the
prediction of band gaps is a topic of substantial current interest
[61,63,68–70].

In this paper, we show that the TASK meta-GGA from As-
chebrock and Kümmel [61] yields the right band gaps for the
right reason, namely by incorporating a substantial contribu-
tion from the derivative discontinuity on top of a Kohn-Sham
gap with a magnitude similar to exact Kohn-Sham gaps.

II. GENERATING A SIZABLE DERIVATIVE
DISCONTINUITY IN META-GGAS

The meta-GGAs that we study here [71] depend on the
electron density n, its gradient ∇n, and the (positive) nonin-
teracting kinetic energy density

τ = h̄2

2m

∑
σ

Nσ∑
i=1

|∇ϕiσ |2. (6)

In the single-orbital limit, the kinetic energy density tends
to the von Weizsäcker kinetic energy density

τW = h̄2

8m

|∇n|2
n

, (7)

while in the uniform-density limit it becomes

τunif = 3h̄2

10m
(3π2)2/3n5/3 =: Asn

5/3. (8)

The exchange energy is typically parametrized in dimen-
sionless quantities that have a physical interpretation in certain
limits. Here, we consider the reduced density gradient

s2 = 1

4(3π2)2/3

|∇n|2
n8/3

, (9)

which can be used to detect noncovalent interactions [72], and
the iso-orbital indicator

α = τ − τW

τunif
, (10)

which tends to zero in the iso-orbital limit, to one in the
uniform-density limit, and to infinity in regions dominated by
density overlap between closed shells [73]. Thus the meta-
GGA exchange energy of a spin-unpolarized system reads

EmGGA
x =

∫
emGGA

x (n,∇n, τ )d3r

= Ax

∫
n

4
3 F mGGA

x (s2, α)d3r (11)

with the (exchange) enhancement factor F mGGA
x (s2, α) and

Ax = −(3e2/4)(3/π )1/3. To obtain the exchange energy of
a spin-polarized system, the exact spin scaling relation [74]
can be applied to Eq. (11). The correlation energy is often
defined via the (correlation) energy density per particle εc.
For a direct comparison between exchange and correlation,
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the enhancement factor of correlation over LDA exchange is
defined as

EmGGA
c =

∫
nεmGGA

c (n,∇n, τ )d3r

=: Ax

∫
n

4
3 F mGGA

c (rs, s2, α)d3r, (12)

where the correlation enhancement factor, in addition to
the dependence on s and α, depends on the Seitz radius
rs = (4πn/3)−1/3. Typically, it also depends on a quantity
for modeling the spin dependence, e.g., the spin polarization
ζ = (n↑ − n↓)/(n↑ + n↓), but we have suppressed the spin
dependence here for ease of notation.

It is well established that the xc derivative discontinuity is
an important feature of the exact functional [18–20,75]. It was
already discussed 40 years ago in the context of the straight
line condition of Perdew, Parr, Levy, and Balduz [20], which
states that the total energy as a function of the (fractional) par-
ticle number consists of straight lines between integer particle
numbers. At integer particle numbers, however, the total en-
ergy has a kink, corresponding to a jump in its derivative. This
derivative discontinuity with respect to the particle number
equals the fundamental band gap of a solid,

Eg = ∂E

∂N

∣∣∣∣
+

− ∂E

∂N

∣∣∣∣
−
, (13)

where |− and |+ denote derivatives evaluated on the electron-
deficient and electron-rich side of the integer particle number.
On the right-hand side, all energy contributions that are con-
tinuous in the density do not contribute. Thus

Eg =
(

δTs[n]

δn(r)

∣∣∣∣
+

− δTs[n]

δn(r)

∣∣∣∣
−

)
︸ ︷︷ ︸

�KS

+
(

δExc[n]

δn(r)

∣∣∣∣
+

− δExc[n]

δn(r)

∣∣∣∣
−

)
︸ ︷︷ ︸

�xc

,

(14)
where the discontinuity originating in the noninteracting ki-
netic energy equals the Kohn-Sham gap of Eq. (3), and the
second term is the derivative discontinuity of the exchange-
correlation energy. In a meta-GGA, the latter is due to the
orbital dependence of Exc. Consequently, the xc derivative
discontinuity of a meta-GGA reads

�mGGA
xc =

∫
∂exc

∂τ
(r′)

[
δτ (r′)
δn(r)

∣∣∣∣
+

− δτ (r′)
δn(r)

∣∣∣∣
−

]
d3r′. (15)

To obtain further insight, one can simplify this expression by
approximating the first term by its average over an “energeti-
cally important region,”

∂exc

∂τ
≈ ∂exc

∂τ
. (16)

This derivation has been used in the construction of the TASK
functional for exchange [61], and here we underpin it with ad-
ditional considerations. The “energetically important region”
denotes the spatial region in which the dominant contributions
to the above integral emerge. The accuracy of this approxima-
tion may vary from system to system and especially between
solids and molecules. Still, it provides useful insights into how
an xc derivative discontinuity of desired sign and size can be
generated.

