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Deep neural network potential for simulating hydrogen blistering in tungsten
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Tungsten is a promising candidate for the plasma-facing material in fusion energy facilities, however, the
low-energy, high-flux hydrogen plasma causes severe blistering in tungsten, which gives rise to safety concerns.
By far, the formation mechanism of intragranular hydrogen blisters is still unclear. Large-scale atomistic
simulations are crucial for improving the understanding, however, the available empirical interatomic potentials
are mostly defective in predicting the formation of hydrogen self-clusters in tungsten, thus may lead to wrong
blister formation mechanisms. In this work, we develop a machine-learning potential, DP-WH, for the tungsten-
hydrogen binary system based on the Deep Potential method. We demonstrate that the DP-WH potential is able
to describe, as accurately as ab initio calculations, the basic properties of bcc tungsten, the solute hydrogen
properties in tungsten, adsorption and migration of hydrogen on tungsten free surfaces, interactions between
hydrogen atoms and vacancy, dislocations, the interaction between neighboring interstitial hydrogen atoms, and
the formation energy of H self-clusters. By using DP-WH, we perform nanosecond-long molecular dynamics
simulations and report the formation of planar self-cluster of tetrahedral-interstitial-site hydrogen atoms normal
to {001} tungsten planes at a hydrogen concentration of ≈10 at.%. This form of the H self-cluster is highly
possible to be the early nucleates of the crack-shaped H blisters observed in recent experiments. The DP-WH is
thus proven as a good candidate potential for the atomistic simulations to unveil the formation mechanisms of
the intragranular hydrogen blisters in tungsten under the relevant working conditions.

DOI: 10.1103/PhysRevMaterials.7.093601

I. INTRODUCTION

Tungsten (W) is a promising candidate for plasma-facing
materials (PFMs) in the International thermonuclear exper-
imental reactor (ITER) [1] project, due to its desirable
properties such as high melting point, high thermal conduc-
tivity, and low sputtering yield. In ITER operations, great
challenges are imposed on PFMs of fusion devices by the
harsh service environment, including the high thermal load,
and high flux [1022 to 1024 ions/(m2 s)] plasma of hydrogen
(H) and its isotopes (deuterium and tritium) at low energy
(from tens to hundreds of eV) [2]. Interaction with H plasma
causes hydrogen retention and severe blistering in W [3]. H
blistering damages the material integrity and causes dramatic
degradation of the mechanical properties (e.g., H-induced
hardening and embrittlement [4]) and increases safety con-
cerns. Moreover, W dust from the bursting of the blisters
may contaminate the core plasma and disturb the steady dis-
charges [5]. Thus investigating the behavior of hydrogen and
its isotopes in tungsten has become one of the most important
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subjects in the research of PFMs. Understanding how the H
blisters form is of central importance.

H blisters in W can be categorized into two types: the H
intergranular blisters and the H intragranular blisters. It is
well understood that the intergranular blisters, which are often
observed in the form of large cavities between two grains,
arise from the H accumulation at the grain boundaries [6,7].
Whereas the formation mechanisms of the intragranular H
blisters (the H blisters in the grains) are far more complex and
not fully understood. Up to now, three explanations for the
formation of intragranular H blisters in W can be summarized
from existing studies: vacancy-trapping, dislocation-trapping,
and self-trapping.

Vacancy-trapping refers to the formation of intragranular
blisters via the binding between H atoms and vacancy-type
defects. Under working conditions with high doses of irradi-
ation, energetic particles, such as neutrons and high-energy
ions, produce a large number of vacancies in W. Vacan-
cies are strong trapping sites for H atoms [8]. The binding
between H and vacancies in W was extensively studied
both experimentally [9,10] and theoretically [11–13]. And
it is well-established that H-vacancy composite clusters are
the nucleates of the H blister, which could develop into a
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gas-filling bubble via other mechanisms such as loop punch-
ing [8]. However, the formation of intragranular H blisters
is also observed in W exposed to low-energy high-flux
deuterium plasma that mimics the plasma-wall interaction
conditions expected in the ITER divertor [14]. Under such
conditions, the plasma energy is well below the displacement
threshold of W, thus the production of vacancies by irradi-
ation is unlikely. Moreover, the range of temperatures (300
to 1000 K) in recent experiments [2,3,14,15] only leads to a
negligible equilibrium concentration of vacancies in W [14],
which excludes the H trapping in the equilibrium vacancies
in W. Thus the vacancy-trapping formation mechanism plays
a less important role in the formation of the H blisters in W
under exposure to low-energy plasma.

The dislocation-trapping refers to the formation of intra-
granular H blisters via the binding between H atoms and
dislocation-related microstructures. It was supported by the
experimental studies reporting the dislocation decorated by
H bubbles [16] and the significantly enhanced H retention
in W due to plastic deformation [14]. Theoretic studies also
reported strong binding interaction between H and disloca-
tions in W [17] and dislocation may also facilitate H blister
nucleation via the “jog-punching” mechanism [18]. Addition-
ally, based on the facts that W under H plasma exposure
has a change of microstructure with a substantial increase of
dislocation density [19,20], it was proposed by Guo et al. [3]
and Chen et al. [21] that the intragranular H blisters could
possibly nucleate on the binary junctions with a 〈100〉 burgers
vector, which is formed due to the burgers vector conservation
law of dislocation reaction: 1

2 〈111〉 + 1
2 〈1̄1̄1〉 = 〈001〉 [22].

However, a feasible explanation is still missing for the origin
of the dislocations in W under exposure to H plasma. It was
suggested that the dislocations could be generated due to the
thermo-load caused by the temperature gradient [15]. But it
was observed in later experiments that the majority of dislo-
cation is related to the growth of the H blister itself [2]. Thus
whether the H blister nucleates on dislocations or the disloca-
tions are generated from the H blisters is still undetermined,
which put the basis of the dislocation trapping mechanisms in
question.

Self-trapping mechanism refers to the spontaneous ag-
glomeration of H atoms in neighboring interstitial sites of W,
which may also serve as the formation mechanisms of the
intragranular blister. Unlike the strong self-trapping of helium
(He) [4] in W, the interactions between a pair of interstitial H
atoms in bcc W are mostly repulsive. Thus the self-trapping
of H in W was once ruled out [14]. However, a recent ab initio
study by Hou [23] et al. reveals that the planar H self-clusters,
with the H atoms filling tetrahedral interstitial sites (TIS)
on a single plane, are energetically more favorable than the
solution of H in TISs of W lattices. Contrary to this result, it
was found by Smirnov [24] et al. that high concentrations of
H atoms can spontaneously form planar self-clusters with H
atoms located at octahedral interstitial sites (OIS) in W. There
are early experiments suggesting that low-temperature H re-
tention saturation is dictated by self-trapping [25]. However,
the direct experimental proof of the self-trapping mechanisms
is still lacking.

It should be noted that the atomistic details of the intra-
granular H blister nucleation processes are difficult or even

impossible to observe in experiments [8]. Alternatively, the
W-H interaction at atomistic scales can be modeled from
quantum mechanical principles like the density functional
theory (DFT), which has been proven to achieve high accuracy
and reliability [26]. However, the computationally affordable
sample size of DFT is usually limited to no more than 103

atoms due to the typical O(N3) computational complexity (N
is the number of atoms). Moreover, the timescale required to
simulate the H diffusion, trapping, and agglomeration pro-
cesses in W is usually up to tens of nanoseconds [24], which
is prohibitively expensive for ab initio molecular dynamics
(AIMD). Large-scale classic MD simulations, which models
atomic interactions by empirical potentials, can effectively
access the microscopic origin and the underlying atomistic
mechanisms involving up to millions of atoms, thus they were
frequently used to study the behaviors of H isotopes in W
[21,24,27–31].

The reliability of the MD simulation depends on the accu-
racy of the interatomic potential, which is used to describe the
potential energy surface (PES) in the simulation. The quality
of the interatomic potential is assessed by the consistency
between the material properties predicted by the potential
and those calculated by DFT or obtained experimentally. To
explore the intragranular H blister nucleation mechanisms, a
good interatomic potential should be accurate in a wide range
of properties concerning the W-H interaction, such as the
basic W properties, H solution and migration energies in W,
the interaction between H and W free surfaces, the interaction
between H and W lattice defects (vacancies and dislocation),
formation of the H2 molecules, interaction among solute H
atoms in W lattices, and the formation of H self-clusters. Up
to now, the interatomic potential of the W-H system is rare.
There are only five empirical potentials for the W-H binary
system reported in the literature: the analytical bond-order po-
tentials (BOP) proposed by Juslin et al. [32] (BOP-Juslin), and
Li et al. [33] (BOP-Li), the two embedded-atom model (EAM)
potentials proposed by Bonny et al. [34] (EAM-Bonny-1 and
EAM-Bonny-2) and one by Wang et al. [35] (EAM-Wang).
These potentials are based on simple, analytical forms with
only a few adjustable parameters, which may not be flexible
enough to fit a broad range of fitting targets concerning the
complexity of the W-H interaction. As a result, all the empiri-
cal potentials are more or less defective. For example, none of
these potentials have reasonable descriptions of the interaction
between H atoms and W surfaces. All of the empirical poten-
tials overestimate the migration energy of H at compressive
strain. And all of the empirical potentials have inaccurate
descriptions of the H self-clusters in W. Thus, with these em-
pirical potentials, the reliability of the MD simulations results
concerning the formation of intragranular H blister, and the
implications from these MD simulations, are put in question.

The recent development of machine learning (ML) po-
tential [36–46] methods have brought new possibilities for
modeling atomic interaction with high accuracy. The Deep
Potential [44,45] (DP), as one of the popular ML potential
methods, has been proven successful in numerous fields of
metallic materials, such as Al-Mg binary [47] and Al-Mg-
Cu ternary alloys [48], Ag-Au nanoalloys [49], Ti [50], V
[51], W [26], and Fe-He [52]. Benefiting from the excel-
lent ability of neural networks of fitting high-dimensional,
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multivariant functions, DP has shown a great capability of
describing multi-component materials’ properties [47–49,53–
61]. In comparison with empirical potentials, DP has a signifi-
cant advantage in representability, i.e., the ability to reproduce
the properties in the training database. The enhanced repre-
sentability enables DP to take advantage of relatively large
training datasets, which further enhances the generalization
ability of the potential [26] based on the abundant information
of the local atomistic environments contained in the training
database. It is thus promising to construct an ML potential for
the W-H binary system using the DP method, to facilitate the
atomistic simulation, and unveil the mystery of the formation
mechanism of the intragranular H blister in W.

