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Two-dimensional (2D) Mo-based MXenes (Mon+1CnTx ) are recognized to have significant potential as
hydrogen evolution reaction (HER) activity electrocatalysts. However, appropriate descriptors are absent to
predict the H-adsorption Gibbs energy (�GH) due to the unique delocalized electronic properties of the Mo
atom. In this paper, we used first-principles calculations and machine learning to study the HER activity of
Mo2CO2 with single transition metal-doped (Mo2CO2-STM), and elucidate the mechanisms by which single
transition metals (STMs) regulate the hydrogen evolution reaction. Our results revealed that �GH has a “W”
shape as a function of the doped atom changing in one period. The electronic structure analysis indicates that
the electronic delocalized Mo has a longer range affecting not only the nearest atoms, but the second-nearest
neighbor (STM-Mo) bonding effect controls the periodic distribution of �GH. Using machine-learning method,
we quantized the STM regulation mechanism using five key structural and electronic descriptors, and predicted
the �GH of Mo2CO2-STM, which were also extended to W2CO2-STM successfully. Our findings highlight
the importance of considering second-nearest-neighbor bonding effects in similar delocalized materials systems
research.
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I. INTRODUCTION

MXenes are a family of two-dimensional transition metal
carbides and nitrides [1,2], with the general formula Mn+1XnTx

(n = 1–4), where M is a transition metal, X is C or N, and
T represents surface functional groups such as O, OH, and
F [3]. Due to their high electronic conductivity and high
catalytic activity, MXenes have been successfully applied in
various electrochemical applications, such as hydrogen evo-
lution reaction (HER) [2,4], oxygen evolution reaction [5,6],
supercapacitors [7], and metal ion batteries [8,9]. Among
these materials, Mo-based MXenes (Mon+1CnTx ) have been
recognized as promising electrocatalysts [10–13], besides the
widely studied Ti-based MXene materials [14,15]. Anasori
et al. [16] reported that the H adsorption energy for Mo2C
is 0.048 eV, demonstrating its potential as an excellent HER
electrocatalyst.

The hydrogen adsorption Gibbs energy (�GH) is a com-
monly used descriptor for assessing the HER activity of
electrocatalysts in theoretical investigations. However, calcu-
lating �GH typically requires the total energies of materials
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before and after hydrogen adsorption, which can be com-
putationally expensive and time-consuming, especially when
screening large numbers of candidate materials. To over-
come this challenge, researchers can simplify the search for
high-performance catalysts by identifying simple materials
descriptors of catalyst before adsorption that can be used to
predict �GH. By reducing the computational costs of calcu-
lating �GH, this approach can enable faster and more efficient
screening of catalysts with desirable properties.

Doping with transition metal atoms [11,17] or match-
ing different transition metal layers can change the surface
electronic structure and chemical properties of Mo-based
MXenes. But, the delocalization of d electrons of Mo makes
the coupling effects between different atoms difficult to ana-
lyze. Moreover, it renders the traditional descriptors to predict
H adsorption energy (�GH) invalid. Kuznetsov et al. [18]
observed that Co doping in Mo2CTX −Co led to changes in
catalytic activity due to additional electron transfer between
Co and O atom. Gan et al. [19] studied the -V, -Cr, -Mn,
-Fe, -Co, -Ni, and -Cu loaded Mo2CO2 via first-principles
calculations, and reported that the peak position in the density
of states (DOS) of O atom is related to �GH. Mo2CO2 exhibit
extensive delocalization of Mo’s d electrons [20] compared
with other MXenes (Ti2CO2, V2CO2). It makes the electrons
of Mo more dispersive in space, which evidently changes the
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FIG. 1. Overall flow of MXene descriptors discovery.

adsorption performance of MXenes [21]. Anasori et al. [16]
synthesized Mo2TiC2Tx and found that in all cases and regard-
less of terminal, the DOS at the Fermi level of Mo2TiC2Tx is
mainly controlled by the d orbital of Mo, which makes con-
ductivity of Mo2TiC2Tx and Ti3C2Tx entirely different [1,22].
We have previously [23] established one empirical equation
model for the �GH of single transition metal (STM)-doped
MXenes (Ti, Zr, Ta, etc.) by using the bond length and Fermi
level, but this model cannot be directly applied to Mo2CO2-
STM systems.

