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Using limited neural networks to assess relative mechanistic
influence on shock heating in granular solids
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The rapid compaction of granular media results in localized heating that can induce chemical reactions, phase
transformations, and melting. However, there are numerous mechanisms in play that can be dependent on a
variety of microstructural features. Machine learning techniques such as neural networks offer a ubiquitous
method to develop models for physical processes. Limiting what kind of microstructural information is used as
an input and assessing normalized changes in network error, the relative importance of different mechanisms can
be inferred. Here we utilize binned, initial density information as network inputs to predict local shock heating
in a granular high explosive trained from large-scale molecular dynamics simulations. The spatial extent of the
density field used in the network is altered to assess the importance and relevant length scales of the physical
mechanisms in play, where different microstructural features result in different predictive capabilities.
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I. INTRODUCTION

The rapid compaction of granular solids can lead to a wide
variety of microstructural [1–4] and chemical [5–8] responses
that are highly dictated by the initial local packing and struc-
ture of the material. While the use of molecular dynamics
(MD) and continuum mechanics simulations have helped to
elucidate the governing processes [9–16], the wide range of
mechanisms in play have prevented a unified understanding
of events, especially the weighted relevance of various mech-
anisms.

A key example is the shock compression of energetic ma-
terials, which are typically neat or polymer-bonded granular
solids with a bimodal grain size distribution of larger grains
and smaller “fills” [17–19]. The shock initiation of chem-
istry, which can lead to a run to detonation, is governed by
the formation of localizations of excess energy known as
hotspots, which are typically defined by their temperature
and size [20,21]. These hotspots form through shock-induced
processes such as intra- and intergranular void collapse,
shear band formation, jetting of material, and intergranular
friction [22–26]. From system to system, these individual
processes can be influenced by material orientations, crystal
defect formation, surface properties, and void shapes and
sizes [27–34]. Void collapse is typically the dominant pro-
cess, with the energy localization increasing with increasing
pressure-volume (P-V ) work done [35]. Additionally, the
range of grain sizes utilized greatly affects the shock initiation
and detonation processes for nanometer- and micrometer-
scale grains [36,37]. Hence broadly understanding the overall
shock compression and initiation involves a wide range of
materials models and highly detailed structural information.

Additionally, shock compaction not only localizes thermal
energy, but also can deform individual molecules, causing
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them to exist in strained states [38]. These intramolecu-
lar strains can alter reaction kinetics and pathways through
mechanochemistry [39–41]. Interestingly, these strain ener-
gies are thought to occur through fundamentally different
processes than temperature localization [33,42]. Being able
to predict the localization of both temperature and strain
energy in a hotspot remains a grand challenge for the ener-
getic materials community and is highly relevant to general
materials compaction problems. Being able to predict these
processes without running computationally expensive molec-
ular dynamics and hydrocode simulations, as well as to better
evaluate the key or necessary mechanisms, is crucial to the
materials physics and condensed matter chemistry communi-
ties.

Materials science, in general, has recently experienced a
rapid increase in the use of machine learning (ML) to extract
and understand physical processes that can occur [43–45]. ML
has played a key role in the development of computational
models [46–52], predicting properties [53–57], and charac-
terizing materials [58–61]. While predictions from large and
nonlinear neural networks typically function as a black box,
limiting and altering the physical information that informs the
network can help to tease out which properties and mecha-
nisms are critical to a process by the network’s ability to make
predictions given its limited subset of input information. This
process, employed here, is similar to a “leave one feature out”
scheme.

Here, we utilize nonreactive, all-atom MD simulations to
model the shock response of the granular high explosive 1,3,5-
triamino-2,4,6-trinitrobenzene (TATB). A neural network is
used to predict the final temperature and intramolecular strain
energy fields, given just the initial density field of the un-
shocked system. The level of coarsening and total extent of the
density information given are varied to assess the amount of
local information needed to properly predict energy localiza-
tion from granular compaction. Increasing density resolution
provides more information pertaining to pore shape and local
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FIG. 1. Initial configuration and composite temperature map for
the testing set system with example binning for network input and
output.

curvature, but using only density restricts potentially critical
information such as local crystal orientation and crystalline
defects. It should be noted that the purpose of this work
is not to minimize the error of the networks and make the
best model possible. It is to systematically change the inputs
given to the network such that physical trends and important
physicochemical mechanisms can be inferred from the rela-
tive change in each network’s predictive ability. However, this
methodology does necessitate that the network predictions
be reasonably accurate as a baseline for extracting materials
physics, such that the model is presumably learning some
description of the physics.