In this work, a new ML potential for W-H binary system
is developed with the DP method. This potential, namely
DP-WH, shows significant advantages over empirical po-
tentials by accurately describing a wide range of properties
including the basic properties of W, solute H properties in
W, H2 molecule formation energy, the interaction between
H and W surfaces, vacancy, dislocations, and formation of H
self-clusters, while guarantees the basic properties which are
already satisfied by the empirical potentials. In the MD sim-
ulation using this ML potential, we find a high concentration
of H atoms in W tend to spontaneously form the H planar
self-cluster with H atoms located between two adjacent (001)
W planes [23]. This form of self-cluster facilitates the devel-
opment of cracks along the cleavage plane, and is highly likely
to be the nucleates of the crack-shaped H blisters observed in
recent experiments [2,3,21].

This manuscript is organized as follows. In Sec. II, we
present the technical details of the construction of the training
database of DP-WH and the training of the ML potential.
Then in Sec. III, we conduct a comprehensive benchmark
of the potential, while making comparisons with the exist-
ing empirical potentials. In Sec. IV, using DP-WH, we run
MD simulations to study the behaviors of high concentrations
of H atoms in W. Finally, we draw conclusive remarks in
Sec. V.

II. METHOD

A. Construction of the training dataset

We use the concurrent learning strategy implemented by
the DP-GEN [62] software to generate the most compact
and adequate dataset to guarantee a uniform accuracy of DP
in the relevant configuration space. DP-GEN runs iteratively
with the exploration, labeling, and training steps. The first
DP-GEN interaction begins with training an ensemble of DP
models with the initial dataset. Then, using one of the models,
exploration of the configuration space is implemented by run-
ning MD simulations. The prediction error on the explored
configurations is estimated by the deviation of the predicted
forces by the ensemble of DP models, and only a small
subset of the configurations with large errors are selected
for labeling, i.e., for the DFT calculations of energy, forces,
and virial tensors. The labeled data are then appended to
the dataset, which is used in the training step of the next
iteration.

a. Initial dataset. The initial dataset is composed of six
subsets.

(1) Equilibrated bcc W with dilute hydrogen solutions. In
a 2 × 2 × 2 supercell of bcc W, 0-4 H atoms occupy random
TISs. All configurations are optimized to zero pressure. All
data generated during the optimizations are collected and ap-
pended to the dataset.

(2) Locally perturbed structures. Based on the optimized
configurations in subset 1, strains and perturbations are per-
formed. The applied strain ranges from −2% to +2%. The
mean perturbation distance of atoms is set to 0.03 Å, and the
mean perturbation fraction of cell vectors is set to 1.0%. The
labels of the strained and perturbed structures are obtained by
single-point DFT calculation.

(3) Solution of 1 H atom in W lattice under strain. 3 ×
3 × 3 bcc supercells, with an H atom occupying the TIS and
the OIS, are hydrostatically strained. The applied strain ranges
from −4% to +4%. The structures under strain are optimized,
and all the data generated during the optimizations are col-
lected.

(4) Hydrogen-vacancy complex clusters. In a 3 × 3 ×
3 bcc W supercell with a vacancy, 0–8 hydrogen atoms are
bonded to the vacancy, with the seventh and eighth H forming
a H2 molecule. All nine structures are equilibrated to zero
pressure. All the data generated during the optimizations are
collected.

(5) 2 H atoms in neighboring TISs. In 3 × 3 × 3 bcc W
supercells, one H atom is placed in a TIS, and the other is
placed at nine different neighboring TIS positions relative to
the first H. All structures are equilibrated to zero pressure. The
data generated during the optimizations are collected.

(6) H-H dimer with the bond-length ranging from 0.5 to
1.0 Å, with a step of 0.01 Å. The energy and forces of the
dimer configurations are calculated by single-point DFT.

b. Exploration. The LAMMPS package [63] compiled with
the DEEPMD-KIT [64] support is employed to perform Deep
Potential molecular dynamics (DPMD) [44] simulations for
the exploration of the configuration space. The exploration
uses five types of structures as the initial configurations for the
MD simulations, which are conducted with various settings
and ensembles.

(1) The strained and perturbed 2 × 2 × 2 supercell bcc
bulk W with 0–4 H atoms randomly filling its TISs. NPT
ensemble is employed with the pressure ranging from −0.5
to 2 GPa, and the temperature ranging from 50 to 1800 K.

(2) The strained and perturbed 2 × 2 × 2 supercell bcc
bulk W with 8 to 16 H atoms randomly filling the TISs. NPT
ensemble is employed with the pressure ranging from −0.5 to
2 GPa, and the temperature ranging from 300 to 900 K.

(3) The equilibrated 2 × 2 × 2 supercell bcc bulk W with
one vacancy, filled with 0–6 hydrogen atoms. NVT ensemble
is employed, with the temperature from 50 to 1800 K.

(4) Free surfaces with miller indexes (111), (110), and
(100), and these surfaces with the adsorption of one H atom.
NVT ensemble is employed. Temperature ranges from 50 to
1800 K.

(5) The strained and perturbed 2 × 2 × 2 supercell bcc
bulk W. NPT ensemble is employed with the pressure rang-
ing from −0.5 to 2 GPa, and the temperature from 1800 to
5500 K.
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During the MD exploration, the deviations of predicted
forces by the four DP models, trained with identical
hyperparameters but different random seeds, are used to es-
timate the error in the force predictions. If the maximal
deviation of atomic forces is between 0.15 eV/Å (the lower
bound) and 0.35 eV/Å (the upper bound) in an explored
frame, the frame is considered as a candidate configuration
and may be sent for labeling. In each iteration at most 100
candidate configurations are labeled. If the estimated errors
of 99.9% of the explored configurations are below the lower
bound, the labeling step is skipped.

c. Labeling. The labels of the candidate configurations,
i.e., the energies, forces, and virial tensors, are computed by
DFT with exchange-correlation modeled by the generalized
gradient approximation (GGA) proposed by Perdew, Burke,
and Ernzerhof (PBE) [65]. The DFT calculations are con-
ducted using the VASP package [66,67]. The Brillouin zone is
sampled by the Monkhorst-Pack method with a grid spacing
of 0.08 Å−1. The projector-augmented-wave (PAW) method
is used and the energy cutoff of the plane-wave basis set is set
to 1000 eV. For tungsten, the pseudopotential (W_SV) with the
semicore states in the electronic structure of a W atom is used.
The 6s, 5d , and 5p electrons are considered valence electrons.
For hydrogen, the pseudopotential (H_H) with the outermost
core radius 0.423 Å is used. The convergence criterion for the
self-consistent field iteration is set to 10−6 eV. The same DFT
parameters are also used for labeling the initial dataset.

d. Training. In each iteration, four models are trained si-
multaneously using the same dataset and hyperparameters,
with the only difference being the random seeds employed
to initialize the model parameters. We use the two-body em-
bedding descriptor developed in the DP model in the training
steps of the iterations. The principles of the DP models are
described in Refs. [44,45], and the brief introduction of the
hyperparameters is presented in Appendix of this manuscript.
The Adam stochastic gradient descent method [68] with de-
fault hyperparameter settings provided by the TENSORFLOW

package [69] is used to train the DP models. During the
training processes, the weights and biases of the embedding
nets ({W e

k , be
k}m

k=0) and those of the fitting net ({W f
k , bf

k }l
k=0)

are trained to minimize the loss function:

L = 1

|B|
∑
k∈B

(
pε

1

N
|Ê k − Ek|2 + p f

1

3N

∑
iα

∣∣F̂ k
iα − F k

iα

∣∣2

(1)

+ pξ

1

9N

∑
iα

∣∣�̂k
αβ − �k

αβ

∣∣2
)

,

which measures the accuracy of the model according to the
differences between the DFT calculated energy Ê k , forces
F̂ k

iα and the virial tensor �̂k
αβ , and those predicted by the DP

model. In Eq. (1), B denotes a mini-batch of datasets, and |B|
is the batch size. The superscript k denotes the index of the
training data in the minibatch. Each training datum contains
a configuration (including the coordinates of atoms, the box
basis vectors, and the element types) and its corresponding
labels. Prefactors (pε, p f , pξ ) are a set of hyperparameters
determining the relative importance of the energy, forces,
and virial tensor during the training. The prefactors are grad-
ually adjusted according to the learning rate rl (t ), which

exponentially decays with the training step t :

rl (t ) = r0
l k

t
td
d , (2)

where r0
l is the learning rate at the beginning of the training,

td denotes the typical timescale of the learning rate decaying,
and kd denotes the decay rate. The prefactors vary with the
learning rate in the following way:

pα (t ) = plimit
α

[
1 − rl (t )

r0
l

]
+ pstart

α

[
rl (t )

r0
l

]
, α = ε, f , or ξ,

(3)

where pα (t ) is either of the three prefactors (pε, p f , pξ ) at
training step t . pstart

α and plimit
α are the prefactors at the begin-

ning and at an infinitely small learning rate, respectively. In
practice, a relatively larger force prefactor at the beginning
and relatively balanced prefactors at the end of the training
can make the best use of the training datasets and achieve rel-
atively good accuracy [43]. Thus, in the training steps of the
DP-GEN iterations, we set pstart

ε = 0.02, plimit
ε = 1.00, pstart

f =
1000.00, plimit

f = 1.00, pstart
ξ = 0.00, plimit

ξ = 0.00, td = 4000,
kd = 0.95, and rl

0 = 1 × 10−3. The number of training steps
is 800 000.

The DP-GEN iterations converge when estimated errors of
more than 99.9% of the explored configurations are below
the lower bound. Using the initial dataset and the dataset
collected with DP-GEN, the productive models using the
hybrid descriptor [26] mentioned in Eq. (A14) are trained.
To ensure high training quality, the productive models are
firstly trained by 2.40 × 107 steps with pstart

e = 0.02, plimit
e =

1.00, pstart
f = 1000.00, plimit

f = 1.00, pstart
ξ = 0.02, plimit

ξ =
1.00, td = 1.20 × 105, and rl

0 = 1.00 × 10−3. Then, with the
model parameters initialized from the result of productive
training, the models are additionally trained by 8.0 × 106

steps with pstart
e = 10.00, plimit

e = 10.00, pstart
f = 1.00, plimit

f =
1.00, pstart

ξ = 0.02, plimit
ξ = 1.00, td = 4.00 × 104, and rl

0 =
1.00 × 10−4 to obtain a higher training accuracy on the en-
ergy.

e. Refinement. The productive models exhibit satisfactory
accuracy on the training dataset generated by DP-GEN. How-
ever, the accuracy of the productive models is not necessarily
guaranteed for certain crucial material properties that may
not have been adequately sampled during the exploration of
DP-GEN. In order to enhance the overall quality and broaden
the range of properties accurately captured by the productive
models, two additional rounds of refinement training proce-
dures are performed.