The approximation of Eq. (16) allows one to pull the
approximated term in front of the integral. Since the non-
interacting kinetic energy density τ integrates to the usual
noninteracting kinetic energy functional Ts, this leads to

�mGGA
xc ≈ ∂exc

∂τ
�KS. (17)

This implies that the xc derivative discontinuity of a meta-
GGA is approximately proportional to the Kohn-Sham
gap—if the approximation of Eq. (16) is justified. When one
goes beyond this approximation, then there is the possibility
for a nonvanishing xc discontinuity despite a vanishing Kohn-
Sham gap. We discuss such a case (CdO) below. Within the
approximation, the sign as well as the size of the xc derivative
discontinuity can be controlled via the proportionality factor
∂exc/∂τ , since the Kohn-Sham gap is non-negative.

It has been conjectured that the total xc derivative dis-
continuity as well as that of exchange must be positive in
electronic systems. These conclusions have been based on,
e.g., the numerical evidence that typical semilocal functionals
(LDA and GGAs) systematically underestimate band gaps of
solids [32] and explicit calculations of �x and �xc [76–80],
as well as the observation that the ground-state energy as a
function of particle number is concave upwards for systems
with repulsive interactions. Because the exchange contribu-
tion to the xc derivative discontinuity, �x, is typically much
larger than that from correlation, we first consider exchange.
A detailed discussion of the contribution from correlation
follows in Sec. V.

To obtain a positive exchange derivative discontinuity, the
proportionality condition equation (17) implies that one has to
construct the meta-GGA exchange energy such that

∂ex

∂τ
> 0 (18)

in the energetically important region. Moreover, the magni-
tude of ∂ex/∂τ , together with the Kohn-Sham gap, determines
the size of �x. For a parametrization of the exchange enhance-
ment factor Fx in s and α the condition of Eq. (18) is equivalent
to the condition [61]

∂Fx

∂α
< 0. (19)

Thus there is a construction principle for the meta-GGA en-
hancement factor by which one can control the sign as well
as the size of the exchange (x) or exchange-correlation (xc)
derivative discontinuity.

III. RIGHT BAND GAPS FOR THE RIGHT REASON

In the following, we show that this construction principle
indeed leads to the proper prediction of band gaps. In the con-
text of this discussion, it is helpful to have in mind some
general aspects of band-gap calculations. First, one must be
aware that the calculated gaps depend on the lattice param-
eters and on numerical choices such as the size of the basis
set, whether a pseudopotential is used or not, and possibly the
details of the employed pseudopotential. Second, relativistic
effects can influence the band structure of some materials
noticeably. Third, the xc approximation influences the band
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(a) (b)

FIG. 1. Calculated vs experimental band gaps of (a) small-gap systems and (b) large-gap systems. The difference between the generalized
Kohn-Sham (gKS) gaps and the Kohn-Sham (KS) gaps shows the exchange derivative discontinuity, illustrated for Kr by a blue arrow.
Experimental bond lengths and experimental band gaps have been chosen as in Ref. [61] for all systems except NaCl. The bond length
and reference value of NaCl are taken from Ref. [32] to allow for comparison with the QMC data. The green crosses mark the QMC-derived
Kohn-Sham gaps of Si (0.69 eV) and NaCl (5.25 eV) from Ref. [32]. The dotted line illustrates exact agreement with the reference values.

structure via the single-particle gap and possibly the deriva-
tive discontinuity. Fourth and finally, for orbital-dependent xc
approximations, it can make an important difference whether
one is using the Kohn-Sham or the generalized Kohn-Sham
scheme. In the Supplemental Material [81] we discuss these
different aspects and show, e.g., in Tables SII and SIII, results
for different density functionals and different levels of taking
into account relativistic effects. In this paper, our focus is on
the above-discussed meta-GGA construction principle.

The TASK meta-GGA for exchange [61] adheres to this
principle and combines it with the fulfillment of nonempirical
exact constraints. A correlation functional to go along with
TASK is the iso-orbital corrected correlation (CC) [82]. It
is based on the local spin density approximation (LSDA) in
the parametrization of Perdew and Wang [83]. For systems
without spin polarization, such as the solids in the test set
studied below, the CC is identical to the LSDA correlation.
In the following, we just write “TASK” to refer to TASK
exchange with LSDA correlation to simplify the notation.

The decisive step for disentangling the single-particle
contribution and the derivative discontinuity contribution to
the band gap is to compare the gaps obtained within the
Kohn-Sham scheme with those obtained from the generalized
Kohn-Sham scheme; cf. Eq. (5) [84]. This logic has already
been followed in Ref. [63]. Additionally, we compare the
Kohn-Sham gaps of TASK with those of the LDA and with
very recent quasiexact Kohn-Sham gaps obtained by inversion
of highly accurate quantum Monte Carlo (QMC) ground-state
densities [32].