II. METHODS

A. Molecular dynamics

All simulations were run with all-atom MD using the
Large-Scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) software package [62,63]. Interatomic interactions
were calculated using the nonreactive, nonpolarizable force
field from Bedrov et al. [64], with tailored harmonic bond
stretch and angle bend terms [65] and an intramolecular O-H
repulsion term [66]. Electrostatics were solved for in real
space with the Wolf potential [67]. The van der Waals in-
teractions were modeled using the Buckingham potential. All
simulations are conducted with a 0.25 fs time step.

Simulation cells of granular TATB were built with the
PBXGen algorithm [17] using columnar (periodic and no
change in shape into the page) grains with a bimodal grain
size distribution with peaks at 40 and 8 nm. The smaller
“fill” grains make up roughly 2/3 of the total grain count.
All grains are crystallographically oriented so that the TATB
[001] direction is in the periodic Z direction with a thickness
of 4.1 nm (into the page in Figs. 1 and 3), which minimizes
grain-to-grain anisotropy. Within the plane, the grains are
randomly rotated. Two cells were constructed with different
sizes: 100×400 nm (12 440 592 atoms) and 100×200 nm
(6 183 984 atoms), where the larger system is used to make
up the training set and the smaller system is the testing set.

As PBXGen packed systems typically only have a volu-
metric packing density of around 50%, the initial cell sizes

were 200×400 and 200×200 nm. The X direction was then
compacted to the final size over a period of 250 ps. The tem-
perature was set 500 K to promote grain boundary formation
and to help anneal defects formed during compaction. The
atom coordinates were fractionally remapped at every step
during compaction. The final cells were thermalized at 300 K
for 25 ps.

Shock simulations were conducted using the reverse bal-
listic method with a particle velocity of 2.0 km/s, with the
resulting shock traveling in the +Y direction (upwards in
Figs. 1 and 3). This was performed by adding the negative
of the particle velocity to all atoms in the system with a
perfectly reflecting momentum mirror at the bottom boundary
in the shocked direction [68]. This resulted in the shocked
material being stationary, which is preferable for analysis, and
is identical to using a moving piston into stationary material
via Galilean invariance. The Y direction was a free bound-
ary, whereas the other directions were periodic. Analysis was
conducted using a per molecule basis, using the molecular
center of mass (c.m.) as its position. Temperature T was the
molecular rotovibrational kinetic energy in units of kelvin,
calculated with a classical specific heat. From the per atom
velocities, we computed three kinetic energy values: total,
translational, and rotovibrational.

KEtot =
∑ 1

2
mi(vi · vi ), (1)

KEtrans = 1

2
M(V · V ), (2)

KEro-vib = KEtot − KEtrans, (3)

KEro-vib = 3Na − 3

2
kBT, (4)

where we define c.m. properties with capital letters and atomic
properties with lowercase letters. M and m correspond to
mass, V and v are velocity, kb is Boltzmann’s constant, and Na

is the number of atoms per molecule. Variables with subscript
i were indexed from 1 to Na. Intramolecular strain energy
Ulatent was defined as the excess intramolecular potential en-
ergy Uintra with respect to the equipartition theorem [28]:

Uintra =
∑

Ubond +
∑

Uang +
∑

Udih +
∑

Uimp, (5)

Ulatent = Uintra − KEro-vib. (6)

B. Machine learning

For the neural networks, a sigmoid function is used into the
hidden layer, and a linear function into the output layer. A bias
is allowed for both layers. All networks have a single hidden
layer. Predictions of temperature (T ) and intramolecular strain
energy (Ulatent) fields are done with separate networks.

The system is binned in a Lagrangian fashion on the initial
frame prior to shock compression in order to provide the
density descriptors. While the Lagrangian scheme negates
the bin-to-bin mass flow issues of an Eulerian scheme, we
do assume that changes to bin size and shape are learned
by the network as part of the shock heating mechanisms,
which may contribute to a portion of the error here. From the
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simulation, each molecule has a defined time it is “shocked”
based on large local changes in c.m. velocity. A “composite
frame” of the shocked state is constructed by taking the posi-
tion and thermodynamics at each molecule at 5 ps after its
shocked time, i.e., molecules are taken from different sim-
ulation frames such that they are at the same relative time
compared with their time of being compressed. The composite
frame is used for the network outputs to minimize effects from
various dissipation mechanisms as the compression processes
are in spatial nonequilibrium.

