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Machine-learning surrogate model for accelerating the search of stable ternary alloys
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The prediction of phase diagrams in the search for new phases is a complex and computationally intensive
task. Density functional theory provides, in many situations, the desired accuracy, but its throughput becomes
prohibitively limited as the number of species involved grows, even when used with local and semilocal
functionals. Here, we explore the possibility of integrating machine-learning models in the workflow for the
construction of ternary convex hull diagrams. In particular, we train a set of spectral neighbor-analysis potentials
(SNAPs) over readily available binary phases, and we establish whether this is good enough to predict the
energies of novel ternaries. Such a strategy does not require any new calculations specific for the construction
of the model, but just avails of data stored in binary-phase-diagram repositories. We find that a so-constructed
SNAP is capable of accurate total-energy estimates for ternary phases close to the equilibrium geometry but,
in general, is not able to perform atomic relaxation. This is because during a typical relaxation path, a given
phase traverses regions in the parameter space poorly represented by the training set. Different metrics are then
investigated to assess how well an unknown structure is described by a given SNAP model, and we find that the
standard deviation of an ensemble of SNAPs provides a fast and non-specie-specific metric. Overall, we show
that it is possible to train machine-learning interatomic potentials on readily available binary-compound data to
effectively screen ternary compounds in a high-throughput search.
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I. INTRODUCTION

The rapid advancements in existing technologies such as
logic electronic devices, as well as the need to develop new
energy solutions, make the search for novel materials of
paramount importance. Following the improvement in hard-
ware performance and the development of user-friendly ab
initio algorithms for materials modeling [1–3], it has become
possible to use such computational methods to accelerate the
discovery process. Successful examples of theory-driven ma-
terials discovery include the development of Li-ion cathodes
[4], high entropy alloys [5], and magnetic materials [6]. The
state-of-the-art workflow takes the form of a high-throughput
search [7]. This makes use of efficient density-functional-
theory (DFT) calculations to predict the material properties of
a large pool of compounds created virtually, in the hope that
these contain some “hidden compounds” yet to be discovered
[8]. Collections of such prototypes exist in material databases
[9,10]. The first step in the workflow is a stability screening,
which ensures that any compound selected is chemically rea-
sonable and thermodynamically stable, namely that it might
form. Such screening requires the calculation of the total
energy of the system. In this work, we focus on demonstrating
that machine learning (ML) can assist this first step.

Two key ingredients are needed to find new stable phases:
a method for generating candidate structures and a method
for evaluating their energies. The first aspect, which is not the
focus of this work, is usually performed by either constructing
a library of prototypes [6] or via dedicated methodologies for
proposing novel structures [11–13]. Total energies are then
typically evaluated by local/semilocal DFT, which ensures
a general good accuracy at a moderate computational cost.

Unfortunately, even when combined with simple approx-
imations, performing ab initio calculations remains the
rate-limiting step of any materials search workflow, posing
constraints on both the number of candidate structures that
can be tested and the number of atoms in the unit cells of such
structures. To speed up this process, ML has been deployed in
a number of ways. For instance, it has been used to predict
better starting charge densities for the self-consistent loop
needed by Kohn-Sham DFT [14–16]. Furthermore, ML has
also been used in active-learning frameworks to accelerate
geometry optimization [17], as well as in ab initio molecu-
lar dynamics (AIMD) [18] through the direct prediction of
energies and forces. In these cases, ML models are used to
map local atomic configurations to energies and forces by
tuning parameters based on training data provided from DFT.
Once the models are trained, subsequent predictions are or-
ders of magnitude faster than DFT calculations. We follow
this approach in our work by developing a machine-learning
model acting as a surrogate for the energy predictions made by
DFT, which could act as a screening tool in high-throughput
searches.

Several approaches have been employed to construct ener-
gies surrogate to the DFT ones in the computational materials
discovery process [19,20]. A commonly used strategy is the
cluster expansion, in which the energy of a system is written as
a sum of energy contributions from different clusters made up
by the constituent atoms. Here, the strengths of the effective
cluster interactions are computed by fitting the model to a set
of DFT energies. Thus, this surrogate model uses DFT data
to perform interpolation on new structures [21], a task that is
also performed when using machine-learning techniques. A
swarm of studies have utilized this class of methods in the
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context of materials discovery. These include, for instance,
component predictions [22], where the most likely compo-
sitions for a given set of atomic species are computed, or
structure predictions [23], where the most likely crystal struc-
ture is forecast, as well as for the direct prediction of the
distance of a material’s energy from the convex hull [24,25].
In general, these schemes make use of databases with a va-
riety of materials made of different species, in combination
with various machine-learning algorithms such as Bayesian
optimizers, random forests, and support vector machines. The
feature vectors typically include general information about
the material structure as well as species characteristics of the
constituent atoms. However, they are not typically trained
to distinguish small differences between compounds with
similar structures. For this task, one has to rely on machine-
learning interatomic potentials (MLIAPs).