We have performed all calculations using the BAND code
[85–91] of the Amsterdam Modeling Suite. To this end, we

have implemented an optimized effective potential (OEP)
routine for TASK, using the Krieger-Li-Iafrate (KLI) ap-
proximation [92]. The Supplemental Material [81] lists the
numerical details. It has previously been reported that the
OEP routine for meta-GGAs in BAND needs an extremely
fine (radial) Becke grid [63]. Our calculations with the TASK
functional did not need this fine grid; cf. Sec. VI and the Sup-
plemental Material [81]. Our experience that TASK [with both
LDA correlation (LDAc) and CC] is numerically stable and
efficient is in line with several very recent numerical stability
analyses [93–95], which conclude that the numerical stability
of TASK is on par with that of the Perdew-Burke-Ernzerhof
functional (PBE) [96].

Figure 1 shows the computed band gaps compared with the
experimental reference values for small-gap [i.e., smaller than
4 eV; Fig. 1(a)] and large-gap [i.e., larger than 4 eV; Fig. 1(b)]
systems. On the one hand, the figure confirms the previous
finding [61] that TASK evaluated in the generalized Kohn-
Sham scheme predicts band gaps reliably for a large variety
of systems. Especially for large-gap systems, which are very
challenging for many other methods [69], TASK predicts the
band gap quite accurately. The same trend has very recently
been observed in a comprehensive study on the impact of the
exchange enhancement factor on band gaps [70].

An important insight going beyond Ref. [61], on the
other hand, emerges when looking at the Kohn-Sham gaps
of TASK. The figures show that these Kohn-Sham gaps are
close to or slightly larger than the gaps from LDA. Com-
parison of the Kohn-Sham and the generalized Kohn-Sham
gaps thus demonstrates that the accurate prediction of the
band gaps with TASK is not obtained by incorrectly open-
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ing large Kohn-Sham gaps. Instead, TASK correctly includes
a substantial contribution from the derivative discontinuity,
which here stems from the TASK exchange. The difference
between the generalized Kohn-Sham gap and the Kohn-Sham
gaps indicates the derivative discontinuity, as highlighted for
the example of Kr by the blue arrow in Fig. 1. One sees that
here, �x ≈ 3.7 eV, i.e., the discontinuity is responsible for
about a third of the gap.

For most small-gap semiconductors, the fact that TASK
achieves larger gaps than LDA can be attributed to two effects:
First, the Kohn-Sham gaps are larger than those of the LDA,
closing about half of the difference with respect to experiment.
The remaining difference is then closed by the derivative
discontinuity contribution that is included in the generalized
Kohn-Sham eigenvalue gap. The situation is different for the
large-gap systems. There, the relative increase of the TASK
Kohn-Sham gaps over the LDA gaps is much smaller. This
trend is in line with the accurate QMC-derived Kohn-Sham
gaps from Ref. [32]: Also for the quasiexact Kohn-Sham gaps,
the relative increase compared with the LDA gaps is larger for
the small-gap system Si than for the large-gap system NaCl.
Furthermore, also in terms of the absolute magnitude, the
QMC-derived gaps support the meta-GGA results, as similar
Kohn-Sham gaps are found in both approaches. The meta-
GGA generalized Kohn-Sham gaps, on the other hand, are
much larger and close to the experimental band gaps.

These results thus demonstrate that the meta-GGA predicts
the right band gaps for the right reason: TASK does not require
that the Kohn-Sham gap be spuriously opened up to match the
experiment, but instead yields a Kohn-Sham gap that is some-
what larger than the LDA gap yet still of similar magnitude. It
combines the Kohn-Sham gap with a substantial contribution
from the derivative discontinuity to reach a band gap close to
the experimental one. The high accuracy of the meta-GGA
generalized Kohn-Sham gaps attests the usefulness of the
construction principle of Eq. (19).

As a side remark, and in view of Sec. VI, we note that we
also compared the band gaps obtained with TASK with the
ones obtained with the HSE functional. The corresponding
data are shown in Table SIV of the Supplemental Material.
It shows that (with the exception of diamond, see below),
TASK and HSE yield similar results for systems with gaps of
up to ∼5 eV, whereas TASK yields larger gaps than HSE for
systems with larger band gaps, in agreement with experiment.

IV. ENERGETICALLY IMPORTANT REGIONS
IN DIFFERENT TYPES OF SYSTEMS

The trends described in the previous section hold for the
large majority of systems. However, it is worthwhile to discuss
the concept of averaging over the “energetically important
region” [cf. Eq. (16)] in greater detail, because there are
two interesting exceptions in our set of data. The first one
is diamond, where we observe a rather large deviation of
the TASK generalized Kohn-Sham gap from the experimental
band gap. TASK enhances the Kohn-Sham gap of diamond
only marginally compared with LDA, and the derivative dis-
continuity is insignificant. At least as remarkable is CdO.
There, the Kohn-Sham gap of TASK vanishes like that of

LDA, but the generalized Kohn-Sham gap is nevertheless in
very good agreement with the experimental data.

These effects must have their origin in the electronic struc-
ture. In order to understand what is special about these two
systems, we analyze their electronic structure in comparison
to other materials. For this comparison we chose as one ref-
erence Ge, because its band gap is of very similar magnitude
to the one of CdO and its lattice structure is similar to the
one of diamond. As a second reference we chose NaCl, as its
lattice structure is similar to the one of CdO and the QMC
reference value is available. In the Supplemental Material we
also discuss Si as a third natural reference system.