During the first refinement training, the refining dataset
includes (1) the planar H self-cluster, (2) the SIA structures
in pure W, (3) the generalized stacking fault (GFS) structures
in pure W, and (4) the equilibrated W surface structures with
the adsorption of H atoms. The refining dataset is appended
to the training dataset before the refinement training. The
subset of hydrogen self-cluster is generated via additional
DP-GEN iterations. The initial configurations used during
the exploration MD of the self-clusters are established in the
following approach: in 1 × 1 × 4 and 1 × 4 × 1 supercells,
with cell vectors aligned along the [110], [11̄0], and [001]
directions, H planar self-clusters composed of 16 W atoms
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TABLE I. Hyperparameters used during the productive training, additional productive training, the first refinement training, and the second
refinement training. The superscript (2) and (3) denote the hyperparameter used in two-body embedding descriptors D(2) and three-body
embedding descriptors D(3), respectively.

Hyper-parameter Productive training Additional productive training First Refinement Second Refinement

r (2)
c (Å) 6.0 6.0 6.0 6.0

r (2)
cs (Å) 0.5 0.5 0.5 0.5

N (2)
m 100 W,100 H 100 W,100 H 100 W,100 H 100 W,100 H

layers of G (2) 20, 40, 80 20, 40, 80 20, 40, 80 20, 40, 80
M2 80 80 80 80
M< 16 16 16 16

r (3)
c (Å) 4.0 4.0 4.0 4.0

r (3)
cs (Å) 0.5 0.5 0.5 0.5

N (3)
m 25 W,20 H 25 W,20 H 25 W,20 H 25 W,20 H

layers of G (3) 4, 8, 16 4, 8, 16 4, 8, 16 4, 8, 16
M3 16 16 16 16

MF 240 240 240 240
r0

l 0.001 0.0001 0.0001 0.001
kd 0.95 0.95 0.95 0.95
td 1.2 × 105 4 × 104 4 × 104 2 × 104

pstart
ε 0.02 10.0 10.0 10.0

plimit
ε 1.0 10.0 10.0 10.0

pstart
f 1000.0 1.0 1.0 1.0

plimit
f 1.0 1.0 1.0 1.0

pstart
ξ 0.02 0.02 0.02 0.02

plimit
ξ 1.0 1.0 1.0 1.0

Training Steps 2.4 × 107 8 × 106 8 × 106 4 × 106

and 4 H atoms are established (W16H4). Based on these
configurations, two more (W16H6) and four more (W16H8) H
atoms are randomly introduced into the TISs in bulk W. Using
these initial configurations, exploration DPMD runs up to 10
ps. The NPT ensemble is applied in the explorations at −0.5
to 2 GPa, with the temperature ranging from 300 to 600 K.
The subset of the SIAs includes optimized structures of three
types of SIA (namely, 〈111〉, 〈110〉, and 〈100〉 dumbbells)
in 3 × 3 × 3 bcc supercells. The subset of GFS structures is
obtained directly from the GFS calculations using DFT, along
〈111〉 directions on (11̄0) and (112̄) planes. The subset of the
H surface adsorption structures is obtained by placing H atoms
on the energetically most stable binding sites on the (100),
(110), and (111) free surfaces, and optimizing the structures
using DFT.

The refined models are trained for 8 × 106 steps with
model parameters initialized by the productive model. During
the first refinement training, the starting learning rate is set
to 1 × 10−4, and the starting prefactors of energy, force, and
virial tensors, pstart

ε , pstart
f , and pstart

ξ are set to 10.0, 1.0, and
0.02, respectively. td is set to 4 × 104. The other hyperparam-
eters are the same as those used to train the productive model.

When conducting the benchmark of the model following
the first refinement training, we observed occasional instabil-
ity with the presence of a very high local concentration of H
in the simulation system, which necessitates the second round
of refinement training. This instability may be attributed to
the lack of knowledge regarding local structures with such a
high H concentration. Thus we performed additional DP-GEN

iterations, exploring a 2 × 2 × 2 bcc W supercell containing
15 clustered H atoms (W16H15). The exploration DPMD
simulations run up to 1 ps. The NPT ensemble is applied in
the explorations at 0 to 2 GPa, with temperatures ranging from
300 to 600 K. The subset is appended to the training dataset.
Additionally, we included SIA configurations of 〈11ξ 〉 dumb-
bell [70] in the refining dataset. In the second refinement
training, rl

0 = 1.00 × 10−3, td is set to 2 × 104, and the mod-
els are trained for 4 × 106 steps, with other hyperparameters
kept the same as those used in the first refinement training.
Following the completion of the second refinement training,
we obtained the final potential model, DP-WH.

B. List of hyperparameters

In Table I, we list the hyperparameters used in the produc-
tive and refinement training processes. The introductions of
these hyperparameters are presented in Appendix. All hyper-
parameters related to the model construction remain the same
during all these training processes. However, we adjust the hy-
perparameters related to model training, such as the learning
rate at the beginning of training r0

l , the typical timescale of
the learning rate decay td , and the prefactors of energy, forces,
and virial tensors (pε, p f , pξ ), in various training procedures.

C. Summary of the training dataset and the training accuracy

In Table II, we summarize the composition of the train-
ing dataset and the corresponding root mean square error
(RMSE) on energy (RMSEE) and forces (RMSEF) of the
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TABLE II. Summary of the training dataset and training RMSE of DP-WH.

Category Subsets RMSEE (eV/atom) RMSEF (eV/Å) Nframe

a. Initial dataset 1. Equilibrated W with dilute H 9.21 × 10−4 2.66 × 10−2 101
2. Perturbed W with dilute H 9.51 × 10−4 2.19 × 10−2 619
3. Strained W with 1 H 3.25 × 10−4 1.75 × 10−2 235
4. H-vacancy clusters 1.28 × 10−3 4.26 × 10−2 148
5. 2H in neighboring TISs 4.36 × 10−4 1.84 × 10−2 142
6. H-H dimer 1.07 × 10−2 9.18 × 10−2 28

b. DP-GEN dataset 1. W with dilute H 2.71 × 10−4 1.13 × 10−1 3442
2. W with high concentration H 4.87 × 10−3 1.95 × 10−1 557
3. H atoms in vacancy 5.48 × 10−3 1.61 × 10−1 1615
4. H atoms on surface 3.89 × 10−4 1.25 × 10−1 3222
5. Pure W up to 5500 K 1.23 × 10−2 3.38 × 10−1 980

c. First refinement dataset 1. Self-clusters 4.30 × 10−3 1.46 × 10−1 656
2. SIA(〈111〉, 〈110〉, 〈100〉 dumbbell) 4.41 × 10−4 5.90 × 10−1 54
3. GSF 1.07 × 10−4 4.48 × 10−1 954
4. Surfaces with H adsorption 2.30 × 10−3 5.40 × 10−2 57

d. Second refinement dataset 1. High local concentration 3.51 × 10−3 1.82 × 10−1 291
2. SIA(〈11ξ〉 dumbbell) 4.31 × 10−4 7.15 × 10−2 9

DP-WH on each subset. The entire training dataset consists
of 13 110 frames of DFT data. The overall RMSE on energy
and forces are 4.69 × 10−3 eV/atom and 1.27 × 10−1 eV/Å,
respectively.

III. VALIDATION OF POTENTIAL

In this section, a comprehensive benchmark is conducted
to evaluate the accuracy of the DP-WH on critical proper-
ties of the W-H interaction. Comparisons are made among
the material properties calculated by DP-WH and empiri-
cal potentials. We first examine the basic W properties and
then assess the performances of these potentials on solute H
properties and these properties under the effect of the strain.
Then, we benchmark the behavior of H on low-index W free
surfaces. Next, we examine the interaction between the H
atoms and the monovacancy, and the binding energy of a H
atom with dislocations. Finally, we benchmark the interaction
of H atoms at neighboring interstitial sites and the binding
energy of H in the H self-cluster composed of interstitial H
atoms. Calculations of the properties are implemented by the
LAMMPS code [63]. Visualizations are conducted by the OVITO

software [71].

A. Basic W properties

The benchmark results of the basic W properties calcu-
lated by DP-WH and other empirical potentials are listed in
Table III. For fare comparisons with the empirical potentials,
we also listed the previous DFT and experimental results,
which were used as the fitting target of the empirical po-
tentials. The lattice constant and the cohesive energy of bcc
W determined by experiments is 3.165 Å and −8.9 eV. The
present DFT predicts close lattice constant and cohesive en-
ergy to experimental values. For the sake of self-consistency
of the training dataset, DP-WH is fit to the DFT values. Thus
DP-WH slightly disagrees with the experiments on the lattice
constant and cohesive energy of bcc W. In comparison, BOP
potentials by bJuslin et al. [32] and Li et al. [33], which

are directly fit to experimental values, well reproduce the
experimental lattice constant and cohesive energy. The EAM
potentials by Bonny et al. [34] and Wang et al. [35] use the
EAM-2 of Marinica-13 [72] as their W-W potential, which
correctly reproduces the experimental cohesive energy, but not
the lattice constant. All listed potentials reproduce the elastic
constants well. The formation energy of point defects, i.e.,
monovacancy and self-interstitial atoms (SIAs) with 〈100〉,
〈110〉, and 〈111〉 dumbbell configurations, are well-predicted
by all potentials except BOP-Juslin [32]. According to a re-
cent work [70], the most stable SIA structure in W is 〈11ξ 〉
dumbbell, where ξ is roughly 0.5. DP-WH can well reproduce
the 〈11ξ 〉 dumbbell as the most stable SIA, while the empirical
potentials predict 〈11ξ 〉 dumbbell to be unstable. None of the
empirical potentials are fitted to the surface energies, thus
the correct predictions of formation energy of low-index free
surfaces of W are not expected for the empirical potentials.
DP-WH not only predicts the correct surface energies but
also reproduces the reconstruction of the (100) free surface of
W [73]. The accurately predicted surface properties serve as
the basis for the correct description of the H adsorption sites
and migration behavior of H atoms on W surfaces, which are
presented in later benchmarks. The equation of states (EOS)
curves of bcc W predicted by the DP-WH and the empirical
potentials are shown in Fig. 1. As the DP-WH and empiri-
cal potentials predict different ground-state lattice constants,
the minimum on the EOS curve predicted by the potentials
corresponds to different atomistic volumes. The changes of
energy with volume predicted by BOP-Juslin and BOP-Li
show similar tendencies with DFT and DP-WH. However,
the EOS curves predicted by EAM potentials increase faster
than DFT with smaller and larger atomistic volumes. Thus we
argue that the EOS predicted by the EAM potentials is less
accurate than the other potentials.