MLIAPs combine fingerprints of the atomic configura-
tions, most frequently locally defined, with a ML algorithm to
predict energies, forces, and stress tensors. Several atomic fin-
gerprints, acting as the feature vectors, have been successfully
deployed. Their locality enforces invariance under translation
and atomic permutation, while they are usually constructed to
be locally rotational invariant. The most successful MLIAPs
notably include Behler-Parinello symmetry functions, com-
bined with neural networks in the neural network potential
(NNP) [26], bispectrum components, combined with ridge
regression in spectral neighbor analysis potential (SNAP) [27]
and quadratic SNAP (qSNAP) [28], the smooth overlap of
atomic position (SOAP) descriptors with Gaussian process re-
gression in Gaussian approximation potential (GAP) [29,52],
invariant polynomials with linear regression in moment tensor
potential (MTP) [30], and N-bond basis functions with linear
regression in atomic cluster expansion (ACE) [31]. As for
the cluster expansion method, MLIAPs make use of a DFT
data set to fit the model parameters, and they are capable of
predicting energies and forces at ab initio accuracy, provided
these are made for structures for which the model interpolates
[32]. This makes such potentials ideal for molecular-dynamic
simulations at high accuracy, for large systems and over long
timescales [33–36].

In the context of predicting materials stability, MLIAPs are
used to map the potential energy surface of multiple phases
and hence to reconstruct the T = 0 K phase diagram to de-
termine the lowest energy structures, namely to construct the
convex hull. SNAPs and NNPs have been previously used
against this task for metallic alloys [37–40]. In the case of
SNAP, however, the range of different structures and stoi-
chiometries probed was limited and the potential was not used
to find new stable alloys. Instead, in the case of NNPs, the
training set used was very large (∼103–104 structures), so
that the actual structures computed by DFT were as many as
those needed to construct a fully ab initio convex hull. This is
also the case of the GAP models trained as general potentials
across the phase diagram of C [41] and Si [42]. One of the very
few examples of using a MLIAP trained over a limited number
of structures to predict materials stability at an accelerated
pace has been recently provided by Gubaev et al. [43]. In
their work, ab inito calculations were performed over between
383 and 2393 structures to train a MTP able to reproduce bi-
nary and ternary convex hulls. These structures were selected

through an efficient active-learning process [44], which
probed on the order of 104–105 configurations for each phase
diagram. This method proved that MLIAPs could accelerate
the computational high-throughput search of new alloys.

In this work, we show how SNAPs can be used to drasti-
cally accelerate the search for new stable ternary intermetallic
compounds, without the need to generate large training DFT
data sets. Our approach for constructing a MLIAP for rapid
screening is similar in philosophy to the specialized MLIAP
training proposed by Artrith et al. to compute the binary con-
vex hull of LixSi [45]. Our selection of the training database,
however, is different. In fact, rather than investing resources
on curating a training set and on running DFT calculations for
the sole purpose of training the MLIAP, we make use of ex-
isting materials convex hull databases, namely the AFLOWlib
[9] repository. In this way, data are already available and the
computational efforts put into any ab initio calculations are
also relevant for the convex hull construction. In AFLOWlib,
the binary phase diagrams are typically extensively explored,
meaning that there is a significant range of data available and
that there is a lower probability of finding new stable binary
alloys. The ternary hulls are usually not as rich, despite there
being a combinatorial explosion of the number of possible
derivative structures that can be created from a prototype
structure. This leaves more room for exploration. For ternary
systems, the enthalpic term in the Gibbs free energy is still
significant with respect to the entropic one, unlike quaternary
compounds [46], meaning that free-energy calculations are
still relevant. The method proposed here then exploits SNAP
to guide the screening of the ternary space.

The manuscript is organised as follows. In the next section,
we will present the main computational ingredients needed
for our workflow, namely the AFLOWlib data set, the DFT
numerical implementation used, and the SNAP model trained.
Then we will proceed with presenting the results for three
prototypical ternary systems, namely one composed by noble
metals Cu-Ag-Au, and two composed by early, mid, and late
transition metals, namely Ti-Mo-Pt and Cd-Hf-Rh. In that sec-
tion, we will discuss the SNAP training and its performance
against known ternary compounds and newly constructed pro-
totypes. Several error metrics are then presented, which are
aimed at identifying compounds that lie outside of the model’s
training space. Finally, we will conclude.

II. METHODS

This work explores the ability of SNAP to be used as an
efficient energy predictor of novel ternary compounds. Our
general philosophy, however, is to achieve such a goal without
generating DFT data serving the sole purpose of training the
ML model, but instead we aim at reusing the same DFT data
computed to construct the binary phase diagrams. As such, the
constructed ML model will have a negligible computational
payload. With this in mind, the structures used to train SNAP
are all taken from the AFLOWlib database [47]. Then the
SNAP is trained on the total energies of binary crystalline
compounds and tested on ternary materials, either in their
equilibrium geometry or as suggested from a prototypes’ gen-
erator. Different error metrics that can be used to identify
structures far from the training set are then assessed. Here, all
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DFT energy values are obtained with the VASP package [1].
Computational details are given in the upcoming sections.

A. AFLOWlib data

The training data for all the models are directly taken from
the AFLOWlib repository [9] through the AFLOW-CHULL
tool set [47]. The access and manipulation of the data is per-
formed with the AFLOW application programming interface
(API) [48]. In particular, we consider three ternary systems—
Cu-Ag-Au, Ti-Mo-Pt, and Cd-Hf-Rh—for which we have
extracted data for all the binary and ternary phases contained
in AFLOWlib.