As one of the most important vacancies, the regulation
mechanism between electronic-delocalization atom (Mo) and
doped atoms, together with effective descriptors to quantize
the mechanism, significantly restrict the development of new
MXenes materials. Therefore, there is a need for in-depth
research on the regulation mechanism of Mo-based MXenes.
In this study, we used first-principles calculations and ma-
chine learning to investigate the size factor and electronic
structure properties of Mo2CO2 with single transition metal
atom-doped (Mo2CO2-STM). We found that the delocalized
electrons of Mo contribute to the bonding effect between
the Mo atom and the next-nearest-neighbor STM atom, con-
trolling the periodic distribution of �GH. Additionally, we
constructed a machine-learning model for predicting �GH of
Mo2CO2-STM and identified five key descriptors. This model
was successfully extended to W2CO2-STM MXene materials,
demonstrating its potential for identifying MXene materials
with catalytic activity.

Figure 1 shows the overall flow of this work. First, in
Fig. 1(a), the H catalytic activity of 3d , 4d , as well as
5d single transition metal-doped Mo2CO2 is calculated by
density-functional theory DFT. The W-shaped periodic rule of
doping tuned �GH is discovered. Next, the reason underlying
this rule at the structural and electronic levels is studied, as
shown in Fig. 2(b), and we infer its origin in the long-range
bond interaction of Mo and other atoms. To quantify this bond
interaction [Fig. 2(c)], we build a machine-learning model
with five descriptors: Fermi level (Ef ), d-band center of STM
atom (εM−d ), Bader charge of M0 atom under the absorption
site (BM0(Si) ), Bader charge of STM atom (BM ), and variation

of STM in z axis (�h), which captures the trend in catalytic
activity, and employ it to predict �GH, as shown in Fig. 1(d).
Finally, we extend these key descriptors to W2CO2-STM to
verify their validity in other MXenes with similar electronic
delocalization, as shown in Fig. 1(e).

II. METHODS

A. Ab initio computation

The calculations were performed within the Vienna Ab
initio Simulation Package (VASP) [24] based on DFT. The
Perdew-Burke-Ernzerhof (PBE) functional within a gen-
eralized gradient approximation was used to express the
exchange-correlation function [25]. The projector augmented-
wave [26] method was applied to describe the pseudopoten-
tial. The cutoff kinetic energies for the plane waves were set
to 600 eV for all the calculations. The convergence tolerance
of the energy and force on each atom during structure relax-
ation were less than 10−4eV and 0.001eV Å−1, respectively.
The energy calculations were performed with a 3 × 3 × 1
supercell and with a total 20 Å vacuum for Mo2CO2 and
Mo2CO2-STM. The semiempirical dispersion-corrected DFT
force-field approaches (DFT-D3) were adopted to describe the
weak interaction involved in the calculations. The Fermi level
was set into the center of the band gap following the con-
vention. In addition, the integration crystal orbital Hamilton
population (ICOHP) [27] is calculated by LOBSTER code [28],
which can be used to quantitatively measure the bond strength
between two atoms.

B. Gibbs free energy of hydrogen adsorption

The HER pathway of reaction can be described as

H+(aq) + e− → H∗ → + 1
2 H2. (g) (1)

This reaction includes an initial state H+(aq) + e−, an
intermediate state H∗, and a final state H2(g). The Gibbs free
energy of the adsorption of the intermediate hydrogen on a
catalyst (�GH) is a key descriptor of the HER activity of the
catalyst. When the pH and potential U effects are ignored,
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FIG. 2. Top and side views of 3 × 3 × 1 supercell of Mo-based MXene structures. (a) M2C structure: top, fcc and hcp represent the sites
where O may be adsorbed; (b) Mo2CO2 with functional group O; (c) Single atom-doped model of Mo2CO2-STM, STM = 3d , 4d , and 5d
metals. S0, S1, and S2 represent three types of O equivalent positions for H adsorption. Tc atom is excluded due to its radioactivity.