The generalized stacking fault energy (GSFE or γ line) is
the variation of energy on displacing one part of the crystal
against the other on a specific plane. We calculate the γ -line
for bcc W along the [111] direction on the (11̄0) and (112̄)
plane using DFT, DP-WH, and empirical potentials, and the
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TABLE III. Basic properties of bcc W predicted by various potentials, including the lattice constant a0, cohesive energy of bcc W E bcc
coh ,

independent components of elastic constant Cij, formation energy of SIA ESIA
f , formation energy of monovacancy E vac

f , and low-index free
surface E surf

f .

Potential BOP-Juslin [32] BOP-Li [33] EAM [34,35] Reference DFT DP-WH

a0,bcc (Å) 3.165 3.165 3.140 3.185 [74], 3.172 [75] 3.185 3.186
E bcc

coh (eV) −8.890 −8.906 −8.900 −8.900 [76], −8.412 [74] −8.412 −8.413
C11 (GPa) 542 [33] 515 544 517 [75], 523 [72] − 516
C12 (GPa) 191 [33] 203 208 198 [75], 203 [72] − 201
C44 (GPa) 162 [33] 162 160 142 [75], 160 [72] − 146
ESIA

f 〈100〉 (eV) 8.93 [33] 12.01 12.86 11.49 [77], 12.87 [72] 11.84 12.03
ESIA

f 〈110〉 (eV) 8.77 [33] 9.53 10.82 9.84 [77], 10.83 [72] 10.14 10.35
ESIA

f 〈111〉 (eV) 9.62 [33] 9.33 10.52 9.55 [77], 10.53 [72] 9.86 10.16
ESIA

f 〈11ξ〉 (eV) unstable unstable unstable 10.25 [78] 9.84 10.13
E vac

f (eV) 1.68 3.52 3.49 3.11 [79],3.56 [33] 3.56 3.30
E surf

f (100) (J/m2) 1.446 [33] 3.157 [80] 2.721 [80] 4.635 [81], 4.021 [75] 3.933 3.900
reconstruction N N N − Y Y
E surf

f (110) (J/m2) 0.931 [33] 2.319 [80] 2.306 [80] 4.005 [81], 3.268 [75] 3.348 3.302
E surf

f (111) (J/m2) 1.720 3.222 [80] 2.963 [80] 4.452 [81], 3.556 [75] 3.525 3.563

comparison is made in Fig. 2. DP-WH agrees well with DFT
on nearly the entire γ -lines. The EAM potentials predict rea-
sonable γ -lines, but the values are lower than the DFT results.
The γ -line predicted by the BOP-Juslin potential is notably
lower than DFT. Such a low GSFE even leads to unphysical
dissociation of edge dislocation cores [82]. BOP-Li predicts
a slightly lower γ -line on (11̄0) plane and a higher γ -line on
(112̄) plane. Among the empirical potentials, BOP-Li has the
best prediction on the γ -lines.

B. H solution in W and formation of hydrogen molecule

The properties of solute H in bcc W lattices predicted by
the empirical potentials and DP-WH are listed in Table IV.
The solution energy of H at TIS and OIS in bcc W is calcu-

FIG. 1. Equation of states of bcc W predicted by various poten-
tials. On the ground-state volume, the BOP potentials agree with
experiments, and DP-WH agrees with the present DFT. The change
of EOS curve predicted by the BOP and DP-WH have similar tenden-
cies. EAM potentials are less accurate in predicting the EOS curve
than other potentials.

lated by

E tet
s = E tet

tot (WH) − NW E (W) − 1
2 E (H2) (4)

and

Eoct
s = Eoct

tot (WH) − NW E (W) − 1
2 E (H2), (5)

where E tet
tot (WH) and Eoct

tot (WH) are the total energies of con-
figurations with a H atom in a TIS and an OIS in the W
supercells, NW is the number of W atoms, E (W) is the energy
contribution of a W atom in the ground-state bcc W lattice,
and 1

2 E (H2) stands for the half of the total energy of an
isolated hydrogen molecule. The solution energies of H in TIS
and OIS were the fitting targets of the empirical potentials
except for the EAM-Bonny. BOP-Li is fitted to the solution
energy calculated by DFT. BOP-Juslin and EAM-Wang are
fitted to the solution energy with the zero-point-energy (ZPE)
correction. In previous literature, ZPE correction is evaluated
by summing up the ground-state vibration energy of the H
atom in W [23]. In this work, DP-WH is fitted to TIS H and
OIS H solution energy calculated by DFT without the ZPE
correction. Also the ZPE correction is separately evaluated by

�E tet
ZPE = E tet

ZPE(WH) − EZPE(W), (6)

where E tet
ZPE(WH) is the ZPE of the bcc W supercell with

one H in a TIS, and EZPE(W) is the ZPE of the W supercell
without the H atom. E tet

ZPE(WH) and EZPE(W) are calculated
by summing up the energy of all vibration modes of all W
and H atoms, which is implemented by the PHONOLAMMPS

[83] code. The E tet
ZPE(WH) predicted by DP-WH in Table IV

shows a small difference with the previous DFT result. The
difference between solution energies of OIS H and TIS H,
�Es, is slightly underestimated by all previous empirical po-
tentials but is well reproduced by DP-WH. The migration
energy along the minimum energy paths (MEP) for hydrogen
diffusion in W is calculated using the nudged elastic band
(NEB) method [84]. Except for BOP-Juslin, all potentials
well-reproduce the migration energy for H from TIS to an-
other nearby TIS, which is the most feasible pathway for H
diffusion in W. The formation of a H2 molecule, EH2

f , can be
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FIG. 2. GSFE of bcc W predicted by various potentials and DFT. (a) γ -line along the [111] direction on the (11̄0) plane. (b) γ -line along
the [111] direction on the (112̄) plane.

reasonably reproduced by BOP-Juslin, BOP-Li, EAM-Wang,
and DP-WH. The formation energy with respect to EH2

f , as a
function of the H-H dimer bond length predicted by all the
potentials is shown in Fig. 3. BOP-Juslin and BOP-Li use the
same H-H potential proposed by Brenner et al. [88], which
accurately describes the H-H dimer energy. EAM-Wang qual-
itatively reproduces the H-H dimer energy, but the energy
increases too fast with a longer hydrogen bond length. With
more focus on the H-defect interactions in W and the H-He
interactions, the two EAM-Bonny potentials disregard the
formation of a hydrogen molecule [34]. Thus the accurate
description of H-H dimer energy by EAM-Bonny is not ex-
pected. Ignoring EH2

f also leads to the unreasonable solution
energy of the H in W TISs and OISs calculated by Eq. (4).
DP-WH well-reproduces the H-H dimer energy since it is
fitted to the DFT result.

C. Solute H properties under strain

Due to the complexity of the fusion service condition,
lattice strains are inevitably induced by many factors such
as the presence of defects [24], thermal stresses caused by
the temperature gradient [15], and the formation of blisters
itself [2]. It is proved by DFT that strain is a key factor
determining the solubility and diffusivity of H in W [89]. It is
thus important for a potential to accurately describe the effect
of lattice strain on H solution energy and migration energy.

The solution energy of the H atom in a TIS and OIS of a
hydrostatically strained bcc W predicted by various potentials
is shown in Fig. 4. For the solution energy of a TIS H shown
in Fig. 4(a), a nearly constant shift is observed between the
DFT/DP-WH calculated results and the previous DFT results
calculated by Zhou [89] et al. The shift is attributed to the ZPE
correction. And DP-WH agrees well with the present DFT
since the solution energy under strain is included in the train-
ing dataset. The E tet

s calculated by the empirical potentials
with respect to lattice strain is obtained from Ref. [35] For the
two BOP potentials, E tet

s decreases faster with strain than the
DFT results. EAM-Wang agrees well with the ZPE corrected
DFT result at positive strain but overestimates E tet

s at nega-
tive strains. The solution energies calculated by EAM-Bonny
potentials are shifted to 0.0 at zero pressure. The change of
E tet

s with respect to the strain predicted by EAM-Bonny-1
shows a similar tendency to that predicted by EAM-Wang.
But EAM-Bonny-2 predicts that the E tet

s increase with either
the tensile or compressive strain, which disagrees with DFT
and all other potentials.

For the solution energy of an OIS H shown in Fig. 4
(b), DP-WH also agrees with the present DFT result on the
solution energy and the effect of the strain. The BOP-Juslin
potential has the best agreement with DFT among the em-
pirical potentials. Eoct

s predicted by EAM-Wang potential is
overestimated at compressive strains but is underestimated

TABLE IV. Solute H properties in bcc W and H-H dimer properties. Solute H properties include the solution energy of H atom at TIS
E tet

s , OIS E oct
s and their energy differences �Es, the ZPE correction of a H atom at the TIS �E tet

ZPE, H migration energy from TIS to its
first-nearest-neighbor TIS, Et→t

mig . H-H dimer properties include the formation energy EH2
f and the equilibrium bond length LH2

c of an isolated
H2 molecule.

Potential BOP-Juslin BOP-Li EAM-Bonny-1 EAM-Bonny-2 EAM-Wang [35] Reference DFT DP-WH

E tet
s (eV) 1.04 [35] 0.86 [35] 3.65 [35] −19.86 [35] 1.05 [35] 0.85 [85], 0.87 [86] 0.88 0.95

�E tet
ZPE (eV) − − − − − 0.22 [86] − 0.24

E oct
s (eV) 1.40 [35] 1.18 [35] 3.99 [35] −19.48 [35] 1.40 [35] 1.26 [85], 1.33 [87] 1.27 1.35

�Es (eV) 0.36 0.32 0.34 0.34 0.35 0.41 [85], 0.45 [87] 0.39 0.40

Et→t
mig (eV) 0.34 [35] 0.23 [35] 0.21 [35] 0.21 [35] 0.22 [35] 0.20 [85], 0.21 [87] 0.20 0.20

EH2
f (eV) −4.75 −4.75 − − −4.72 − −4.53 −4.53

LH2
b (eV) 0.75 0.75 − − 0.74 − 0.75 0.75
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FIG. 3. Relative energy of a H-H dimer as a function of the
bond lengths. BOP-Juslin, BOP-Li, and DP-WH reproduce the DFT
values. Though EAM-Wang is accurate in describing the equilib-
rium H2 molecule bond length, the H-H dimer energy predicted
by EAM-Wang deviates from DFT results with longer bond length.
EAM-Bonny potentials ignore the H-H dimer energy and EH2

f , thus
their description of the H-H dimer energy is unreasonable.

at large tensile strains. Eoct
s predicted by BOP-Li decreases

significantly faster with strain than DFT results. Also, the
Eoct

s predicted by the EAM-Bonny potentials is shifted to
0.0 at zero stress. The change of Eoct

s with respect to the
strain predicted by EAM-Bonny-1 is close to that predicted by
EAM-Wang. EAM-Bonny-2 predicts higher Eoct

s at compres-
sive or large (>2%) tensile strain than at zero stress, which
disagrees with DFT and all other potentials.