B. DFT

Ab initio total-energy calculations are performed using
the Vienna Ab initio Software Package [1] (VASP), which
makes use of periodic boundary conditions, a plane-wave
basis set, and the projected-augmented-wave (PAW) method
with pseudopotentials. All calculations are performed with
a plane-wave cutoff of 600 eV and an energy convergence
criterion of 10−4 eV. The standard generalized gradient ap-
proximation as parametrized by Perdew, Burke, and Ernzerhof
[49,50] is used throughout, together with the corresponding
VASP pseudopotential library.

For all DFT calculations, we use the convergence criteria
set of the AFLOW standard [51]. The k-mesh is constructed
with the Monkhorst-Pack scheme and ensuring that the mesh
is Gamma-centered for the hexagonal (hP) and rhombohedral
(hR) Bravais lattices. The number of sampling points, Ni, is
proportional to the norm of each corresponding reciprocal
Bravais lattice vector, �bi, and they are minimized ensuring the
following condition:

NKPPRA � min

[
3∏

i=1

Ni

]
× N. (1)

Here, NKPPRA is the number of k-points per reciprocal atom,
and N is the number of atoms in the cell. In particular, NKPPRA

is chosen at 10 000 for all static calculations and at 6 000
for all geometry relaxations. The geometry relaxations are
considered converged when the atomic forces are smaller than
10−3 eV/Å.

C. Spectral neighbour analysis potential

Our machine-learning model of choice for total energy
predictions is SNAP [27], which is briefly recalled here. Like
many MLIAPs, SNAP assumes that the total energy of an
N-atom system (molecule or crystal) can be broken down into
individual contributions, Ei, associated with each atom i and
element Zi,

Etot =
∑

i

EZi
i . (2)

Each energy contribution EZi
i is assumed to be linearly de-

pendent on a feature vector, �BZi
i , describing the local atomic

environment, where the coefficient of expansion, �αZi , repre-

sents the training parameters of the model,

EZi
i = �αZi · �BZi

i . (3)

In SNAP the descriptors, �BZi
i , are the bispectrum components

[29], quantities that are invariant upon local rotations.
In a nutshell, the atomic-neighbor density function within

a sphere of radius Rc and centered at the ith atom at �Ri can
be written in terms of a sum over the neighbors j within the
sphere,

ρi(�r) = δ(�r − �Ri ) +
∑

j

wZ j δ(�r − �Rj ) fc(Ri j ), (4)

where Ri j = | �Ri − �Rj |, wZ j are weights associated with each
atomic species (treated as hyperparameters), and fc is a cutoff
function, as defined by Behler and Parinello [26]. Such density
is then projected onto the four-dimensional sphere of radius r0

and expanded over hyperspherical harmonics U J
m′,m(θ, φ, θ0)

as

ρi(�r) =
∞∑

J=0

J∑
m,m′=−J

cJ
m′,mU J

m′,m(θ, φ, θ0). (5)

Here, J , m, and m′ are parameters distinguishing the individ-
ual hyperspherical harmonics, and cJ

m′,m are the appropriate
expansion coefficients. Details on the conversion from �r to
the four-dimensional polar angles can be found in Ref. [52].
In practice, the expansion is truncated at J = Jmax. The bispec-
trum components are then built as an appropriate triproduct of
the expansion coefficients,

BJ,J1,J2
i =

J1∑
m′

1,m1=−J1

cJ1
m′

1,m1

J2∑
m′

2,m2=−J2

cJ2
m′

2,m2

×
J∑

m′,m=−J

CJ,J1,J2
mm1m2

CJ,J1,J2
m′m′

1m′
2

(
cJ

m′,m
)∗

,

where CJ,J1,J2
mm1m2

and CJ,J1,J2
m′m′

1m′
2

are the Clebsch-Gordan coeffi-
cients, which determine the coupling between the different
values of J . The individual components with J values between
0 and Jmax are then collected to form the vector �Bi.

The calculation of the bispectrum coefficients is performed
with the LAMMPS software [53], while the energy fitting is
performed with an in-house Python library that makes use
of the SCIKIT-LEARN package [54]. The hyperparameters of
the model are Jmax, Rc, and the set of weights wZi , which are
optimized with TPE [55–57] as implemented in OPTUNA [58].

III. RESULTS AND DISCUSSION

The first ternary system selected comprises three noble
metals: Cu, Ag, and Au. These display less complexity in their
chemical behavior than other transition metals with partially
filled d-shells, so that they represent a good playground to
present our concept. The process chosen for identifying novel
ternary prototypes involves training a SNAP model on data
already available and only related to binary phases. The so-
constructed ML model is then used to predict the energy, and
hence the stability, of a range of ternary compounds that, by
definition, do not appear in the training set.
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A. Fitting energies for binary phases

As a first step, a series of SNAP models are trained indi-
vidually over each of the three binary systems, namely Ag-Au,
Cu-Ag, and Cu-Au, for which AFLOWlib contains 261, 190,
and 260 structures, respectively. The associated unary systems
are included as well. Although we could have proceeded by
using the AFLOWlib energies directly, for consistency we
have preferred here to rerun static DFT calculations, accord-
ing to the standards presented in Sec. II B, for all the unary
and binary structures. Within each binary system, the data
set is split into a training and a cross-validation set, while
the ternary phases form the test set. The split is 80% training
and 20% cross-validation, as suggested by the learning curves
shown in the Appendix. Monte Carlo cross-validation is the
strategy of choice for splitting the data sets. Since there is
significant structural diversity in the data sets, and in order
to avoid the effect that a small subset of structures may have
on the training, an ensemble of 10 SNAP models is trained for
each binary system. The average of the predictions made by
each SNAP model of the ensemble is used as the final output.
We call this ensemble of SNAP models SNAPs. Details on
the optimal hyperparameter selection for Jmax, Rc, and wZi are
given in the Appendix.