Figure 2 shows the electronic structure parameters rs, s,
and α, which enter the meta-GGA as the input, as well as
the enhancement factor of TASK and (minus) its derivative
with respect to α for Ge and C (diamond), and NaCl and CdO
in Figs. 2(a) and 2(b), respectively. The input parameters are
taken from a self-consistent TASK calculation in BAND. From
these, we calculate F TASK

xc and −∂F TASK
xc /∂α and finally plot

all quantities along a path in the unit cell as indicated in the
caption.

First, we compare Ge and diamond. Both systems are
covalently bonded and have a diamond cubic lattice, so one
might expect that they are similarly well described. However,
Fig. 1 shows that for Ge the derivative discontinuity �xc is
responsible for about half of the experimental gap, while it
nearly vanishes for diamond. It is not obvious where this
difference comes from; therefore we take a closer look at the
electronic structure. Figure 2(a) shows that in both systems,
∂F TASK

xc /∂α has a similar magnitude everywhere except for
the core region and the bonding region, where we define
the bonding region as the central region between the nuclei
with the shortest core-core distance, as denoted in Fig. 2. The
core region, however, is unlikely to contribute significantly to
�xc. In the bonding region the magnitude of ∂F TASK

xc /∂α is
approximately a factor of 2 larger for Ge than for diamond, as
seen in the insets in Fig. 2(a). This is a relevant observation
in view of Eq. (19): A more negative ∂F TASK

xc /∂α leads to
a larger derivative discontinuity. Therefore we conclude that
the bonding region is very important for these strongly bound
systems, i.e., the bonding region makes a large part of the
energetically important region in the sense of Eqs. (15) and
(16). The reason for the different values of ∂F TASK

xc /∂α is
the different values of α in the bonding region. In the bond-
ing region of diamond, α takes rather small values down to
α ≈ 0.2, while in Ge, as well as in NaCl and CdO, α is larger
than 0.4 everywhere (except for the core region). However,
for α ≈ 0.2, TASK has much less α-derivative than for larger
values of α; cf. Fig. 3. Furthermore, in diamond the density
in the bonding region is larger, i.e., rs is smaller than for
Ge, and this also reduces the derivative discontinuity because
∂exc/∂τ ∝ n−1/3∂Fxc/∂α ∝ rs∂Fxc/∂α. Thus, in the case of
diamond, the chosen parametrization of the TASK functional
does not sufficiently pick up the energetically important re-
gion.

Next, let us compare Ge and CdO. Ge and CdO have
a similar experimental band gap, and TASK predicts simi-
lar generalized Kohn-Sham gaps for both. However, TASK
predicts a vanishing Kohn-Sham gap for CdO, while for Ge
the predicted Kohn-Sham gap is of the magnitude that one
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FIG. 2. The values of the Seitz radius rs, the reduced density gradient s, and the iso-orbital indicator α along a path in the unit cell. (a) Ge
and C in the diamond cubic structure. (b) NaCl and CdO in the rock-salt cubic structure. All values are calculated self-consistently with TASK
in BAND [91]. Based on these values, the TASK enhancement factor Fxc and its derivative with respect to α, ∂Fxc/∂α, are calculated. The path is
defined as A → B → C → A → D, where A = (0, 0, 0), B = (0, 0, 1

2 ), C = (0, 1
2 , 1

2 ), and D = ( 1
2 , 1

2 , 1
2 ) (fractional coordinates with respect

to lattice vectors). Along the path, the positions of the nuclei and the bonding region are indicated. The insets for Ge and C show a zoomed
version of the bonding region. Note that the plots show the negative of ∂Fxc/∂α.

FIG. 3. Derivative of the TASK (exchange) enhancement factor
F TASK

x with respect to α as a function of α for different values of s.
The inset has a logarithmic x axis.

expects for such semiconductors [30,32,34]. Figure 2 reveals
the obvious substantial differences between Ge and CdO as
a consequence of their different crystal structures. While Ge
is in the diamond cubic structure, CdO is in the rock-salt
cubic structure, like NaCl. This reflects their different bonding
types: Ge and diamond are covalently bound, while CdO
and NaCl are ionic crystals. Therefore a Kohn-Sham gap
close to the (vanishing) LDA Kohn-Sham gap for CdO—
and consequently, a larger contribution from the derivative
discontinuity—is in line with the discussion in the previous
section: There, we already observed that the difference be-
tween the Kohn-Sham gaps of LDA and TASK is different for
ionic crystals and covalently bound crystals.