�GH is defined as [29,30]

�GH = �EH + �EZPE − T �SH, (2)

where �EH is the adsorption energy for adding one H atom
onto the Mo2CO2-STM catalysts. ZEP is zero-point energy.
The �EH is defined as

�EH = EH∗ − E∗ − 1
2 EH2 , (3)

where EH∗ , E∗, and EH2 are the total energies of the catalyst
with one adsorbed H atom, the catalyst without any adsorbed
H atom, and the total energies of H2 for the gas phase, re-
spectively. �EZPE and T �SH in Eq. (2) are the difference in
zero-point energy and the entropy between atomic hydrogen
adsorption and hydrogen in the gas phase, respectively. �EZPE

can be calculated using Eq. (4):

�EZPE = EH∗
ZPE − E∗

ZPE − − 1
2 EH2

ZPE, (4)

where the EH∗
ZPE and E∗

ZPE are, respectively, zero-point energy
for the catalyst with one adsorbed H atom and the catalyst
without any adsorbed H atom. The �SH in Eq. (2) can be
approximated as

�SH ≈ 1
2 S0

H2
, (5)

because the vibrational entropy in the adsorbed state is minor
according to previous studies [29], and S0

H2
is the entropy of

H2 gas under standard conditions. Here, the total values of
�EZPE − T �SH for Mo2CO2 are listed as 0.366 eV in Table
S1 [31]. Therefore, Eq. (2) can be written as

�GH = �EH + 0.366 eV. (6)

The optimal �GH value for the HER is close to 0 eV, i.e.,
the smaller the |�GH| value, the better the HER performance
of the catalyst. The formation energy between the single tran-
sition metal atom and Mo vacancy defect (VMo) of Mo2CO2

substrates is defined as

Edf = EMo2CO2−STM − EMo2CO2−VMo − ESTM,

ST M = 3d, 4d, and 5d metals, (7)

where EMo2CO2−STM, EMo2CO2−VMo , and ESTM are the total en-
ergies of oxygen-terminated Mo vacancy defect MXenes with
and without STM doping and the STM only, respectively. For
a 3 × 3 × 1 supercell, the STM-doped formation energy is
evaluated as

Edf = EMo17C9O18−STM − EMo17C9O18 − ESTM . (8)

Equation (1) is dependent on the pH and the potential U
through the chemical potential of H+ and e−, respectively.
Therefore, the Gibbs free energy of the adsorption with po-
tential U and pH effects is defined as

�GpH
H = �GH + �GU + �GpH. (9)

�GU is calculated by

�GU = − neUSHE, (10)

where n is the number of transferred electrons (here, n = 1
in HER) and e is the transferred charge. The standard hy-
drogen electrode potential (USHE) was theoretically defined in
solution [pH = 0, p(H2) = 1bar]. U is the applied electrode
potential, which is at equilibrium, namely, U = 0 V. Here,
�GU = 0 eV [6].

�GpH is defined as

�GpH = −kBT ln[H+] = pH × kBT ln10, (11)

where kB is the Boltzmann constant, kB = 1.38 × 10−23J/K,
and T = 298.15 K. �GpH

H vs pH is shown in Fig. S1 [31].

C. Kernel ridge regression

Kernel ridge regression (KRR) [32] combines ridge regres-
sion (linear least squares with l2-norm regularization) with the
kernel trick [33]. It thus learns a linear function between the
mapping space converted by the kernel and the target. The loss
function of KRR can be the following:

loss =
n∑

i=1

⎛
⎝yi −

n∑
j=1

α jκ (−→x j − −→xi )

⎞
⎠

2

+ λ‖ψ‖2, (12)
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FIG. 3. �GH of Mo2CO2-STM. (a)–(c) �GH of S0, S1, and S2 sites. Dashed line near 0.094 eV is referencing �GH of Pt(111) [38].

where the first part in Eq. (12) is the quadratic loss function
and κ (−→x j − −→xi ) is a kernel function to map the input space
to the higher-dimensional descriptor space. In this paper, the
radial basis function (RBF) and Matern kernel are used [34].
The second part λ‖ψ‖2 is the regularized term, which is the
source of “ridge” in kernel ridge regression. The regularized
item is used to balance the degree of fitting against the com-
plexity of the model.

Four initial kernels are prepared for the KRR model, in-
cluding standard RBF kernel, absolute exponential kernel
(Matern kernel with smoothness coefficient 0.5), once-
differentiable functions kernel (Matern kernel with smooth-
ness coefficient 1.5), and twice-differentiable functions kernel
(Matern kernel with smoothness coefficient 2.5). The λ and
kernel optimization is implemented by Grid Search method.
The whole machine-learning flow is built on the basis of
opened SCIKIT-LEARN package [34].