The accuracy of our models is assessed by computing both
the mean absolute error (MAE) and the root-mean squared
error (RMSE), averaged over the 10 different SNAP models
constructed for each binary system. The results are presented
in Table I for both the training and cross-validation sets, while
a visual appreciation of the performance is shown in the
parity plot of Fig. 1 that displays the results for one SNAP
model randomly chosen from the ensemble. We find that all
three binary systems are fitted to a similar standard. The
cross-validation RMSEs are on the order of 10−2 eV/atom
due to the presence of high enthalpy structures, present for
all systems. These have proved more difficult to fit, even
when present in the training data, as demonstrated by their
departure from the parity line in Fig. 1. When looking at the
hyperparameter optimization, we find the Rc value of Ag-Au
to be lower than that of the other two binary systems. It is
optimal to have a larger weight for Au, while having a lower
weight on Cu compared to the other two elements helps to
reduce the error.

B. Testing over ternary compounds

The SNAP models presented in the previous section have
been individually trained over each binary system, i.e., they
contain information for only two species at a time. These
cannot be utilized to predict a ternary structure. As such,

TABLE I. Summary of the average errors over 10 SNAP models
for the three binary systems. T = training, CV = cross-validation.

Error (meV/atom) Ag-Au Cu-Ag Cu-Au

MAE (T) 2.63 2.82 4.30
RMSE (T) 4.37 4.01 6.25
MAE (CV) 6.85 7.27 8.57
RMSE (CV) 13.83 15.15 15.73

FIG. 1. Parity plot, showing the SNAP-predicted energies
against the DFT ones, for the Ag-Au, Cu-Ag, and Cu-Au binary
systems. The DFT energies of the lowest-energy single-element
structures are marked by vertical dashed lines.

we now train another ensemble SNAP, this time over the
entire library of unique unary and binary compounds available
(677 after removing unaries that appear twice), by using the
same strategy described before (e.g., an 80/20 training/cross-
validation split; see the hyperparameters in the Appendix).
The SNAPs ensemble model is then tested over the 78 ternary
structures contained in AFLOWlib for Cu-Ag-Au. The parity
plot for this new model is presented in Fig. 2, where again data
are presented for the SNAP predictions of a model randomly
chosen from the 10.

The figure clearly shows that our ensemble SNAP performs
almost identically over the binary training set and the ternary
test one, demonstrating that models having knowledge of
enough binary structures are capable of offering good energy
predictions for ternaries. More quantitatively, the RMSE of
the model is 5.87 meV/atom for the training set and it ac-
tually decreases marginally to 4.84 meV/atom for the test
one. Interestingly, this is even lower than the cross-validation
error found for the individual binary SNAPs (see Table I), a
result that we attribute to the more extended diversity of the
chemical environments that the model has to fit now.

It is therefore established that by training on data extracted
from the binary phase diagrams SNAP models are able to pre-
dict the ground-state energy of fully relaxed ternary structures.

C. Ternary prototypes

To put our SNAP models against a more severe task, we
now investigate whether these can be used to predict the
energy of novel prototypes not present in the AFLOWlib
database. The dictionary method, as implemented in the
AFLOW encyclopedia [59–61], is initially employed to create
42 new structures. These, in general, span a wide energy range
and most of them are far away from the convex hull. Note,
in fact, that the lattice parameters of these prototypes are
not optimized, but just estimated through a Vegard-like law.
Then, DFT relaxation is performed for all the newly created
ternaries until the forces are below 10−3 eV/Å. We finally
assess the extrapolation ability of the SNAP models to predict
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FIG. 2. Parity plot, showing the SNAP-predicted energies
against the DFT ones, for both the binary (training and cross-
validation set) and ternary (test set) compounds contained in
AFLOWlib for the Cu-Ag-Au system. Here the SNAP models form-
ing the ensemble have been trained on the entire pool of binary
phases. The RMSE is reported in the legend.

the ground-state energy of both the relaxed (R) and the ini-
tial nonrelaxed (NR) ternary prototypes. The ensemble SNAP
used here is the same as the one introduced in Sec. III B. Our
results are presented in Fig. 3.