For the ionic crystals NaCl and CdO, it is not as clear
as for the covalently bound systems what the energetically
important region is. While the size of the Kohn-Sham gap of
TASK in NaCl corresponds to about two-thirds of the size of
the experimental gap, which is the right order of magnitude
as confirmed by the QMC-derived Kohn-Sham gap, TASK
predicts a vanishing Kohn-Sham gap for CdO. Still, the gen-
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eralized Kohn-Sham gap of TASK matches the experimental
value quite accurately in both systems. From Fig. 2, we ob-
serve that in a large part of the bonding region, ∂F TASK

xc /∂α

nearly vanishes in NaCl and is small in CdO. This suggests
that in the ionic crystals the bonding region is not as important
for the gap as it is in the covalently bound semiconductors. In-
stead, the inner valence region, and possibly the core-valence
region, become more important. (Here we define the inner
valence region in the following way: Starting from the point
where the reduced density gradient s has a minimum between
two nuclei, go in the direction of one of the neighboring nuclei
towards the highest maximum of s. The inner valence region
starts at this maximum and reaches to the next minimum of s
in the direction of the nearest nucleus.) The dependence of Fxc

on rs, s, and α, i.e., many input quantities, hinders a detailed
analysis. However, the overall more negative ∂F TASK

xc /∂α in
CdO compared with NaCl can explain a larger relative con-
tribution from the derivative discontinuity in CdO. To gain
further insight, it would be of great interest to know the exact
Kohn-Sham gap of CdO and see whether it indeed vanishes.
QMC calculations in the spirit of Ref. [32] for CdO would
therefore be of great interest.

Finally, we summarize the influence of the different bond-
ing types on the energetically important region. In Fig. 2, we
observe that for the covalently bound systems, α has a local
minimum at the bond center, while in the ionic crystals α

has a local maximum at the bond center. Therefore different
regions of α are energetically important for the different types
of bonds. On the one hand, in Ge and C the bonding region
and thus values of α between 0.2 and 1 are very important.
On the other hand, in NaCl and CdO the inner valence and
the core-valence regions and thus values of α between 0.4
and 2 appear to be energetically most important. Figure 3
shows that the magnitude of ∂F TASK

xc /∂α is particularly high
for α between 0.4 and 2. This underlines the importance of
the construction principle, Eq. (19), and explains why TASK
yields reliable band gaps for many systems.

V. THE IMPACT OF CORRELATION

While there is a lot of evidence that the total xc deriva-
tive discontinuity as well as the one of pure exact exchange
should be positive, there are several hints that the contribution
from correlation should typically be negative: Exact exchange
typically yields a derivative discontinuity that is too large
[34,77], which implies that the correlation part of the exact
functional must have a negative contribution to �xc. For the
correlation that corresponds to the dynamical (random phase
approximation) screening in the GW approximation, this has
also been confirmed explicitly [34].

In the context of meta-GGAs, we have a further argu-
ment supporting this point of view based on the enhancement
factor for fully spin-polarized systems. As shown above,
the derivative discontinuity can be linked to the derivative of
the enhancement factor with respect to α via Eq. (19). In the
one-electron case (α = 0), the exact correlation must vanish
identically to make the correlation free from self-interaction.
Since the correlation energy of the exact functional is nonpos-
itive, we have [97] εc(α = 0) � εc(α), and thus Fc(α = 0) �
Fc(α) for all values of α and of the remaining parameters. In

particular, the correlation energy density of the homogeneous
electron gas is negative everywhere, and thus Fc(n,∇n =
0, α = 0) < Fc(n,∇n = 0, α = 1) for all values of the den-
sity n. Consequently, the average of ∂Fc/∂α for α between 0
and 1 must be positive. Because 0 < α < 1 typically makes a
large part of the energetically important region, the analog of
Eq. (19) for correlation indicates �c < 0.

These considerations indicate which trends are to be ex-
pected for exact exchange and exact correlation. In the
construction of approximate functionals, however, one ad-
ditionally has to take into account that semilocal exchange
functionals do not model exact exchange, but effectively cover
exchange and nondynamical correlation [75,98–103]. There-
fore the relative contributions of meta-GGA exchange and
meta-GGA correlation to the total derivative discontinuity
may differ depending on the specific functional construction
strategy, and only their sum, i.e., the total �xc, is of decisive
relevance. This is in line with the long-known experience
that semilocal approximations for exchange (x) and correla-
tion (c) must match and are therefore best designed together.
The correlation functionals of popular meta-GGAs such as
Strongly Constrained and Appropriately Normed (SCAN)
[60], r2SCAN [104], and M06-L [56] have a noticeable neg-
ative contribution to the derivative discontinuity. They are
therefore expected to reduce band gaps (cf. the Supplemental
Material [81], where this is explicitly confirmed for SCAN).
The results shown in Fig. 1 indicate that TASK exchange,
which has been constructed differently from previous meta-
GGAs by following the philosophy of Eq. (18), needs a
different kind of correlation functional. The CC–meta-GGA
correlation [82] takes this into account: While having a non-
positive derivative discontinuity in general, it preserves the
high quality of the band gaps for the systems in the test set.