The migration energy of a solute H atom in a W lattice and
the effect of the hydrostatic lattice strain is shown in Fig. 5.
These migration paths are not explicitly included in the train-
ing database of DP-WH. In Fig. 5(a), we show the energies
along two MEPs for hydrogen migration in W. One is from a
TIS to a first-nearest-neighbor (1NN) TIS (“t-t”), and another
is from a TIS, via a nearby OIS to a second-nearest-neighbor
(2NN) TIS (“t-o-t”). For both paths, the migration energy and
the energy along the MEP predicted by DP-WH agree well
with the DFT results by Liu et al. [85]. The migration barrier
for the “t-t” path is nearly 0.2 eV. It is only half of the barrier
for the “t-o-t” path (nearly 0.4 eV). Thus, in MD simulation
using DP-WH, the H migrates in W mainly via the “t-t” path.
The migration barrier along the “t-o-t” shown in Fig. 5(a)
is very close to the �Es in Table IV, which indicates a H
in an OIS is a metastable state with a very shallow energy
basin.

The changes in the migration energies along the “t-t” path
with the hydrostatic strain are shown in Fig. 5(b). The mi-
gration barrier predicted by BOP-Juslin is 0.34 eV at zero
stress, much higher than the migration barrier predicted by
other potentials and DFT. Thus we omitted BOP-Juslin in
Fig. 5(b). Benefiting from the good generalization ability,
DP-WH shows a good agreement with the DFT result ob-
tained from Ref. [35]. The migration energies predicted by
all empirical potentials increase faster with the compressive
strain than the DFT results. It is thus expected that all the

empirical potentials might underestimate H diffusivity under
compressive strain.

D. H adsorption and migration on low-index W free surfaces

Interactions between H atoms and W surfaces are funda-
mental to understanding many aspects of H behaviors in W.
The critical processes to the intragranular H blister, such as
energetic H impinging on W [90], H diffusion and interaction
beneath W surfaces [91], formation of internal H cracks [3],
and development of H blisters [2], involve the interaction
between H with W free surfaces. (100) is the experimental
cleavage plane of W, and (110) is the index with the low-
est surface energy. H behaviors on these low miller-index
surfaces, and to a less extent, (111), have received essential
attention [73]. It is thus important for a potential to accu-
rately describe the interaction between a H atom with these
low-index free surfaces. We benchmark the adsorption sites,
binding energy, and the migration barrier of a H atom on these
low-index surfaces using various potentials. The results are
shown in Fig. 6.

The binding energy of a H atom on W free surface is
calculated by

E surf
b = E surf

tot (WH) − E surf
tot (W) − 1

2 E (H2), (7)

where E surf
tot (WH) is the total energy of the binding configura-

tions, E surf
tot (W) is the total energy of the surface configuration

without H and E (H2) is the total energy of an isolated
hydrogen molecule. A negative value of E surf

b suggests an
energetically favorable binding state. As shown in Fig. 6(a),
the most stable adsorption site on the reconstructed (100)
surface by DFT is the “short-bridge (sb)” site, with a binding
energy of −0.90 eV. It is in agreement with the −0.91 eV
predicted by previous DFT calculations [73]. The barrier of H
migration from a “sb” site to a nearby “sb” site is 0.44 eV [73].
DP-WH is the only potential that predicts the reconstruction of
the (100) free surface and correctly reproduces the H binding
energy, H adsorption sites, and a 0.53 eV H migration barrier
on the (100) free surface. On the (110) free surface, as shown
in Fig. 6(b), the DP-WH predicts the lowest binding energy
−0.76 eV at the “threefold (3f)” site, in agreement with the
present DFT calculated −0.73 eV, and −0.75 eV from a pre-
vious DFT result [73]. The migration barrier from a “3f”
site on the (110) surface to a nearby “3f” site is 0.08 eV as
predicted by DP-WH, which is also in good agreement with
previous DFT results [73]. On the (111) free surface, DFT
results in Ref. [73] give the most stable configuration at the
“bond-centered (bc)” site between the first W layer and the
second W layer with a −0.62 eV binding energy. DP-WH
and the present DFT predict that the most stable H binding
configuration is above the “bc” site. As shown in Fig. 6(c),
DP-WH predicts the binding energy to be −0.81 eV, which
underestimates the present DFT result −0.64 eV. The migra-
tion energy predicted by DP-WH is 0.29 eV, which is higher
than the 0.27 eV from the previous DFT calculation [73].

Remind that all W-H empirical potentials have poor de-
scriptions of the free surface energy, and thus the accuracy of
their surface-related properties is not expected. Nevertheless,
for comparisons with DP-WH, we benchmark their H binding
energies on surfaces and H adsorption sites. The results are
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FIG. 4. Solution energy of interstitial H atoms in hydrostatically strained W lattices. (a) TIS H. The results of the empirical potentials are
obtained from Ref. [35]. (b) OIS H. The DFT results with ZPE corrections are obtained from Ref. [89].

presented in Figs. 6(d)–6(f). We exclude the binding configu-
ration predicted by EAM-Bonny-2 because it predicts that the
binding of H on the W surface is energetically less favorable
than the H solution in TISs of W bulk, which is contrary to the
present DFT result. Moreover, as neither EAM-Bonny poten-
tials give correct energy E (H2), we exclude their H binding
energies on surfaces in Fig. 6, and only show the adsorption
sites predicted by EAM-Bonny-1. As shown in Fig. 6(d), none
of the empirical potentials predict the reconstructed (100)
free surface. EAM-Bonny-1 and BOP-Li predict the “two-
fold (2f)” adsorption site, and BOP-Juslin and EAM-Wang
predict the “four-fold (4f)” site. On (110) surfaces shown in
Fig. 6(e), however, EAM-Wang, EAM-Bonny-1, and BOP-Li
correctly predict the “three-fold” (3f) binding site. BOP-Juslin
incorrectly predicts H binding at the “sb” site. On (111) free
surfaces shown in Fig. 6(f), none of the empirical potentials
predict the correct H adsorption sites. Only the BOP-Li pre-
dicts somehow reasonable H binding energy on the (110)
and (111) free surfaces. Except that, none of the empirical

potentials give reasonable predictions of H-binding energy
on the surfaces. Thus we omit the calculations of migration
energy of H atom on free surfaces using empirical potentials,
due to their poor descriptions of the H-surface interactions.

E. Interaction between H atoms and monovacancy

It is revealed experimentally that vacancy-type defects,
which are produced massively under irradiation or at high
temperatures, significantly enhance hydrogen retention [9,92].
Due to the importance of vacancy-hydrogen interactions
in W, there are abundant results concerning the interac-
tion between H and vacancy-type defects [8,11,13,17], and
advanced models describing the H retention rate with the
presence of vacancy-type defects already exist [27]. Although
it was believed that the exposure to low-energy high-flux
H plasma does not generate a large number of vacancies
in W [2,3,14,15,20,21], accurate description of the interac-
tion between a vacancy and H atoms is still an important

FIG. 5. Migration properties of a solute H atom in bcc W. (a) Energy on the H migration MEP along the “t-t” path and “t-o-t” path.
Comparisons are made between the result predicted by DP-WH and DFT calculation by Liu et al. [85] (b) The “t-t” path migration energy as
a function of hydrostatic lattice strain predicted by various potentials. The DFT results by Wang [35] et al. is plotted for comparison.
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FIG. 6. H adsorption and migration behaviors on low-index surfaces of W predicted by various potentials. Es
b is the binding energy of

the H atoms to the surfaces, and Es
m is the H migration energy on W surfaces. [(a)–(c)] DP-WH and DFT predicted adsorption sites, binding

energy, and migration energy. The DFT binding energy is calculated in this work, and the migration energy is obtained from Ref. [73].
[(d)–(f)] Adsorption sites and binding energy predicted by empirical potentials. Migration energies predicted by the empirical potentials are
not presented, as their accuracies are not expected.

benchmark for a high-quality interatomic potential. The ba-
sis of the H-vacancy interaction is the binding between H
atoms and a monovacancy. The sequential binding energy of
a vacancy with n = 1–8 H atoms is plotted in Fig. 7(a). The
sequential binding energy is determined by

E seq
b (HnV1) = Etot (HnV1) − Etot (Hn−1V1) − (

E tet
s + 1

2 E (H2)
)
,

(8)

FIG. 7. (a) Sequential binding energy of a series of H atoms to a
monovacancy in W predicted by various potentials. (b) The binding
sequence of 1–6 H atoms in a vacancy in W. (c) The binding sequence
of the seventh and eighth H atoms in a vacancy in W. (d) The binding
configuration of a metastable H8V1 complex cluster, with the seventh
and eighth H forming a H2 molecule.

where the Etot (HnV1) is the total energy of the binding config-
uration of a monovacancy with n H atoms, Etot (Hn−1V1) is the
total energy of the binding configuration with one less H atom,
E tet

s is the solution energy of an H atom in the tetrahedral
lattice site in bulk W, and E (H2) is the energy of an isolated
hydrogen molecule. The last term in Eq. (8), E tet

s + 1
2 E (H2),

is the energy contribution of an H atom in a TIS of bcc W.
E seq

b (HnV1) measures the binding energy of a Hn−1V1 with a
TIS H. The numbers in Figs. 7(b) and 7(c) show the binding
sequence. In a vacancy in bcc W, H first takes the six positions
near the “face centers” (OIS positions if the vacancy is ab-
sent). The seventh hydrogen and the eighth hydrogen slightly
distort the binding configuration. As can be observed from
Fig. 7(a), most empirical potentials overestimate the sequen-
tial binding energy of a vacancy with less than seven hydrogen
atoms [35], except that BOP-Li underestimates the sequential
binding energy. BOP-Juslin underestimates the binding en-
ergy of the second hydrogen to H1V1 because the cutoff radius
between W and H is too short, which makes BOP-Juslin not
suitable for describing H interaction with vacancy [35]. The
binding configurations of a vacancy with 1–6 H atoms are
explored by DP-GEN, thus DP-WH shows better agreement
with the present and previous DFT results [13,87] in predict-
ing the binding energy with less than 6 H atoms than the
empirical potentials, though the binding between the first H
and the monovacancy predicted by DP-WH is slightly weaker
than DFT result. According to the binding energy shown in
Fig. 7(a), most empirical potentials predict that a vacancy in
W accommodates up to 6 H atoms. DP-WH predicts that a
vacancy accommodates up to 9 H atoms, with the sequential
binding energy of the nineth and tenth H being −0.35 and
+0.43 eV. The previous DFT result shows that the maximum
number of H atoms accommodated by a monovacancy is 12
[13], which is underestimated by all potentials including DP-
WH. DP-WH predicts that the minimum number of H atoms
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FIG. 8. Binding configurations of dislocations with H atoms.
(a) The “degenerate core” predicted by BOP potentials. (b) The
“nondegenerate core” is predicted by EAM potentials, DP-WH, and
DFT. “Screw Dislocation I” indicates the H binding site within the
dislocation core, and “Screw Dislocation II” indicates the H binding
site adjacent to the dislocation core. (c) The binding configuration of
the edge dislocation core with H.