III. MATERIALS

In Fig. 2(a), the initial M2C (M is a transition metal, such as
Mo, Ti, Zr, etc.) possesses a uniform three-layer structure. As
shown in Fig. 2(b), terminal functional groups O are loaded
onto the surface of Mo2C to form Mo2CO2 structures, which
can considerably improve the surface activity. The selection
of O terminal functional groups is based on their thermo-
dynamic stability, as they are more stable than OH terminal
functional groups [35]. It is worth acknowledging that certain
studies [36,37] suggest that MXenes with a combination of
H/OH terminal functional groups exhibit superior stability.
However, due to the presence of multiple types of adsorption
sites and local structures introduced by the relative position of
the doped element, H, and OH, this paper does not consider
the utilization of mixed terminal functional groups.

The positions in which the terminal groups could be lo-
cated are classified as top, face-centered cubic (fcc), and
hexagonal close-packed (hcp). For Mo2CO2, the hcp position
is the most stable site for the O atom, and the calculation
process is presented in detail in Table S2 and Table S3 [31].

As shown in Fig. 2(c), the Mo atom in Mo2CO2-STM
is substituted by STM. Here, STM represents 27 different
transition metals, among which Tc is excluded due to its
radioactivity. After the single-atom replacement, the O atoms
capable of adsorbing H are no longer equivalent, due to the
different relative distance influence of the replacement atom.

Therefore, the relative distance from the replacement atom is
used to distinguish the three types of positions of S0, S1, and
S2, as shown in Fig. 2(c).

IV. RESULTS

A. Absorption Gibbs free energy

Figures 3(a)–3(c) illustrate the �GH of Mo2CO2-STM.
The �GH value at position S0 displays noticeable periodicity
with the periodic row of the transition metal. Specifically, as
the atomic number of the STM increases, the �GH curve
exhibits a W-shape variation within a single period (row),
indicating that �GH of Mo2CO2-STM can be affected by
numerous factors. Similar trends in �GH are also observed
for the S1 and S2 positions. By comparing Figs. 3(a)–3(c),
the variance of �GH decreases as the distance between the
catalytic site and the doped atom increases, suggesting that the
influence of the doped atom on the adsorption site becomes
weaker with distance.

As shown in Figs. 3(a)–3(c), the �GH of S0, S1, S2 sites of
Mo2CO2−Zn, Mo2CO2−Ru, and Mo2Co2−Os fall within the
range of −0.2 to 0.2 eV, which indicates that these materials
possess high catalytic efficiency and significant exploration
potential. The relationship between exchange current and
�GH, considering the influence of kinetics [39,40], is dis-
cussed and illustrated in Supplemental Material, Text S1 [31].

B. Structure analysis

The size factors �h and �r in Fig. 4 are used to reflect the
volume distortion caused by the introduction of STM atoms.
�h represents the difference in the z direction between the
STM and the replaced Mo atom, which reflects the upward
and downward movement of the STM relative to the surface.
As shown in Fig. 4(c), the value of �h is directly related
to the atomic number of the STM atom because the atomic
radius of each element in the periodic table row corresponds
to a fall and rise pattern. When the STM is compressed due
to interactions with surrounding atoms, �h increases, causing
the STM to be pushed to the surface, even beyond the surface
to form an STM protrusion if its size is greater than 1.2 Å.
Furthermore, post-transition metals such as Zn and Cd have
high �h values. This can be attributed to the filling of the d
band of post-transition metals, which intensifies the shielding
effect and leads to a drop in the outer-layer electron binding,
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FIG. 4. Structure changes after STM doping. (a) �h: z-axis distance difference between STM and replaced Mo; (b) �r: distance difference
after and before STM doped between S0 site and STM in (0,0,1) face; (c) �h vs atomic number of STM atom; (d) �r vs atomic number of
STM atom. (e) �GH of S0 sites vs �h; (f) �GH of S0 sites vs �r.

resulting in an increase in radius. As a result, these elements
require more space to accommodate the electron cloud, and
the STM atom is pushed further from the surface.

The parameter r0 is the horizontal distance between the
O atom at the S0 site and the STM on the (0,0,1) plane as
depicted by the dotted circles in Fig. 4(b). �r is the difference
in r0 observed before and after STM doping, and is utilized
to reflect the influence of STM on the O atom. Negative �r
values signify a reduction in the O atom’s size towards the
center. Figure 4(d) highlights the behavior of �r, which also
exhibits a “U” shape along atomic numbers in a given period.
This pattern is attributed to the periodic changes in the radius
of the STM atoms. Notably, Zn, Y, and Cd atoms are extruded
out due to internal extrusion stress at the surface, which causes
a decrease in �r values.