VI. BAND GAPS OF METAL-HALIDE PEROVSKITES

The test set studied in Sec. III provides a reasonable bench-
mark as it spans a broad range of materials with band gaps
from large to small. While the focus of Sec. III is on the
comparison of the gaps from generalized Kohn-Sham and
Kohn-Sham theory, it is reassuring to know that the high
quality of the generalized Kohn-Sham gaps from the TASK
functional has been confirmed also for other, yet larger test
sets [69]. However, from a materials science perspective, the
question of how reliably DFT can predict the gaps of very
complex materials is also highly relevant. For many such
materials, definite reference values have not been established
yet, excluding them from typical test sets. Furthermore, for
some materials, predicting the band gap correctly is chal-
lenging in general, i.e., not only for DFT, but also for other
many-body methods. A paradigmatic example is the mate-
rial family of metal-halide perovskites, which pose a serious
challenge even for Green’s-function-based many-body per-
turbation theory in the GW approximation [105–108]. The
GW approach is currently considered to be the “gold stan-
dard” for the prediction of band gaps of solids [109], but it
requires material-dependent, sufficiently accurate DFT start-
ing points [108,110] or computationally demanding (partial)
self-consistency and the incorporation of vertex corrections
for halide perovskites [107,111]. While the considerations
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TABLE I. Kohn-Sham (for PBE) and generalized Kohn-Sham
(for HSE and TASK) band gaps (in eV) calculated with the different
programs VASP [113,114] and BAND [115]. The VASP values are taken
from Ref. [108]; other values are from this work. See main text for
details.

PBE PBE HSE TASK HSE
System VASP BAND VASP BAND BAND

MAPbI3 0.21 0.09 0.82 0.81
MAPbBr3 0.55 0.41 1.30 1.38
CsSnBr3 0.06 0.01 0.63 0.73
(MA)2BiTlBr6 0.60 0.44 1.00 1.25
Cs2TlAgBr6 −0.66 −0.57 0.20 −0.05 0.08
Cs2TlAgCl6 0.00 0.00 1.09 0.75 1.07
Cs2BiAgBr6 1.09 1.05 1.95 1.86
Cs2InAgCl6 1.16 1.18 2.61 2.49 2.49
Cs2SnBr6 1.10 1.10 2.14 2.07
Cs2Au2I6 0.70 0.71 1.16 0.91

presented in the literature [56,63,69,112] and in this paper
suggest that a meta-GGA such as the TASK functional is an
attractive option for predicting band gaps, the question arises
whether it can also predict the band gaps of metal-halide
perovskites with quantitative accuracy.

The HSE screened hybrid functional [37,38] is one of
the most reliable common functionals for the purposes of
band-gap prediction [69]. A reasonable description of the
band gaps of semiconductors has been part of its construction
strategy, and HSE generalized Kohn-Sham gaps often give
reasonable estimates of the true fundamental gaps. A major
drawback is, however, that the Fock-like integrals that are
required in an HSE calculation are computationally demand-
ing, and especially so in plane-wave calculations, limiting the
possibilities of rapid materials screening. A computationally
efficient meta-GGA giving band gaps similar to the HSE
functional would thus be an attractive alternative. Therefore
we examine in the following whether the TASK meta-GGA
can fulfill this promise by comparing TASK band gaps with
HSE band gaps. Table I summarizes results for ten different
metal-halide perovskites. These systems span a broad range
of gaps from below 1 eV to over 2.5 eV, and a broad range of
chemical complexity from single perovskites with chemical
formula ABX3 to the quaternary double perovskites with for-
mula A2BB′X6, where A is a monovalent cation such as Cs+ or
CH3NH+

3 (MA), B and B′ are metal cations, and X is a halide
anion. In all cases we used experimental structures with the
structural details reported in Ref. [108]. In the compounds in
which A = MA, we replaced MA with Cs in our calculations
to avoid spurious symmetry breaking induced by the dipole
moment of the MA molecule in the primitive cubic unit cell
[116,117]. This choice, as well as other technical choices,
e.g., regarding pseudopotentials, basis sets, the k grid, and
other convergence criteria, influence the calculated numbers.
We report these parameters and resulting estimates of the
technical accuracy of the calculations in the Supplemental
Material [81].

We use the all-electron code BAND for the TASK calcula-
tions. In this way we avoid any inconsistency that would result
from the fact that self-consistent pseudopotentials are not yet

available for the TASK functional. On the other hand, we can-
not use BAND for all HSE calculations, because in BAND, HSE
via the LIBXC interface [118] is only available for calculations
without spin-orbit coupling (SOC) or with scalar-relativistic
SOC. Full SOC, however, plays an important role in some of
the materials in Table I. Therefore, for the HSE band gaps, we
rely on the Vienna ab initio simulation package (VASP) values
reported in Ref. [108] (with self-consistent SOC) for most
of the halide perovskites and double-check only the ones for
which SOC plays a negligible role (Cs2TlAgBr6, Cs2TlAgCl6,
and Cs2InAgCl6) with HSE in BAND. The TASK calcula-
tions with BAND use the zeroth-order regular approximation
(ZORA) [89] for including SOC for all materials except the
abovementioned three exceptions, for which we performed
scalar-relativistic calculations.