required to stabilize a H2 molecule is 8. It is in agreement with
previous DFT calculations [11]. The binding configuration is
the metastable H8V1 cluster composed of a H6V1 cluster and
an H2 molecule at the center of the vacancy, as shown in
Fig. 7(d). Configurations involving many H atoms, such as
the binding configurations of a monovacancy with more than
eight atoms, and the binding configurations of multiple va-
cancies binding with H atoms, are not included in the training
database. High accuracies on such structures are not expected
for DP-WH. It should be noted that the interaction between
H atoms and vacancy-type defects in W was extensively stud-
ied [8,27]. Moreover, the H-vacancy interaction plays a less
critical role under working conditions where W is exposed
to low-energy, high-fluence H plasma. Thus reproducing all
aspects of interactions between H and vacancy-type defects
are beyond the scope of this work.

F. Interaction between an H atom with dislocations

Dislocations, the major carriers of plastic deformation in
bcc W, are massively produced beneath surfaces in W under
exposure to H plasma [15,20]. Dislocations also contribute
substantially to the retention of hydrogen [14]. Theoretically,
dislocations are believed to be the important trapping sites
for hydrogen atoms and are suggested to facilitate H blister-
ing [18]. It is thus critical for a W-H interatomic potential
to accurately predict the binding configuration and binding
energy of an H atom to dislocations in atomistic simulations.
Empirical potentials predict different core structures of screw
dislocations. BOP-Juslin and BOP-Li potentials predict the
“degenerate core” as shown in Fig. 8(a). EAM potentials,
DP-WH, and DFT predict the “nondegenerate core” as shown
in Fig. 8(b). The schematics of H binding sites within the

screw dislocation core (“Screw Dislocation I”) and adjacent to
the screw dislocation core (“Screw Dislocation II”) are shown
in Figs. 8(a) and 8(b), and the binding configuration of the
edge dislocation core with an H atom is shown in Fig. 8(c).

The binding energies of an H atom to dislocations pre-
dicted by various potentials are shown in Table V and are
determined by

Ed
b = Ed

tot (WH) − Ed
tot (W) − (

E tet
s + 1

2 E (H2)
)
, (9)

where Ed (WH) is the total energy of the binding configura-
tion of the dislocation with an H atom, Ed

tot (W) is the total
energy of the dislocation without binding the H atom, and
E tet

s + 1
2 E (H2) is the energy contribution of an H atom at a

TIS in bulk W. According to the DFT results in Ref. [17], the
binding energy between H and the screw dislocation in the
screw dislocation I site is −0.55 eV, which is slightly lower
than the −0.54 eV in the screw dislocation II site. Among
the empirical potentials, only EAM-Wang predicts the correct
order of the binding energies between an H atom with screw
dislocation at both sites. The BOP-Juslin and BOP-Li under-
estimate the binding energy at the screw dislocation II site.
The EAM-Bonny potentials predict nearly zero binding en-
ergy at the screw dislocation I site, which disagrees with DFT.
There is no information on the binding between H and disloca-
tions in the training datasets of DP-WH. Nevertheless, with a
good generalization ability, DP-WH predicts that the binding
energies at the two sites in screw dislocations are −0.48
and −0.47 eV. The DP-WH slightly overestimates the DFT
results but gives the correct order of the binding energies. As
predicted by all the potentials, the binding of the edge dislo-
cation with a H atom is always stronger than that of the screw
dislocation. Up to now, there is no accessible DFT data on the
binding between edge dislocations with H. However, the ex-
perimental thermal desorption spectrum (TDS) results reveal
that a desorption peak between 0.8–0.9 eV is attributed to the
desorption of H isotope from dislocations [14]. The predic-
tions by DP-WH, EAM-Wang, and EAM-Bonny-2 are within
the range. And the binding energy between the edge disloca-
tion with an H atom is underestimated by the BOP potentials.

G. Interaction between TIS H atoms and the formation of H
self-clusters

With the exposure to low-energy high-flux H plasma, high
concentrations of H are introduced in W [21]. The interaction
between H atoms at neighboring interstitial sites in bcc W has
strong implications for the behaviors of H at high concentra-
tions. The binding energy of a pair of interstitial H has been
extensively studied [23,85,93]. The binding energy between
H at neighboring TISs in the W lattices predicted by various
potentials is shown in Table VI and is determined by

E2H
b = Etot (W2H) − NWE (W) − 2

(
E tet

s + 1
2 E (H2)

)
, (10)

where Etot (W2H) is the total energy of the binding configura-
tion of two neighboring H atoms in W.

The binding configuration is shown in Fig. 9(a). According
to the present DFT calculation and the reference DFT results
[23,85,93], a TIS H is strongly repulsive to another TIS H at
the “A” site and the “B” site. Weakly attractive interactions are
between a TIS H atom and another at the “D”, “E”, “F,” and
“H” sites. At the rest of the neighboring TISs, H atoms are
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TABLE V. Binding energy of an H atom with screw/edge dislocations corresponding to the binding sites shown in Fig. 8 (unit: eV).

Potential BOP-Juslin [32] BOP-Li [33] EAM-Bonny-1 [34] EAM-Bonny-2 [34] EAM-Wang [35] Reference (DFT) DP-WH

Screw dislocation I −0.50 −0.41 [17] 0.0 [17] 0.0 [17] −0.71 −0.55 [16] −0.48
Screw dislocation II −1.08 −1.03 [17] −0.42 [17] −0.66 [17] −0.66 −0.54 [16] −0.47
Edge dislocation −1.61 −1.64 [17] −0.63 [17] −0.89 [17] −0.84 − −0.86

weakly repulsive. The BOP-Juslin predicts very strong repul-
sive interactions of an H atom with another at the “A” site but
predicts attractive interactions at nearly all other neighboring
TISs. The EAM-Bonny-1 and BOP-Li predict weak attrac-
tive interactions only at the “H” site and the EAM-Bonny-2
predicts repulsive H interactions at all neighboring TISs. The
EAM-Wang potential is the only empirical potential fitted to

FIG. 9. The binding configurations corresponding to the binding
energies shown in Table VI. (a) The configurations of interaction
between a pair of H atoms at neighboring TIS in W. (b) The structures
of the H self-clusters in W and the rock-salt structure.

the neighboring H binding energies and agrees well with DFT.
DP-WH is also able to reproduce the interaction between
neighboring TIS H atoms, but DP-WH slightly underestimates
the binding energy at the “E” site.

It is proposed recently that high concentrations of H atoms
can form a planar self-cluster by filling the TISs along a
(001) plane [23]. H atoms in this TIS planar self-cluster are
energetically more favorable than the random solution in TISs
of bcc W. Additionally, H at OISs can also be stabilized by
forming planar self-clusters [8]. It was also predicted by an
MD simulation using EAM-Wang that the self-cluster com-
prised of multiple layers of OIS H along W (001) planes can
spontaneously form [24], with W atoms in the self-clusters
transforming into fcc structure via the reverse bain-path. This
structure is identical to the rock-salt structure [8]. It was later
revealed by DFT that the rock-salt structure is energetically
more stable than both of the TIS/OIS planar H self-clusters
[8].

The binding energies of H atoms in the self-clusters and the
rock-salt structure predicted by various potentials are shown
in Table VI, and are determined by

ESC
b = [

ESC
tot (WH) − NH

(
E tet

s + 1
2 E (H2)

) − NWE (W)
]/

NH,

(11)

where ESC
tot (WH) is the total energy of the self-cluster config-

uration, NH is the number of H atoms in the self-cluster. SC
stands for TIS self-cluster, OIS self-cluster, or the rock-salt
W-H structure. DP-WH can accurately predict the H binding
energies in the TIS/OIS self-clusters and shows a good agree-
ment with the present DFT. The BOP-Juslin underestimates
the binding energy of H in TIS self-clusters. OIS H self-
cluster is unstable as described by BOP-Juslin. The BOP-Li

TABLE VI. Upper panel: Binding energy between a pair of H atoms in TISs of W. Lower panel: the binding energies of H in the TIS/OIS
planar self-clusters and the rock-salt structures (unit: eV).

Binding Position BOP-Juslin [32] BOP-Li [33] EAM-Bonny-1 [34] EAM-Bonny-2 [34] EAM-Wang [35] Reference DFT DP-WH

A 4.213 0.639 0.470 0.340 0.512 0.47 [93],0.45 [85] 0.442 0.383
B −0.375 0.168 0.158 0.095 0.102 0.11 [93],0.09 [85] 0.093 0.068
C −0.461 0.138 0.063 0.042 0.026 0.03 [93],0.01 [85] 0.019 0.003
D −0.243 0.195 0.018 0.097 −0.022 −0.01 [93], −0.02 [85] −0.014 −0.016
E −0.196 0.160 0.020 0.187 −0.005 0.00 [93], −0.01 [85] −0.011 −0.033
F −0.174 0.120 0.020 0.132 0.003 0.00 [23], 0.01 [85] −0.01 −0.008
G −0.079 0.197 0.038 0.156 0.027 0.03 [93], 0.03 [85] 0.017 0.009
H −0.054 −0.122 −0.008 0.026 −0.039 0.05 [23], 0.11 [93] −0.013 −0.008
I 0.024 0.305 0.077 0.179 0.082 0.06 [85] 0.047 0.032
Self-cluster
TIS planar −1.030 0.114 0.068 0.358 −0.011 −0.38 [23] (with ZPE) −0.245 −0.297
OIS planar unstable −0.190 0.003 0.442 −0.398 − −0.009 −0.076
rock-salt −1.404 −0.015 −0.174 −0.172 −0.693 −0.55 [8] (with ZPE) −0.388 −0.449
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TABLE VII. Arrhenius fits of diffusion data of hydrogen. Data of the empirical potentials are taken from Ref. [35]. As did by Ahlgren
et al. [96], the pre-exponential factor from Ref. [96] is multiplied by

√
2 to convert from deuterium to hydrogen.