As shown in Figs. 4(e) and 4(f), there is no direct corre-
lation between the two size factors and the adsorption energy
curve. Therefore, the size factor alone cannot reflect the ad-
sorption energy of Mo2CO2-STM systems.

C. Electronic analysis

Figure 5 presents the projected density of states (PDOS)
of atoms in the Mo2CO2-STM system. The peaks of STM-
d-PDOS move to the left as the group number of STM
increases in total. In Fig. 5(a), we observe that the peaks
of STM-d-PDOS shift to lower energies as the group num-
ber increases. Further analysis of the PDOS curves reveals
that STM-d-PDOS exhibits slight oscillations between 0 and
−6.5 eV. STM-d-PDOS fluctuate slightly from 0 to −2, −4.5,
and −6.5 eV.

As shown in Fig. 5(b), C-p-PDOS form peaks in −3 and
−6.5 eV, respectively. Notably, the main peaks of Mo-d-
PDOS are located at −4.5 eV, and show a broad distribution
in energy space. The peaks of all O-p-PDOS are around
−4.5 eV in Fig. 5(d). At the same energy level, the
PDOS peaks of STM, O, and Mo atoms overlap, making it

challenging to assign the specific atom responsible for the ob-
served interactions at −4.5 eV based solely on PDOS analysis.

Therefore, we use crystal orbital Hamilton population
(COHP) analysis to further obtain the bonding and anti-
bonding effects between superficial atoms of Mo2CO2-STM.
COHP analyzes the interaction between energy orbital of en-
ergy band structure, and is used to represent the contribution
of bonding and antibonding to energy band structure: COHP
< 0 means bonding, and COHP > 0 means antibonding. To
quantify the strength of the bonding interaction, we integrate
the COHP curve from minus infinity to the Fermi level, re-
sulting in an integration crystal orbital Hamilton population
(ICOHP) value. Typically, the value of −ICOHP is used to
quantify bond strength.

The trends in the −ICOHP values of the fourth period
can be observed in Fig. 6. We note that the −ICOHP(STM−O)

values decrease with an increase in atomic number, and an
inflection point occurs at the Ni site. −ICOHP(Mo−O) remain
nearly flat, with a slow rise over a period. The trend for
STM-Mo bonding is characterized by several evident inflec-
tion points. −ICOHP(STM−Mo) values display a minimum of
two inflection points within each period. In the fourth period,
we observe Fe and Ni inflection points. We note that the trends
for −ICOHP(STM−O), −ICOHP(Mo−O), and −ICOHP(STM−Mo)

are similar across periods 4, 5, and 6.
In electron localized systems, such as Ti2CO2 MXenes,

the interaction of the second-nearest neighbor between STM
and the base metal (Ti, Mo, etc.) is usually not considered.
However, an examination of Fig. 6 shows that −ICOHP values
for both STM-O [Fig. 6(a)] and STM-Mo [Fig. 6(c)] are
equally significant. This finding suggests that the bonding
effect of STM-Mo in Mo2CO2 is non-negligible. Figure S2
[31] provides additional comparisons of the three MXene-
STM systems. Consequently, our focus is directed towards the
STM-Mo bond.

Figure S3 [31] shows the COHP line details of STM-
Mo, indicating the action region of bonding and antibonding
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FIG. 5. PDOS of atoms in Mo2CO2-STM. (a) STM-d-PDOS; (b) C-p-PDOS; (c) Mo-d-PDOS; and (d) O-p-PDOS.

interactions. This study emphasizes the bonding region of
the COHP lines that lie below the zero-scale line of the y
axis. Figure S3 depicts that, taking the fourth period as an
example, the primary bonding region between STM and Mo
shifts towards the left and disappears as atomic number in-
creases. It occurs within a range of 0 to −2 eV. The second
bonding region emerges in the −4.5 eV region as the atomic
number increases, reaches its maximum at the V atom, and
later vanishes near the Fe and Co atoms. The third bonding
region appears near −6.5 eV, commencing at the Fe atom,
reaching its maximum at the Ni atom, and then diminishing.