The figure shows that once the structures are fully relaxed
by DFT, the error remains satisfactory, confirming that the
good energy estimate for ternary compounds does not remain
limited to the AFLOWlib data. In this case, the RMSE grows
from 4.84 meV/atom for the original ternaries included in
AFLOWlib to about 27.74 meV/atom for the new relaxed
prototypes, reflecting the more diverse set of structures gen-
erated for this test. In contrast, the error is significantly higher

FIG. 3. Parity plot, showing the SNAP-predicted energies
against the DFT ones, for both the binary compounds contained in
AFLOWlib (training set) and for a new set of ternary phases either
in their prototypes, nonrelaxed (NR), geometry or after full DFT
relaxation (R). Here the SNAP models forming the ensemble have
been trained on the entire pool of binary phases as described in
Sec. III B. All data are for the Cu-Ag-Au system.

when one tries to estimate the energy of the prototypes as
constructed, namely before DFT relaxation. We now find a
RMSE of 663.56 meV/atom, with SNAP systematically un-
derestimating the DFT energy. Interestingly, there is still a
fraction of the created structures on which SNAP performs
well, and these appear to have lattice parameters close to their
relaxed ones. Surprisingly, SNAP is able to correctly identify
the DFT energy trend, suggesting that such a trained model
can be employed as an effective screening tool in materials
prediction workflows. In general, this analysis proves that
an ensemble SNAP model, constructed on binaries, can ex-
trapolate to associated generic ternary structures when these
are close to their equilibrium geometry and can accurately
estimate the energy ordering for the nonequilibrium ones.

The remaining question is then whether or not the so-
constructed SNAP can be used to drive the atomic relaxation.
This is investigated by employing the LAMMPS package [53]
for geometry minimization, where the energy and force
convergence criteria are set at 10−4 eV and 10−3 eV/Å, re-
spectively. The relaxation is performed in two steps, where
first the atomic positions are optimized, and then we relax both
the cell parameters and the atomic positions. This procedure is
repeated five times for each structure to ensure convergence.
Again the mean SNAP model, averaged over all those of the
ensemble, is chosen to perform the relaxation. We find that,
although the resulting SNAP-optimized structures generally
have a lower DFT-computed total energy than the unrelaxed
ones, they are still far from the optimal DFT-computed ge-
ometries. This means that, although the ensemble SNAP is
capable of some relaxation, in general it is not able to find the
equilibrium structure.

To obtain some insight into this aspect, principal com-
ponent analysis (PCA) is performed on the feature vectors
forming the training set and on those of the structures encoun-
tered along the DFT relaxation path of the ternary prototypes.
This analysis is performed for each one of the three species
considered here, namely Cu, Ag, and Au. An illustrative plot
of the PCA of the first two components is shown in Fig. 4
for Ag, and similar graphs have been obtained for the other
two species. In the plot, blue circles represent the PCA com-
ponents associated with structures included in the training
set (binary phases), while the colored ones are for a DFT
relaxation trajectory starting from a new ternary prototype.
Clearly, the binary feature space is quite heterogeneously
distributed, with relatively large portions poorly known by
SNAP. The DFT relaxation is found to travel sparsely pop-
ulated regions, in particular for the starting structure. As a
result, energy and forces during the SNAP-driven relaxation
may be poorly predicted, since the relaxation trajectory has
to travel regions in the parameter space of which the SNAP
has little knowledge. This then results in structures that differ
from the ab initio relaxed ones.

There are a number of possible strategies to mitigate this
problem. On the one hand, one can simply generate additional
DFT-computed prototypes, cleverly covering a more uniform
distribution of local atomic environments, and enlarge the
SNAP training set. This avenue is usually pursued in con-
junction with some active-learning strategy [18,29,44,62] to
generate force fields for stable molecular-dynamics simula-
tions, but it often requires a rather large number of new DFT
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FIG. 4. Plot of the first two principal components of a PCA per-
formed over the Ag bispectrum of the training set (blue circles). The
colored circles are for the ternary structures encountered during the
ab initio relaxation path of a prototype ternary compound. The color
code encodes the relaxation-step index. Note that the DFT relaxation
begins in a region poorly covered by the training set, but ends in a
rather high-density region.

calculations. When the problem is that of constructing phase
diagrams, this does not seem like an ideal solution, since
the DFT effort is mostly spent in structures of no particular
interest other than training the ML potential, and the total
DFT-calculation count may be similar to that of computing
the entire phase diagram from DFT alone. On the other hand,
one can notice from Fig. 4 that the typical DFT relaxation
moves towards regions of the feature space well covered by
the binary training set. This means that constructing the initial
prototypes with local atomic environments closer to the train-
ing set may represent a better initial choice for novel ternary
phases that are closer to the final optimized structures and can
be naturally relaxed with SNAP.

We close this section by discussing how our work differs
from a more “conventional” construction of MLIAPs. First,
recall that the aim of the SNAPs model presented here is not
to act as a robust force field suitable for accurate molecular-
dynamics simulations across the phases of a ternary system,
but rather to be used as a screening tool in the context of the
high-throughput search for stable materials. As such, we seek
a model error close to or lower than 50 meV/atom, consistent
with other high-throughput studies that make use of a machine
learning energy screening tool instead of or in combination
with DFT [24,63–65]. This comes as a consequence of the
choice of training database. In fact, the training structures
are not generated using scientific intuition or an automatic
scheme, but are taken directly from a readily available online
repository, AFLOWlib in our case. The motivation for this
choice is twofold. On the one hand, only preexisting data
are used to avoid having to curate a tailor-made database by
running DFT calculations specific for it. On the other hand,
all the DFT calculations performed by AFLOWlib to create
the database are directly relevant for the construction of the
convex hull, since they concern structures with a variety of
compositions and space groups. Such diversity in the struc-

tures is necessary for the robustness in the determination of
the phase diagram.