To give an impression of the possible consequences of the
technical differences between VASP and BAND, we report in
the first column of Table I the PBE band gaps calculated
with VASP using plane waves and projector-augmented wave
pseudopotentials, and in the second column we report the PBE
gaps from our calculations using BAND with an all-electron
localized basis set. This comparison shows that differences of
∼0.15 eV can result just due to technical differences between
the VASP calculations from Ref. [108] and the BAND calcula-
tions from this work.

With this in mind, we now compare the HSE band gaps
in the third column of Table I with the TASK band gaps in
the fourth column. For most systems, the values are rather
close, and differences are within the ∼0.15 eV range that
we already observed in the PBE comparison. However, for
MA2BiTlBr6, the TASK gap is larger by 0.25 eV, and for
Cs2TlAgBr6, Cs2Au2I6, and Cs2TlAgCl6, the HSE gap is
larger by 0.25, 0.25, and 0.34 eV, respectively. We therefore
take a closer look at these special cases before drawing gen-
eral conclusions. Among these outliers, Cs2TlAgBr6 appears
particularly noteworthy, because with TASK the gap is close
to zero but negative, whereas with HSE we find a gap close
to zero but positive. We look into this case in more detail
in order to check whether this reflects a qualitative differ-
ence between the two xc approximations, or just sensitivity
to the computational details. To this end, we repeated the
HSE calculation for Cs2TlAgBr6 using BAND. This is possible
because SOC plays a minor role here, as discussed above.
The corresponding number is shown in the fifth column of
Table I. With BAND, the HSE gap of Cs2TlAgBr6 is 0.12 eV
smaller than with VASP. As a further test we also calculated
the band gap of Cs2TlAgBr6 using the TASK functional in
QUANTUM ESPRESSO (QE) [122,123], i.e., another plane-wave
code. In QE, the TASK gap of Cs2TlAgBr6 is 0.04 eV, i.e.,
small but positive. Both results show that technical differences
play a major role for the sign of the band gap in this system,
and we conclude that Cs2TlAgBr6 does not reveal a qualitative
difference between HSE and TASK; however, the gap is so
close to zero in either case that technical differences can be
decisive for whether the gap is slightly positive or slightly
negative.

For the sake of completeness we also calculated the band
gaps of the other two materials for which full SOC does
not play a role with HSE in BAND. The corresponding num-
bers in the fifth column of Table I show that TASK and
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FIG. 4. PBE, HSE, and TASK band structures as calculated with
BAND for Cs2InAgCl6. Not only the gaps, but also the band structures
are rather similar for HSE and TASK. The hatched and shaded re-
gions indicate experimental values for the band gap, with the hatched
region indicating the gap, and the shaded region indicating the range
from different experiments [119–121].

HSE yield identical gaps for Cs2InAgCl6 with BAND, and for
Cs2TlAgCl6 the difference between HSE and TASK is slightly
reduced when the functionals are compared within BAND. As

a further check, we compared not only the gaps, but also
the band structures. Figure 4 shows the comparison for the
exemplary case of Cs2InAgCl6. The band structures obtained
with TASK and HSE are very similar, with slight differences
in the dispersion of the conduction band at the L and X points.

In summary, we therefore conclude that the band gaps
obtained from HSE and TASK are not identical, but close to
each other. Both functionals seem to capture the band struc-
ture physics of complex metal-halide perovskite materials in
a similar way. This finding suggests that instead of basing
band structure estimates on the nonlocal, screened hybrid
functional HSE, one may as well use the meta-GGA TASK
for these purposes. Our findings also suggest that the TASK
functional may be an attractive starting point for a subsequent
GW calculation.

The reason for why this is is an attractive option from a
computational perspective is summarized in Table II. It shows
the computational time required for an HSE and a TASK
calculation for each of the three metal-halide perovskites for
which SOC plays a minor role and which therefore can rea-
sonably be compared within BAND. The most relevant column
is the last one. It reports the time relative to a PBE calculation
with the same computational settings for a complete calcula-
tion with the given xc functional. By reporting these relative
values, Table II provides an impression of the computational
expense independent of the specific hardware that we used.
For the sake of transparency and completeness, we further
report the hardware and absolute timings. The numbers reveal
that a calculation using TASK takes about three times as long
as the PBE calculation, whereas an HSE calculation can take
more than a factor of 90 longer than the PBE calculation.
Using TASK instead of HSE typically saves a factor of about
25 in computational time. As a relevant side note we point
out that calculations with TASK do not require a finer numer-
ical grid than the PBE calculations. Many program packages
have default settings that use an extra fine radial grid (“grid

TABLE II. Computational time required for a self-consistent field (SCF) calculation with PBE, TASK, and HSE with BAND including the
sampling of the band structure. The last column reports the compute time of HSE and TASK relative to a PBE calculation. For completeness,
the prior columns report absolute numbers obtained on a compute node with two CPUs of type Intel Xeon E5-2630 v4 at 2.20 GHz (Broadwell)
with 2 × 32 GB RAM (in total 20 physical cores, hyperthreading enabled) using a 4 × 4 × 4 k grid, without a frozen core, normal numerical
quality, and disabled symmetry and including scalar relativistic effects in the ZORA. Note that the TASK calculations do not require the grid
boost, which many programs switch on as a default for meta-GGAs. DZ and TZP denote double-zeta and triple-zeta polarized basis sets,
respectively.