The crucial points of change in the bonding region (V, Fe,
Ni) correspond to the inflection points of −ICOHP(STM−O)

and −ICOHP(STM−Mo) curves in Fig. 6, and more importantly,
the critical nodes of the trend line �GH in Fig. 2. This obser-
vation indicates that the bonding between STM-Mo may be
the key factor influencing the change in the �GH trend.

Figure 6(a) shows that the PDOS peaks of the fifth- and
sixth period atoms occur within the −6.5 and −4 eV range.
The −ICOHP(STM−O) and −ICOHP(STM−Mo) trends for the
fifth- and sixth period atoms exhibit a tendency similar to
that of the fourth period atoms, except for the Y atom, which
is located above the outer O surface. However, the rules of
ICOHP(STM−O) and ICOHP(STM−Mo) for the fifth- and sixth
period atoms become less apparent when considering the in-
fluence of the C-p orbital near −6.5 eV.
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FIG. 6. −ICOHP values: (a) −ICOHP(STM−O); (b)
−ICOHP(Mo−O); and (c) −ICOHP(STM−Mo).

With the peaks of STM-d-PDOS shifting to the left in each
period, the STM atom interacts sequentially with other atoms
(O, Mo, C) at the −2, −4.5, and −6 eV sites. The asynchrony
of these orbital interactions leads to multiple inflection points
(such as V, Fe, Ni, etc.) in the STM-O and STM-Mo bonding
curves within a single period. When H is absorbed on the
surface, the O–H bond is influenced by the coupling effect
of the underlying atoms and bonds; the bonds with periodic
variation of STM-O and STM-Mo affect the formation of the
O–H bond, so the inflection points above remain in the O–H
bond change curve. As a result, the �GH exhibits a W-shape
variation. The strong STM-Mo bonding effect is likely the
reason for the unique hydrogen evolution performance of Mo-
based MXenes.

D. Machine learning

Since the ICOHP calculation is time-consuming and using
a single descriptor may not be enough to accurately predict
�GH, we employed machine-learning methods to identify
key descriptors for Mo-based MXenes HER catalytic activity
[44,45]. We extracted 18 descriptors from 27 Mo2CO2-STM
structures before H absorption, based on previous suggestions

FIG. 7. Mo2CO2-STM bonds. Types of M0–O bonds (black) at
S0, S1, and S2 sites are STM-O, BTM-O, and BTM-O, respectively,
and the bonds of M1–O (brown) at S0, S1, and S2 sites are all BTM-
O. BTM is defined as base transition metal, and as stated, STM is
defined as single transition metal.

for descriptors in the literature [44,46–48]. Using these de-
scriptors, we built machine-learning (ML) models to predict
�GH.

The initial descriptors used in this study mainly reflect the
bonding effects and are listed in Table I. Each descriptor can
be represented by a single numerical value. The descriptors
with complex numerical matrix representation, like SOAP
[49] and Coulomb Matrix [50], were not considered in this
study. We defined the base transition metal (Mo) in MXenes
as BTM and the doped single transition metal as STM to
better distinguish the transition atoms. Additionally, for the
bonds around the O adsorption site, we defined the distinct
bond as M0–O and the other two equivalent bonds as M1–O,
as shown in Fig. 7. The relational graphs between �GH and
typical descriptors are shown in Fig. S4 [31].

Each Mo2CO2-STM structure produces three
Mo2CO2−STM−H−Si structures after absorption, due
to the difference of adsorption sites. Therefore, the properties
of local structure near these three potential adsorption sites
in Mo2CO2-STM structure are distinguished. The Si label
(i = 0–2) indicates that the descriptors take different values at
the S0, S1, and S2 potential adsorption sites of Mo2CO2-STM
structure, as shown in Table I.

To select descriptors related to �GH, the study applied
correlation-coefficient screening to the 18 descriptors shown
in Fig. S5 [31], and the descriptor εBTM−d was filtered out
due to its strong correlation with εM−d . We enumerated all
the possible descriptor combinations of the remaining 17

TABLE I. Eighteen primary descriptors associated with elemental and geometrical properties that are calculated by DFT-PBE or simple
processing.