To provide a more quantitative understanding of this is-
sue, we now give a brief comparison between the training
databases used in this study and those employed in the con-
struction of several different MLIAPs. The work of Chen et al.
[66] offers a good example of how a typical SNAP model is
deployed as a general force field, in this case for Mo. This
has been designed to accurately predict energies, forces, and
stress tensors, as well as more complex properties, such as
the lattice constants, vacancy formation, surface, and grain
boundary energies, the phonon spectrum of bcc Mo, and even
the melting temperature. SNAP must then be able to run ac-
curate MD simulations over large lengthscales and timescales
(∼2000 atoms for 500 ps). The training database was phys-
ically informed with ∼103 training points (note that in this
case only one element is present). These included ground-state
phases from the Materials Project repository [10] (eight struc-
tures), surface slabs, vacancy, and grain boundary structures
(respectively, 11, 24, and 13), along with large structures (54
atoms) that are elastically deformed (67 structures) and used
for different sets of AIMD simulations (169 structures). All of
these data classes are necessary to expose SNAP to a variety of
atomic configurations, notably with missing atoms (surfaces
and vacancies) and unusual angular and radial distributions
(grain boundaries). Such data diversity enables the force field
to be robust during the MD simulations. The role of our
model is not to achieve that type of accuracy, but rather to
work as a rough screening tool for the energy of different
structures across a phase diagram, meaning that our training
database would only include the Materials Project part of the
database [10], namely about 1% of the data.

The work of Gubaev et al. [43] provides another suitable
example of a MLIAP, in this case trained to construct phase
diagrams. The moment tensor potential (MTP) framework
is chosen to accelerate the search for novel stable alloys as
exemplified for the Cu-Pd, Co-Nb-V, and Al-Ni-Ti systems.
Their force field is an efficient screening tool, and it pos-
sesses the ability to perform relaxation. The training database
is constructed on the fly using an active learning scheme,
centered around the extrapolation grade (presented here in
Sec. III E). A set of structures (104–105) are created from
hcp, bcc, and fcc supercells and are decorated for different
compositions using the methodology presented in Ref. [67].
The maximum number of atoms varies from 8 to 20 depending
on the system. The MTP is then trained on the fly as the
structures are being relaxed. This leads to having 523 and 383
training structures for Cu-Pd and Co-Nb-V, respectively. For
Al-Ni-Ti, two different MTPs are necessary, one with 2393
and the other with 976 training structures. It is interesting
to note that for this system, AFLOWlib prototypes are also
used in the training set, highlighting the additional diversity
brought by such structures. The key difference with our work
is that many of the structures used for the training of the
MTPs are off equilibrium as they appear in the relaxation path.
These are judged by the active learning scheme as being the
most relevant for training a robust force field. In our case,
all structures included are at equilibrium, they do not need
to be generated, and they are directly relevant for the convex
hull construction. Note that in both cases, forces and stress
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FIG. 5. Parity plot, showing the SNAP-predicted energies
against the DFT ones, for both the binary (training and cross-
validation set) and ternary (test set) compounds contained in
AFLOWlib. Data are presented for the Ti-Mo-Pt (upper graph) and
for the Cd-Hf-Rh (lower graph) ternary systems. Here the SNAP
models forming the ensemble have been trained on the entire pool
of binary phases. The RMSE is reported in the legend.

tensors are used for training, as opposed to our study, since
such quantities are not provided by AFLOWlib.

D. Ternary phase diagrams for Ti-Mo-Pt and Cd-Hf-Rh

To validate our results and to demonstrate that the method
works well beyond noble metals, we have performed the same
workflow on two different new ternary systems, namely Ti-
Mo-Pt and Cd-Hf-Rh. These have been selected based on two
criteria: (i) they contain phases made of early (Ti and Hf),
mid (Mo and Rh), and late (Pt and Cd) transition metals, thus
presenting a chemical variety larger than that found in noble-
metal compounds; (ii) for these ternary systems, AFLOWlib
contains a high enough number of prototypes, enabling the
training of a reliable model. In fact, these two systems contain
more than 1500 compounds, with around 90 ternaries for each
set. It should be noted, however, that for each system, one bi-
nary combination is usually over-represented when compared
to the others. These are Ti-Mo for Ti-Mo-Pt and Cd-Hf for
Cd-Hf-Rh. Importantly, the full database of DFT energies was
taken from AFLOWlib, rather than having been recalculated.

The ensemble SNAP parity plots are shown in Fig. 5,
along with the RMSE of the fit. Also in this case the training
(cross-validation) set comprises 80% (20%) of all available
unary and binary compounds, the test set is only made of
DFT-relaxed ternary phases, and careful optimization of the
hyperparameters Rc, Jmax, and wZi is performed. From the
figures, it is clear that for these relaxed structures, taken from
AFLOWlib’s convex hull, the predictions are satisfactory and
the parity line is followed closely. The absolute errors on
all sets are higher than those found for Cu-Ag-Au, but the
total-energy percentage error is similar. In fact, for Cu-Ag-Au,
the percentage error relative to the average energy per atom
was 0.19% for the training set and 0.15% for the test set.
These must be compared to 0.40% and 0.86% for Ti-Mo-Pt
and to 0.74% and 1.57% for Cd-Hf-Rh. It should be noted that
the ternary convex hull diagrams for Ti-Mo-Pt and Cd-Hf-Rh
are much deeper that that of Cu-Ag-Au as the lowest points
are at an enthalpy of formation of 951 and 921 meV/atom,
respectively, compared to 61 meV/atom for Cu-Ag-Au. This
makes the SNAP absolute error less significant.