Potential BOP-Juslin BOP-Li EAM-Bonny-1 EAM-Bonny-2 EAM-Wang Experiment [95] (Corrected [96]) DP-WH

Pre-exponential factor (m2/s) 3.9 × 10−8 4.7 × 10−8 1.1 × 10−7 5.5 × 10−8 5.3 × 10−8 4.1 × 10−7 (1.6 × 10−7) 1.4 × 10−7

Activation Energy (eV) 0.37 0.19 0.26 0.20 0.23 0.39 (0.25) 0.24

predicts that the binding energy of H in TIS self-clusters is
positive, which is contrary to DFT results. The EAM-Bonny
potentials predict that none of the planar H self-clusters are
energetically more favorable than the solute H. Although
EAM-Wang predicts negative binding energy for both TIS
and OIS planar self-clusters, it significantly overestimates
the binding energy of H in the TIS planar self-cluster and
underestimates the binding energy of H in the OIS planar
self-cluster. The binding energy of H in the rock-salt structure
is around −0.55 eV per H atom by DFT with ZPE correction
[8]. According to the present DFT calculation, the binding
energy is around −0.39 eV without the ZPE correction. The
stability of the rock-salt structure is significantly overesti-
mated by BOP-Juslin, slightly overestimated by EAM-Wang,
and underestimated by BOP-Li, EAM-Bonny-1, and EAM-
Bonny-2. The rock-salt structure is not explicitly included in
the training database of DP-WH, but the binding energy of
H in the rock-salt structure predicted by DP-WH shows a
satisfying agreement with DFT, which can be attributed to the
generalization ability of DP-WH.

H. Diffusivity of dilute H at finite temperature

The diffusivity of H in W and its dependence on temper-
ature is of central importance to many key issues in PFM
studies, such as hydrogen retention [94]. It is also an important
benchmark to validate the finite-temperature property of the
potential. To simulate the thermal diffusion of H in W, we con-
duct a DPMD simulation in a 12 × 12 × 12 bcc W supercell,
containing 3456 W atoms and 1 H atom. In an NPT ensemble,
the diffusion simulations run up to 500 ps with a time step of
0.1 fs. The pressure is kept zero during the simulation. The
mean-square-displacement (MSD) H is measured at T = 900,
1200, 1500, and 1800 K to calculate H diffusivity. The diffu-
sivity and temperature are then fitted to the Arrhenius law:
D = D0 exp( −EA

kBT ), to obtain the pre-exponential factor D0 and
the activation energy EA. kB is the Boltzman constant.

The D0 and EA predicted by DP-WH, empirical poten-
tials, and experimental data are presented in Table VII. All
potentials predict that the activation energy for H diffusion
in W is close to the energy barrier calculated by NEB as
shown in Sec. II C. According to the experimental result [95],
the diffusivity of H is D = 4.1 × 10−7 exp( −0.39 eV

kBT ) m2/s. It
seems that all potentials except BOP-Juslin underestimate
the activation energy and the pre-exponential factors of H
diffusion in W. However, it was then suggested by Ahlgren
[96] et al. that the two low-temperature points in Ref. [95]
are underestimated due to the trapping effect [97], and the
true experimental activation energy should be 0.25 eV. In
comparison with the corrected experimental data, all po-
tentials predict reasonable activation energy. DP-WH has
the most accurate description of the pre-exponential factors.

EAM-Bonny-1 also has good accuracy on the pre-exponential
factors, which is underestimated by other empirical potentials.

IV. MD SIMULATIONS ON THE FORMATION OF H
SELF-CLUSTERS

As DP-WH is designed to unveil the possible formation
mechanism of intragranular H blister in W, the potential is
used in an MD simulation based on a bcc W supercell with a
high concentration of H.

We equilibrate a 5 × 5 × 20 bcc W supercell by a 1.0 ns
MD simulation at 600 K and zero pressure in the NPT en-
semble, then randomly introduce H atoms into the TISs at
a concentration of 10.7 at.%. A similar concentration (10
at.%) is used in Ref. [24], and was reported in experiments
[98]. Then an NPT simulation of 2.5 ns is conducted at zero
pressure with the temperature linearly decreasing from 600
to 400 K during the simulation. The decreasing temperature
enables fast diffusion of the randomly distributed H atoms
at the beginning and stabilizes the resultant structures at the
end of the simulation. Moreover, the range of temperature in
this simulation covers the temperatures used in recent experi-
mental studies [2,3,14,15,20,21]. The mass of H atoms in all
simulations is set to 3.0 a.m.u. to allow a timestep of up to 1
fs. The heavier mass only affects the dynamics of the H atoms,
but not their equilibrium distribution in W.

The MD snapshots using DP-WH are shown in Fig. 10(a).
The hydrogen atoms within a radius of 2.8 Å is considered as
a cluster. The largest H cluster is colored red. At the beginning
of the simulation, since H atoms in W have a migration barrier
of only 0.2 eV, their fast diffusion is observed. Beginning
from 0.50 ns, a large H cluster gradually forms into a planar
region with a thickness of a few atom layers along the (001)
plane. The planar self-cluster gradually grows by absorbing
surrounding H atoms and fills the entire (001) plane. Further
evolution of H atoms leads to the reduction of the width of
the planar agglomeration region. As can be observed from
the upper panels of Fig. 10(a), from 1.5 ns to 2.0 ns, the H
atoms gradually fill all the “four-fold” TIS observed along
the [001] view. It is accompanied by the H atoms in the
planar agglomeration region gradually occupying the TIS on
a single plane between two (001) W planes. The TIS planar
self-cluster remains stable until the end of the simulation. In
the enlarged figures in the rightmost panels of Fig. 10(a), we
show the atomistic details of the TIS planar self-cluster at the
end of the MD simulation. It can be observed that almost all
H atoms in the self-cluster are located in the “fourfold” sites
from the viewpoint along the [001] direction. These sites are
TISs located between two adjacent (001) atomistic planes of
W. From the perspective viewpoint, most of the H atoms in
the self-clusters are located on the single plane normal to the
[001] direction. Like previous DFT results [23], the TIS planar
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FIG. 10. MD simulations based on a W supercell with 10.7% at. H. Red atoms are H in the largest cluster. Blue atoms are the rest of the
H atoms. (a) In the MD simulation using DP-WH, the largest H self-cluster at the end of the simulation is the TIS planar cluster between two
(001) W planes. (b) In the MD simulation using EAM-Wang, the majority of clustered H atoms are located in OIS, forming either the OIS
planar self-cluster or the small nucleate of the rock-salt structure. The dashed rectangle indicates the rock-salt structure formed in the MD
simulation.

self-cluster of H widens the interplanar distances between the
two adjacent W (001) planes. The formation of other forms
of the self-clusters, such as the planar OIS self-cluster, or the
rock-salt structures, are not observed in the MD simulation
shown in Fig. 10(a). Remind that the rock-salt structure has a
higher binding energy with the solute H than the TIS planar
self-cluster, and DP-WH can accurately predict the H binding
energy in the TIS/OIS planar self-cluster and the rock-salt
structure. Thus the absence of the rock-salt structure in the
MD simulation implies that the rock-salt structure is kineti-
cally less feasible, which may be attributed to the strong lattice
distortions of W to transform from bcc to fcc.

The spontaneous formation of the TIS planar self-cluster
is not observed in the MD simulation using EAM-Wang [24]
[see Fig. 10(b)]. The simulation protocols of the EAM-Wang
is identical to those of the DP-WH. The behavior of H atoms
in this MD simulation is featured by the formation of a H OIS
self-cluster along the (110) plane and a small nucleate of the
rock-salt structure. According to the comparisons in Table VI,
we attribute the observed H clusters to the underestimated
H binding energies of the OIS self-clusters and the rock-salt

structure and the overestimated binding energy of H in TIS
self-clusters by the EAM-Wang potential.

To rule out the possibility that the formation of planar H
self-cluster is due to the small-size effect, we run additional
DPMD simulations in an 8 × 8 × 32 supercell. The MD snap-
shots of this simulation are shown in Fig. 11. H atoms begin
to cluster at 1.0 ns [Fig. 11(b)]. Once formed, the cluster ac-
cumulates nearby H atoms and grows into a planar shape with
a thickness less than one lattice parameter of bcc tungsten, as
shown in the left panel of Fig. 11(c). In this MD simulation,
the H planar self-cluster grows along the (010) plane, instead
of the (001) plane, whose cross-section is the smallest. The
planar cluster remains stable and gradually grows till the end
of the simulation. In the rightmost panel of Fig. 11(e) where
we removed all atoms except the largest H cluster, a finite-
sized planar-shaped H self-cluster is observed. It thus proves
that the formation of the planar-shaped H self-cluster is not
due to the small-size effect caused by the small cross-section.
However, although all H atoms in the self-clusters are lo-
cated in TISs, the finite-sized planar-shaped cluster along the
(010) plane has not transformed into a single-plane structure.
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FIG. 11. DPMD simulation of H self-cluster formation in a 8 × 8 × 32 BCC W supercell. Red atoms are H in the largest cluster. Blue
atoms are the rest of H atoms. (a) MD snapshots at t = 0, (b) 1.0, (c) 1.5, (d) 2.0, and (e) 2.5 ns. The rightmost panel shows the [010] view of
the finite-sized planar H cluster.

Instead, H atoms are located in three planes: two adjacent
[010] W planes, and the plane between them. During the
simulation, H atom jump among these planes but rarely jump
out of the planar cluster. The interplanar distance between
the two [010] W planes is also slightly widened due to the
presence of H self-cluster, as shown in the enlarged figure of
Fig. 11(e).

According to the theory of H embrittlement [99], H atoms
between crystallographic planes play an important role in
the hydrogen-enhanced decohesion [100]. The H TIS planar
self-cluster is a typical form of planar segregation, which is
assumed to reduce the interatomic bond strength, weakening
the cohesion between the planes [100], and facilitating the
development of cracks along the (001) cleavage plane. In
recent experiments where W is exposed to the low-energy
H plasma [2,3,21], the crack-shaped H blisters normal to the
(001) planes are observed. This coincidence makes us believe
that the H behaviors in the present MD simulation using
DP-WH are strongly related to the crack-shaped H blisters
observed in the experiments and implies that the nucleation of
the intragranular H blister may begin with the formation of the
TIS H self-cluster, instead of the energetically more favorable
rock-salt structures.