Symbol Name Symbol Name

dM0−O (Si) M0−O distance in MXene εM−d d-band center of STM
dM1−O (Si) M1−O distance in MXene εBTM−d d-band center of BTM (average)
�h Height movement of STM εO−p p-band center of O (average)
�r Radius difference of the adsorption BM Bader charge of STM (S0)
RM Ionic radius of STM BBTM Bader charge of BTM (S0)
χM Pauling electronegativity of STM BO Bader charge of O (S0)
ZM Nuclear charge number of STM BC Bader charge of C (S0)
Eg Band gap using PBE BM0 (Si) Bader charge of M0

Ef Fermi level in MXene BO (Si) Bader charge of O
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FIG. 8. Machine-learning results. (a) Feature selection for Mo2CO2-STM; (b) Feature selection for W2CO2-STM; (c) SHAP values for
five key descriptors of Mo2CO2-STM; (d) �GH predicted by KRR model for Mo2CO2-STM with five key descriptors; and (e) �GH predicted
by KRR model for W2CO2-STM with five key descriptors.

descriptors and trained ML models based on a Mo2CO2-STM
dataset of 81 points to find the subset of descriptor with the
threefold cross-validation (CV) error [34]. The training set
consisted of 54 samples (67%), with the remaining 27 samples
(33%) used as test data, and both R2 (decision coefficient) and
RMSE (root-mean-square error) were monitored during the
process. The performance of different numbers of descriptors
in the KRR machine learning model is shown in Fig. 7. The
details of the combination of descriptors and their R2 scores
and RMSE errors are shown in Table S4 [31].

From Fig. 8(a), the R2 score (CV) increases rapidly with
an increasing number of descriptors (N) up to 5, after which
the increase slows down. Therefore, it is reasonable to choose
five descriptors as the final descriptors to retain the simplicity
of the model. The subsets of descriptors with 2 < N < 6 all
included the Fermi level (Ef ), d-band center of STM (εM−d ),
as well as the Bader charge of M0 in three sites (BM0(Si) ).
The descriptors �h and BM were consistently ranked fourth
and fifth, respectively. Across the different subsets of the
descriptors, their rankings remained stable across the range of
N. Based on these findings, the final set of descriptors selected
for the model were Ef , εM−d , BM0 (Si), �h, and BM .

To further demonstrate the efficacy of the selected descrip-
tors to model HER materials, we applied them to another
unlocalized-electron system, W2CO2-STM, since metallic
tungsten dioxide (WO2) is also known to have a W–metal
bonding effect [51]. The specific combinations of descrip-
tors and corresponding errors are presented in Table S5
[31]. As illustrated in Fig. 8(b), we repeated the feature
selection process on W2CO2-STM in the same manner as
that done for Mo2CO2-STM. Interestingly, the five descrip-
tors selected for W2CO2-STM were only different by one

descriptor from those selected for Mo2CO2-STM. Therefore,
we modeled W2CO2-STM with Ef , εM−d , BM0 (Si), �h, and
BM descriptors and find these five descriptors selected by
Mo2CO2-STM differ by 0.03 R2 from those selected by
W2CO2-STM. The five descriptors generalize well, suggest-
ing that the unlocalized-electron MXene system may behave
similarly as Mo2CO2-STM.

To elucidate the impact of descriptors on the model pre-
diction, we generated a plot of SHAP (SHapley Additive
exPlanations) analysis [52], which is an algorithm for inter-
preting predictions. As presented in Fig. 8(c), each point in
the plot represents one MXene sample, and the color indicates
the normalized value of the corresponding descriptor. Specif-
ically, red signifies that the value is larger than the mean of
the descriptor, while blue signifies that the value is smaller.
SHAP values indicate the positive or negative influence of
each sample on �GH when considering individual descriptors.
Generally, a wider distribution of SHAP values for a descrip-
tor denotes its greater significance.

Different from the feature selection results above, the
SHAP method ranked the εM−d as the as the most important
descriptor. It is reasonable because εM−d is the original factor
of STM doping. It reflects the interaction of the d orbital of
STM with the orbitals of other atoms (O, Mo, C), causing
changes in �GH periodically. The εM−d exhibits a negative re-
lationship with �GH, where a higher d-band center indicates
a more negative �GH [53]. This is consistent with the d-band
center theory [54]. Generally, as the center of the d orbital
rises, the antibonding state is forced to rise above the Fermi
level, causing a decrease in electron filling of the antibonding
state, leading to a stronger bond between the adsorb atom and
the catalyst surface, resulting in a more negative �GH.
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In the HER catalytic activity problem, Ef exhibits strong
stability across all descriptors, which is consistent with
Ref. [23]. Among the samples with high Ef values, approxi-
mately seven (shown in red color) exhibit large positive SHAP
values. This indicates that for these samples, Ef is an impor-
tant predictor for the model.