E. Error metrics

The aim of this work is to develop a ML model surrogate
to DFT to predict total energies and hence to identify sta-
ble ternary compounds. As shown in the previous sections,
a SNAP potential constructed over binary phases is able to
provide accurate energy predictions for ternary compounds
only close to their equilibrium structure, but it is not reliable
to perform relaxation. This is because during the relaxation
process, the system crosses regions in the parameter space
poorly covered by the training set. Therefore, it would be of
interest to have a metric capable of distinguishing structures
that are far from the feature space spanned by the training set
from those that are within it. We expect SNAP to perform
well for the second set of structures but not for the first.
In this section, three such metrics are presented, and their
effectiveness is assessed.

The first error metric used is the Euclidean distance, dmin,
which can be defined here in different ways. The easiest ap-
proach is to take the distance between the feature vector of the
test system and the average feature vector of the training set.
Unfortunately, the total feature vector is made up of a sum of
bispectrum components, some of which are associated with
different atomic species. Instead, the so-defined distance is
evaluated independently of each species. For a given species,
two sets are created, namely the set of all bispectrum com-
ponents in the training set and all those in the test set. Then
the Euclidean distance between the vectors of each set is
evaluated, and the metric used is the minimum of all these
distances, namely

dmin = min
{|| �Bi − �Bj ||

}
i∈�Training, j∈�Test

, (6)

where �Training (�Test) is the ensemble of structures contained
in the training (test) set. Since a given compound could have
several atoms of the same species, the maximum of all dmin

is assigned to that compound. Note that for each test ternary
system, three values of this distance metric are obtained, one
for each species.
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FIG. 6. Plot of the SNAP error against our defined three different
metrics for the three ternary data sets in the Cu-Ag-Au system:
the compounds residing on the convex hull diagram (CHULL), the
unrelaxed new prototypes (Unrelaxed), and the new prototypes after
relaxation (Relaxed). The metric on the x-axis from left to right is
the distance from the training, dmin; the standard deviation, σ ; and
the extrapolation grade, γ . These are shown for Au for dmin and for
Ag for γ (note that σ is species-independent). The black lines show
the linear fits on the data points, and the associated R2 is given.

The second error metric tested is the extrapolation grade,
γ , as introduced by Podryabinkin et al. [44]. The approach fol-
lowed here is closest to their Query Strategy 3, as it is defined
specieswise. From the bispectrum components of all the k
configurations in the training set, a rectangular k × m matrix,
B, is formed, where m is the length of the feature vector. The
MAXVOL [68] algorithm is then applied to find the m × m
submatrix A with maximal determinant. This corresponds
to the selection of the active set. Then, for a new structure
outside of the training set, the extrapolation coefficient γ is
calculated for each bispectrum component of that system, and
the maximum value is selected. As for the distance metric, this
is done specieswise.

The final error metric chosen is the standard deviation, σ ,
of the SNAPs prediction. As described above, an ensemble of
SNAP models is trained over different batches of the training
set. The mean value of the predictions of each model is taken
as the prediction of the ensemble. This approach also allows
one to obtain the standard deviation of the predictions, which
is used here as an error metric.

These metrics are assessed and compared by evaluating
their correlation with the SNAP absolute error. A variety of
three test sets in the Cu-Ag-Au ternary system is used for
this exercise, namely the ternaries presented in Sec. III B
(compounds on the convex hull), as well as the unrelaxed and
relaxed prototype ternary compounds introduced in Sec. III C.
In Fig. 6 we present the SNAP mean absolute error against the
error metric for each phase contained within the sets. These
are plotted on a log scale, since both the error metrics and
errors span several orders of magnitude. A linear fitting is
performed on the log of all data points for each plot, and the
associated values of R2 are also given. For the dmin and the γ

metrics, the results are shown for the bispectrum of a specific
specie, Au and Ag, respectively. As discussed previously, the
structures in the AFLOWlib CHULL and in the relaxed data
sets, that are close to equilibrium, have lower errors in gen-

eral, with error ranges of 13 and 72 meV/atom, respectively,
whereas it is ∼3 eV/atom for the structures of the unrelaxed
data set. This implies that as a general feature of all plots,
there is a group of points at lower errors that are within a
small range of the error metrics. Therefore, there is modest
correlation between metric and error. This is to be expected,
since this range is of the same order of magnitude as the
cross-validation error of the SNAP model. The metrics then
become more relevant at larger errors, where the structures
are expected to be outside of the training range, as for those in
the unrelaxed data set.