V. CONCLUSIVE REMARKS

In this work, we develop an ML potential for W-H bi-
nary system, named DP-WH, based on the DP method. The
potential is designed for conducting high-reliability atomistic
simulations to unveil the formation mechanisms of intragran-
ular H blisters in W under exposure to low-energy high-flux
H plasma. Benefiting from the excellent fitting ability of the
deep neural networks, DP-WH is trained to a large database
constructed by DP-GEN, with the training error of energy
being less than 5 meV/atom. According to our benchmark
results, DP-WH shows good agreement with DFT in a wide
range of properties including basic W properties, solute H
properties in W, the interaction between H and W free sur-
faces, vacancies and dislocations, the interaction between

H atoms at neighboring TISs, and the formation energy of
interstitial H self-clusters. The correct prediction of all the
benchmarked properties with a single potential, which is by
far challenging for the empirical potentials, is achieved in the
benchmark results of DP-WH.

Up to now, the DP-WH is the only W-H binary potential
that reproduces the H binding energy in the H TIS planar
self-cluster, OIS planar self-cluster, and the rock-salt structure
with the DFT accuracy. Using the DP-WH, the MD simulation
results reveal that high concentrations of H atoms tend to
form the TIS planar self-cluster normal to the {001} planes
of W, instead of the OIS planar self-clusters, or the rock-salt
structure reported by previous MD studies [24,35]. The TIS
self-cluster is a typical form of planar H segregation, which is
believed to be responsible for the H-induced decohesion and
facilitate the development of cracks along the (001) cleavage
plane [100]. The TIS self-cluster is thus highly likely to be
the early nucleate of the crack-shaped H blister observed in
recent experiments [2,3,21]. Therefore, we believe that the
DP-WH is a good candidate potential for atomistic simulation
that reveals the formation mechanisms of H blister in W under
ITER working conditions.

In the future, we will use the DP-WH potential to conduct
atomistic simulations at longer timescale and larger length
scales and to further investigate the atomistic details of the
development of the H self-cluster into H blisters.

Although the accuracy of DP-WH is comparable to the
DFT on the benchmarked properties, it is unlikely that the cur-
rent version of DP-WH can be used to simulate the processes
like the collision cascades induced by high-energy protons
[101], because the training dataset of DP-WH includes little
information on very short-range W-H and W-W interactions.
To improve the accuracy in short-range interaction, coupling
with the short-range repulsion models [102] is suggested. The
extension of the DP-WH potential to the simulation of primary
irradiation damage is beyond the scope of the present work
and will be investigated in future works.

The DP-WH model can be obtained in Ref. [103].
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APPENDIX: THE DEEP POTENTIAL MODEL

The deep potential (DP) model [45,64] assumes the total
energy of a system, represented by E , is the summation of the
energy contributions of each atom in the system, denoted as
Ei, i.e.,

E =
N∑

i=1

Ei, (A1)

where N represents the number of atoms in the system, the
energy contribution Ei is dependent on the local environment
of each atom. The local environment matrix Ri for a central
atom i consists of the relative positions of all its neighbors
j within a specified cutoff radius rc. The jth row of the
environment matrix corresponds to the relative position of the
central atom with respect to its jth neighbor, i.e.,

{Ri} j,· = s(ri j ) ×
(

xi j

ri j
,

yi j

ri j
,

zi j

ri j

)
, (A2)

where ri is the position of atom i, ri j = r j − ri is the relative
position between i and j, and (xi j, yi j, zi j ) denotes the three
Cartesian coordinates of the vector ri j , and ri j = |ri j | stands
for the distance between the neighbor j and the central atom
i. In Eq. (A2), the term s(ri j ) is defined as s(ri j ) = fc(ri j )/ri j ,
where fc is a switching function that smoothly varies from 1
at the smooth cutoff distance rcs to 0 at the cutoff distance rc.
The construction of the switching function is

fc(r) =

⎧⎪⎪⎨
⎪⎪⎩

1 r < rcs

u3(−6u2 + 15u − 10) + 1 rcs � r < rc

0 rc � r

, u = r − rcs

rc − rcs
. (A3)

According to this definition, the switching function fc

smoothly decreases from 1 to 0 within the range rcs � r � rc.
The environment matrix Ri consists of Nm rows, where Nm

represents the maximum number of neighbors any atom in the
system can have. If the actual number of neighbors of atom i is
less than Nm, the remaining entries in the environment matrix
are filled with zeros.

In the DP models, the local environment matrix is first
mapped onto a descriptor, denoted as D. This descriptor is de-
signed to retain the symmetries related to rotation, translation,
and permutation of atoms. Subsequently, the descriptor D is
further mapped onto the corresponding energy contribution Ei

using a fitting net referred to as F .

Ei = F (D(Ri)). (A4)

a. Descriptors. Two types of descriptors: the two-body
embedding descriptor D(2)

i [45] and the three-body embedding
descriptor D(3)

i [26] are used in this study.
In the construction of D(2)

i , the generalized environment
matrix R̃i is established. This matrix shares the same number
of rows as the environment matrix, but includes an additional
column consisting of s(ri j ). The jth row of R̃i is defined as

{R̃i} j,· = s(ri j ) ×
(

1,
xi j

ri j
,

yi j

ri j
,

zi j

ri j

)
. (A5)

The two-body embedding matrix G (2)
i involves the embed-

ding of two-atom distances. The embedding matrix G (2)
i has

Nm lines and M2 columns. Its jth line is(
G (2)

i

)
j,· = (

G(2)
1 (s(ri j ), Zj ), · · · G(2)

M2
(s(ri j, Zj ))

)
, (A6)

where Zj is the chemical species of a neighbor atom j. G(2),
the two-body embedding net, is a fully connected deep neural

network, that maps the scaler s(ri j ) onto M2 outputs. The
embedding net G(2) has m + 1 layers, and can be written as

G(2)(x) = Le
m ◦ Le

m−1 ◦ · · · ◦ Le
1 ◦ Le

0(x), (A7)

where ◦ denotes the function composition. The first hidden
layer Le

0 takes a scalar as input and outputs a vector of size s0.
It is defined by

Le
0(x) = tanh

(
x · W e

0 + be
0

)
, (A8)

where W e
0 ∈ Rs0 are the weights, represented by a vector of

size s0, be
0 ∈ Rs0 denote the biases and the activation function

tanh applies to the vector x · W e
0 + be

0 in a componentwise
way. Other hidden layers are expressed as

Le
k (x) = (x, x) + tanh

(
x · W e

k + be
k

)
, 1 < k � m, (A9)

where (x, x) denotes the concatenation of two input vectors
x. The weights are denoted as W e

k ∈ Rsk−1×sk , and the biases
are represented by be

k ∈ Rsk . We set the output size of the k-th
hidden layer to be twice the input size, i.e., sk = 2sk−1. The
output size of the final layer, denoted as sm, is equal to M2,
which is the same as the number of columns in the embedding
matrix G (2)

i . The parameters in the embedding net, {W e
k , be

k}m
k=0

will be trained together with those in the fitting net.
The two-body embedding descriptor D(2)

i is constructed as

D(2)
i = 1

N2
m

(
G (2),<

i

)T R̃i(R̃i )
TG (2)

i , (A10)

where the superscript T denotes the matrix transpose. The
superscript < on G (2),<

i means that G (2),<
i is a sub-matrix of

G (2)
i , which takes the first M< columns of G (2)

i . The output of
descriptor D(2)

i is a matrix of shape M< × M2, and is reshaped
into a vector before it is passed to the fitting net.
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The three-body embedding descriptor D(3)
i is differenti-

ated from the two-body embedding descriptor D(2) by the
embedding matrix used. The notation (θi) jk is a shorthand rep-
resentation for the elements of the product of the environment
matrix Ri with its transpose.

(θi ) jk ≡ {Ri(Ri )
T } jk = s(ri j )s(rik )

ri j · rik

ri jrik
. (A11)

For any atom i, the three-body embedding tensor G (3)
i , is

defined as(
G (3)

i

)
jk,· = (

G(3)
1 ((θi ) jk, Zj, Zk ), · · · , G(3)

M3
((θi) jk, Zj, Zk )

)
.

(A12)

The three-body embedding tensor Gi(3) is constructed by map-
ping the scalar (θi ) jk to a vector of dimension M3 using the
three-body embedding net G(3). The three-body embedding
net has the same architecture as the two-body embedding net
defined by Eqs. (A7)–(A9). The number of layers in the three-
body embedding net is denoted by mt + 1, and its trainable
parameters are represented by W t

k , bt
k

mt

k=0. In the embedding
tensor G (3)

i , the first two indices j and k range from 1 to Nm.
The three-body embedding descriptor D(3)

i is constructed
as

D(3)
i = 1

N2
m

θi : G (3)
i = 1

N2
m

Nm∑
jk=1

(θi ) jk
(
G (3)

i

)
jk, (A13)

where : denotes the double contraction operation. The output
of the descriptor is a vector of dimension M3.

In practice, we usually use the hybridization of the
two-body embedding descriptor D(2)

i and the three-body

embedding descriptor D(3)
i , i.e.,

Di = (
D(2)

i ,D(3)
i

)
, (A14)

where both D(2) and D(3) are treated as vectors, and the two
vectors are concatenated to form a new vector. Thus the hybrid
descriptor Di has a total number of M< × M2 + M3 outputs.
The parameters needed to be optimized in the training are
{W e

k , be
k}m

k=0, {W t
k , bt

k}mt
k=0.

b. Fitting net. The fitting net is responsible for mapping
the descriptor Di to the energy contribution Ei of each atom i.
It is a fully connected deep neural network with skip connec-
tions, consisting of l hidden layers.

F (x) = L f
l ◦ · · · ◦ L f

1 ◦ L f
0 (x). (A15)

The layers of the fitting net are defined as

L f
0 (x) = tanh

(
x · W f

0 + bf
0

)
, (A16)

L f
k (x) = x + tanh

(
x · W f

k + bf
k

)
, 1 � k < l, (A17)

L f
l (x) = x · W f

l + bf
l . (A18)

In the first hidden layer L f
0 , the weights W f

0 have a size of
(M< × M2 + M3) × MF , and the bias bf

0 has a size of MF . For
layers 1 � k < l , the input and output are vectors of the same
length MF , which allows for a skip connection as described
in Eq. (A17). The weights and biases for these layers have a

size of MF × MF and MF , respectively. The output layer L f
l

is a linear transformation that maps a vector of length MF to
a scalar. The weights W f

l form a vector of size MF , and the
bias is a scalar. All the parameters {W f

k , bf
k }l

k=0 are optimized
together with the parameters in the descriptors during training.
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