The input layer consists of the density of a bin and its N
sets of nearest neighbors (initial frame), as shown in Fig. 1 for
the N = 1 case (a second shell of bins would be N = 2, and
just the central bin, no neighbors, is N = 0). Bins with zero
molecules are considered as neighbor bins but not as center
bins as they will not have a final temperature or energy for an
output. The output layer is either the T or Ulatent of the center
bin (composite frame); each of these two values is trained with
separate networks of the same architecture.

All networks consist of an input layer of size (2N + 1)2,
an output layer of size 1, and a single hidden layer of
size �0.5(2N + 1)2�. For N = 0, the hidden layer is size 1.
Figure 1 exemplifies how the all-atom structure is encoded
into the neural network input layer, where the output layer
corresponds to a region of the all-atom results, the same center
Lagrangian bin, which has mean T and Ulatent values.

Different square bin sizes of 2.5, 3.0, 4.0, and 5.0 nm
are used. To compare different bin size results, we define
the spatial extent (SE) of the input layer: SE = L(N + 1

2 ),
where L is the bin length and N is the number of sets of
nearest-neighbor bins included. This is the equivalent to the
radius of an inscribed circle for the total square of bins used.

An 80-20 split is used during training. An early stopping
criterion is set to stop training and take the best network if
the mean-square error of the 20% testing group does not drop
by at least 0.000 01 over 100 epochs. This error delta is in
normalized units, where all input and output data are utilized
as the Z score of the data. An Adam optimizer is used with a
1×10−3 learning rate. All error values presented in this paper
are based on predictions of the smaller of the MD systems
which is not included in training at all. Within the input layer
for a given network, the order of the bins is constant in the in-
put layer, such that the network can differentiate upstream and
downstream of the bin, as well as some information regarding
the shape of a pore.

III. RESULTS AND DISCUSSION

Figure 2 shows parity plots of T and Ulatent for L = 5.0
and 2.5 nm, with nearly equivalent spatial extents of 27.5
and 26.25 nm, respectively. For the temperature (left col-
umn plots), both show decent correlation with the parity line,
with root-mean-square (RMS) errors of 84.4 and 108.9 K for
the 5.0- and 2.5-nm bins, respectively, where peak (individ-
ual) molecular temperatures in the hotspots are over 1500 K
and are 600–700 K in the bulk shocked materials. Certain
high-temperature points are overpredicted while others are
underpredicted, alluding to some microstructural influence in
which some critical descriptors may not be captured by the
density field.

When comparing the two sets at different bin sizes, it is
crucial to consider that while using the 2.5-nm bins results
in four times as many training and testing points, it also
samples a much wider range of values, as the smaller bins
provide less smoothing of extreme temperatures. The 2.5-nm
case has considerably more values above 1000 K, and its
peak hotspot temperatures are much higher than the bulk
temperature, relative to the 5.0-nm bins. The smaller-bin case
must also predict more local gradients which includes a range
of hotspot temperatures, whereas in the 5-nm case, many
hotspots are captured within a single bin and therefore have
a single temperature value.

For the Ulatent predictions shown in Fig. 2, there is consider-
ably less correlation with the parity line. The predictions even
appear to be less correlated overall at the smaller bin sizes.
While the Ulatent fields, shown in Sec. SII of the Supplemen-
tal Material [69], are more disperse than the T fields, there
are still notable regions of higher and lower strain energy.
The predicted fields are considerably more homogeneous and
noisy, showing that the density field alone is not enough
to predict the mechanisms that drive molecules to bent and
distorted shapes, and that more complicated microstructural
or thermodynamic information is likely needed to make these
predictions. This additionally helps to verify previous results
that concluded that the T and Ulatent forming mechanisms are
different, as their localizations do not occur on a one-to-one
basis [38]. Ulatent also has a strong influence from pore size
at larger pores [33], and the system sizes here may not be
large enough to provide a wide enough range of examples
in the training set. Compared with temperature, the density
(and therefore P-V work) alone is not enough to make decent
quantitative predictions of the Ulatent field.