Going into more detail, we find that the dmin minimum
distance metric is not much larger for the structures with large
errors, resulting in a low R2. This indicates that the Euclidean
distance between test and training vectors is not adequate for
measuring the extent of extrapolation in our work. In con-
trast, the extrapolation grade, γ , and especially the standard
deviation of the model prediction, σ , correlate far better with
the error, with R2 values of 0.69 and 0.88, respectively. Both
of these metrics are significantly larger for the structures of
the unrelaxed data sets compared to those in the AFLOWlib
CHULL and relaxed data sets. It is interesting to note that the
best performing metric is the standard deviation metric, which
is not a specie-defined metric, so it can only be calculated
for an entire structure. The minimum distance metric and
extrapolation grade can be made global for one structure by
taking the maximum metric value of the three species present.
This increases the R2 values to 0.67 and 0.79, respectively.
The standard deviation is also the only metric that makes use
of the performance of the trained model, since it relies on the
SNAP coefficients. The other two metrics only make use of
the feature vectors of the training set.

IV. CONCLUSIONS

In conclusion, we have examined the extrapolation abil-
ity of SNAP models trained on data extracted from binary
phase diagrams to predict the ground-state energy and hence
the thermodynamic stability of unseen ternary prototypes.
Such analysis has been performed over a noble-metal ternary
system, Cu-Ag-Au, and over two mixed systems, namely
Ti-Mo-Pt and Cd-Hf-Rh. Furthermore, we have explored dif-
ferent error metrics in the search for a criterion to detect
structures that are far from the training set. In this way, one
could easily identify prototypes with which SNAP would
struggle.

We have been able to establish that an ensemble of SNAP
models, trained on binary-phase data, is able to predict the
total energy of ternary compounds if those are close to their
energy minimum, namely if their geometries are relaxed. In
contrast, full relaxation, starting from an out-of-equilibrium
prototype, is typically not possible, since along the relaxation
path one is likely to encounter structures falling outside the
range of applicability of the SNAP. To identify those struc-
tures for which SNAP will perform well, we have examined
different error metrics. We have found that the best performing
error metric is the ensemble SNAP standard deviation, σ . This
is a global quantity, which is independent of the particular
specie, and it is simple and efficient to calculate. With these
two results at hand, we have a method that is able to evaluate
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total energies of unknown ternary compounds and establish
whether these energies are reliable. Note that this comes at a
minimal computational cost, since no DFT calculations have
to be performed to train the model.

We can then envision the use of our tool in a work-
flow for the construction of convex hull diagrams across
the ternary space. This does not replace DFT, but it sim-
ply provides a means to establish which DFT calculations
to perform and with which priority. Thus, if for a given
prototype SNAP returns a high energy with a high confi-
dence, further DFT calculations will not be necessary. Indeed,
the fact that full relaxation is not possible precludes the
use of our SNAP in global structure optimization processes,
such as those implemented with a genetic algorithm [12] or
ab initio random structure searching [11]. In this case, the
construction of suitable machine-learning potentials has to
follow a completely different approach and necessitates com-
pletely different, much larger and more diverse, training data
sets [69].
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APPENDIX

1. Learning curves

In this subsection, the learning curves for the models
trained on the three binary systems of Cu-Ag-Au are pre-
sented. These are used to establish the amount of data needed
to train the SNAP model. As can be seen from Fig. 7, a 80%
(training)/20% (cross-validation) split appears to be ideal.

TABLE II. Summary of the optimal hyperparameters for the
SNAP models individually trained over the binary systems. Here wX

and wY refer to the weights of the X and Y species of the X -Y binary
system.

Hyperparameter Ag-Au Cu-Ag Cu-Au

Jmax 3 3 3
Rc 4.144006 4.358127 4.452703
wX 0.526867 0.174029 0.193797
wY 0.701251 0.225576 0.341620

FIG. 7. Learning curves of the models trained on the binary data.
As one can notice, the optimal value for the data splitting is at 80%
for the training sets and 20% for the test sets.

Note that similar curves are obtained for the other two ternary
systems investigated (not presented here).

2. Hyperparameter optimization

Hyperparameter optimization is performed with the use of
the OPTUNA [58] package. Tree-structured Parzen Estimator
(TPE) [55–57], a Bayesian algorithm, is selected to explore
the hyperparameters space. The hyperparameters Rc and wZi

are optimized simultaneously. For the radius cutoff, an in-
terval of 3–10 Å is searched, corresponding to a distance
greater than that of the first neighbors for the systems of
interest. For the elemental weights, positive values between
0 and 5 are screened. An ensemble strategy is followed during
the hyperparameter optimization in order to reduce any bias
resulting from the small number of data points available.
For each optimization step, 10 different SNAP models are
trained, each obtained from a different 80% (training)/20%
(cross-validation) split of the full data set. The RMSE of
the ensemble is defined as the average RMSE on the cross-
validation set for each model trained. The hyperparameter
tuning is carried out 50 times for 400 steps for each system
explored, and the hyperparameters that minimize the RMSE
are selected. The values given in Table II are found to mini-
mize the RMSE for the single binary SNAP models. Note that
from the construction of learning curves, the optimal value for
Jmax is found to be 3 for all single binary systems.

The same procedure is followed to minimize the RMSE for
the SNAP models trained on all three binaries. In this case, the
optimal value for Jmax is 4. The results are given in Table III.

TABLE III. Summary of the hyperparameters used for the Cu-
Ag-Au SNAP models.

Hyperparameter Cu-Ag-Au

Jmax 4
Rc 4.647073
wAg 0.305086
wAu 0.418890
wCu 0.245647
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