CPU time (s) CPU time relative to PBE (s)

System xc Basis Grid boost SCF step Total SCF step Total

Cs2TlAgCl6 PBE TZP ✗ 45 1021 1.00 1.00
Cs2TlAgCl6 TASK TZP ✗ 140 2969 3.11 2.88
Cs2TlAgCl6 TASK TZP

√
324 6890 7.20 6.75

Cs2TlAgCl6 HSE TZP ✗ 4560 78699 106.05 77.09
Cs2TlAgBr6 PBE DZ ✗ 25 561 1.00 1.00
Cs2TlAgBr6 TASK DZ ✗ 106 2170 4.24 3.87
Cs2TlAgBr6 TASK DZ

√
258 5153 10.32 9.18

Cs2TlAgBr6 HSE DZ ✗ 2867 53006 114.68 94.47
Cs2InAgCl6 PBE DZ ✗ 13 453 1.00 1.00
Cs2InAgCl6 TASK DZ ✗ 56 1268 4.31 2.80
Cs2InAgCl6 TASK DZ

√
141 2913 10.85 6.43

Cs2InAgCl6 HSE DZ ✗ 1320 23518 101.54 51.91
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boost”) in meta-GGA calculations, because meta-GGAs such
as SCAN and M06-L require a fine grid due to their numerical
sensitivity. TASK calculations, however, converge well to the
proper values on the regular grid. Therefore the grid boost,
which typically more than doubles computational times, can
be disabled.

We thus arrive at the final important finding of this paper:
The TASK meta-GGA functional that only requires semilocal
orbital input predicts band gaps similar to the ones from the
fully nonlocal screened hybrid HSE, but at much lower com-
putational cost—in the cases that we studied typically lower
by a factor of 25.

Finally, we briefly comment on the comparison with ex-
perimental band gaps, which is particularly challenging for
complex materials such as the metal-halide perovskites for
which the range of experimentally reported band gaps can
be substantial. While the focus of our paper is not on the
comparison with experiment, it is worth noting that for some
systems, e.g., Cs2BiAgBr6, the gaps calculated with HSE and
TASK are close to the measured gaps, while for others the
difference can be as large as ∼0.8 eV, e.g., for MAPbI3 and
Cs2InAgCl6; cf. Fig. 4. These differences are generally in
line with observations from molecular-dynamics simulations
showing that anharmonic structural fluctuations at elevated
temperatures can lead to a significant renormalization of the
band gap [107,124,125], reported to be as large as 0.7 eV for
some halide perovskites [107]. Furthermore, exciton binding
energies of some metal-halide perovskites are of the order of
several hundred meV [126], and orbital symmetries can lead
to parity-forbidden transitions [127,128]. This further com-
plicates the comparison with experimentally measured band
gaps, which are typically extracted from optical absorption
measurements. A detailed, benchmarklike comparison of the-
ory and experiment is therefore challenging for the broad fam-
ily of metal-halide perovskites. Nevertheless, in itself and as a
starting point for subsequent GW calculations, it is a promis-
ing finding for computational materials science that the TASK
meta-GGA allows for a qualitatively reasonable prediction of
the gap similar to HSE at much reduced computational cost.

VII. SUMMARY AND CONCLUSIONS

In summary, we have shown why and how meta-GGAs
can predict the right band gaps of solids for the right rea-
son by generating a sizable derivative discontinuity. This
demonstrates that meta-GGAs can provide accurate band gaps

at semilocal computational cost without suffering from the
shortcomings that other semilocal methods have. By com-
paring calculations within the Kohn-Sham scheme and the
generalized Kohn-Sham scheme for the TASK functional, we
have demonstrated how the construction principle ∂exc/∂τ >

0, which corresponds to ∂Fxc/∂α < 0, is crucial for the deriva-
tive discontinuity and thus the nonlocality of a meta-GGA. We
further argued that the contribution that correlation makes to
the derivative discontinuity should generally be negative, and
that the relative magnitude of the contributions from exchange
and correlation for semilocal functionals may depend on the
specific construction principles that are used. In addition to
a test set of well-studied solids for which TASK yields band
gaps close to the experimentally measured ones, we have also
investigated a set of ten metal-halide perovskites for which
the band gaps are notoriously difficult to predict. We have
shown that for these systems, the band gaps found with TASK
are close to the band gaps that one finds with HSE; yet the
computational cost of the TASK calculation is lower by a
factor of about 25. The combination of reasonable accuracy
and numerical efficiency thus makes the TASK meta-GGA
a natural choice for computationally efficient first-principles
band-gap screening.

All authors together conceptualized the work. T.L. per-
formed the calculations reported in Secs. III, IV, and V and
wrote the required routines. T.A. performed the calculations
reported in Sec. VI and wrote the required routines. T.L. and
S.K. wrote the manuscript, and all authors discussed the final
version.
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