BM0 (Si) exhibits a strong negative correlation with �GH,
where less electron loss of center atoms M0 (represented in
red color) leads to a more negative �GH. The blue “block”
for BM0 (Si) represents samples where electron transformation
is small, and these samples provide little information for
the model (0 < SHAP value < 0.05). The reason for this
phenomenon is that BM0 (Si) reflects the amount of charge
transferred from the metal atom in different absorption sites,
and is a key descriptor that directly reflects the local structure
differences of S0, S1, and S2 sites. The number of electrons
that are gained by the O atom from the metal atoms before
hydrogen adsorption, known as the O-atom gains [55], have
been shown to impact the hydrogen and oxygen bonds during
adsorption. If the O atom receives fewer electrons from the
underlying metal atoms, it is more likely to obtain electrons
from H atoms during the hydrogen adsorption process. This
results in a stronger O–H bond, leading to a more negative
�GH. When the electron loss of center atoms M0 is similar to
the electron loss of Mo atoms, as in the blue-block samples, it
becomes difficult to distinguish them using BM0 (Si).

The BM is the Bader charge of STM atom. The same trend
that BM0 (Si). BM , and BM0 (Si) are selected at the same time
because they are complementary to each other is shown. BM

reflects the unique charge distribution of different center STM
atoms. Therefore, BM is an information supplement to BM0 (Si)

and helps improve the accuracy of the model by providing ad-
ditional information on the charge distribution of STM atoms.

Different from the former four descriptors, �h shows a
nonmonotonic correlation with �GH. Samples with large �h
(represented in red color) are valuable data for model pre-
diction, as they help to distinguish different structures. In
contrast, samples with smaller �h, corresponding to the blue
points of the �h descriptor in Fig. 8 and the points of valley
in Fig. 4(c), are almost useless for modeling if considering
only the �h descriptor. This is because the structures for these
samples are close to the initial Mo2CO2 structure. Therefore,
while �h is an important descriptor, its relationship with �GH

is nonmonotonic and should be considered alongside the other
descriptors for accurate model prediction.

Based on the five descriptors, a KRR model was trained
using 54 random samples and tested on the remaining 27

samples in Mo2CO2-STM, with an R2 value of 0.904 for the
training data and 0.884 for the testing data, as shown in shown
in Fig. 8(d). A similar model was also trained for W2CO2-
STM, with R2 values of 0.856 for both the training and 0.833
for testing data [Fig. 8(e)]. To provide the uncertainly with the
prediction by machine-learning model, we retrained Gaussian
process regression (GPR) model by five key descriptors in the
Supplemental Material [31], which also proved good applica-
tion effect of the feature five descriptors.

Compared to previously explored MXenes-STM [23],
which used Ef and dM1−O (Si) as descriptors for Ti2CO2-STM,
Zr2CO2-STM, and Ta2CO2-STM, the five descriptors in this
paper provide more information for describing the compli-
cated electronic structure information of Mo2CO2-STM and
W2CO2-STM. The dispersion distribution of Mo electrons in-
troduces the interaction with second-nearest-neighbor atoms,
which requires more descriptors to be used for an accurate
model. Therefore, d-band center and Bader charge are promis-
ing electronic descriptors that can be developed further to
improve the accuracy of the model.

V. CONCLUSION

In this study, we investigated the size factor and electronic
structure properties of single transition metal atom-doped
Mo2CO2 MXenes using first-principles calculations and
machine-learning methods. We found that Mo2CO2−Ru,
Mo2CO2−Zn, and Mo2CO2−Os have �GH values in the
range of −0.2 to 0.2 eV, which suggests their potential as
HER catalysts. We also identified five key descriptors (Ef ,
εM−d , BM0 (Si), �h, and BM) that can be used to predict �GH in
Mo2CO2-STM by machine-learning screening in delocalized-
electron MXenes. The relevance of our findings was also
confirmed in W2CO2-STM systems. Finally, we highlighted
the importance of considering the second-nearest neighbor
bonding effect for Mo and W atoms not only in MXene
materials but also in catalytic materials.

Authors can confirm that all relevant data are included in
the paper and or its Supplemental Material files.
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