Figure 3 shows heat maps of the actual and predicted
temperatures, as well as the difference, for the 2.5-nm-bin
case. Other bin-size and nearest-neighbor cases are available
in Sec. SI of the Supplemental Material [69]. From this, it
can be assessed that hotspots that are longer in the shock
direction, such as points a and b in Fig. 3, are underpredicted.
However, hotspots that are longer in the cross direction, such
as points c and d in Fig. 3, are overpredicted. The initial
microstructure of this case is shown in Fig. 1. Vertical pores
and high aspect curvature pores can often result in molecular
jetting, leading to high levels of expansion before getting
recompressed [23,31,70]; however, wider or more circular
pores often result in more hydrodynamic or plastic-flow-type
responses that incur much less P-V work during recompres-
sion relative to the jetted material, especially as material will
have less physical space to expand into the pore before getting
recompressed. It should be noted that while there are under-
predictions of the hottest hotspots and overprediction of the
colder ones, the model still generally predicts vertical pores to
be hotter than the horizontal ones.

The two key factors in qualitatively predicting hotspot
temperatures from pore collapse are the pore size and
shape [9,23,33]. Based on these results, the predictions here
appear to be fully considering size, with the largest pores
(points a and c) predicting high temperatures and the smaller
pores typically predicting lower temperatures. Molecular jet-
ting, which greatly influences material expansion into pores,
is a much more complex mechanical process where things
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FIG. 2. Parity plots of T and Ulatent for the 5.0-nm bins and 2.5-nm bins for spatial extents of 27.5 and 26.25 nm, respectively. Data consist
of predictions of the smaller MD cell used exclusively for testing.

such as curvature of the pore come into play [23,31]. Even
with small initial bins, this information is partially coarsened
out, preventing the network from making these predictions.
Information on the shock wave structure and shape, which
will change as it progresses over the material, is also un-
known to the network and can cause different amounts of
shock focusing that leads to jetting. Additionally, the network
does not have information related to crystal orientation, which
results in changes in hotspot temperature on the order of the
errors shown here [28]; however, the grain orientations chosen
here minimize anisotropy between grains. Hence, while P-V
work from pore size is enough to make decently quantitative
predictions of hotspot temperature, the finer microstructural
details are likely needed to correct for errors on the order of
several hundred kelvin. It is most likely a combination of these
omitted features that drives the error in predictions, especially
the underprediction of the highest-temperature hotspots.

Figure 4 shows root-mean-square (RMS) errors and linear
normalized RMS errors (LN-RMSEs) for all networks trained.
The LN-RMSEs are RMSE values normalized by the RMSE
of the linear regression between the density of a bin (no
nearest-neighbor information) and the temperature, presented

as the ratio of the nonlinear network RMSE and the linear
network RMSE. In Fig. 4, which shows the error results for
predictions of the temperature fields, we interestingly see,
for small to intermediate spatial extent, similar RMSEs from
all bin sizes, followed by a divergence of values. The slight
uptick in errors for large spatial extent are attributed to a static
stopping criteria based on error reduction over the previous
200 epochs. For larger SE, the network itself is proportionally
larger and potentially learns at a slower rate, especially for
smaller bin sizes where N is much larger for a given SE and
the network size grows as N2.

For an equal spatial extent between two different bin sizes,
the smaller bin will result in more training or testing data for
a given simulation size. However, the smaller-bin system is
also less coarse grained and will have a wider range of peak
temperatures and more pronounced temperature gradients.
Hence, with more training data and more resolved microstruc-
tural data from the density input, the smaller bins are able to
reach roughly the same level of predictive power as for the
much smoother fields of the larger bins. For the LN-RMSE,
as smaller bins will have more variability in temperature
with density and therefore a larger normalizing constant, the
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FIG. 3. Heat maps of the actual and predicted temperatures, as well as the difference between the two, for the 2.5-nm-bin case with a
26.25 nm spatial extent. Points a–d on the actual temperature map correspond to specific hotspots, where points a and b are underpredicted
and points c and d are overpredicted.

smallest-bin cases perform the best. This normalized case
shows the predictive power of adding more microstructural
information with a finer density field. As there is significantly
less accuracy in the Ulatent predictions, the trends of decreasing
errors with SE and various bin size effects are less physically
meaningful. Plots of RMSE and LN-RMSE for Ulatent are
available in Sec. SIII of the Supplemental Material [69]. These
show similar trends with SE to temperature, yet opposite
trends with respect to bin size, which is most likely an effect
of coarsening significant noise and the ease of predicting a
more uniform field.

IV. CONCLUSIONS

In summary, MD simulations of shock compaction of a
granular material resulted in heterogeneous localization of

both temperature and intramolecular strain energy, where the
latter is known to be responsible for mechanochemical effects.
A Lagrangian binning of initial microstructures was used to
embed local density information, but intentionally excludes
information pertaining to local crystal structure, defects, ori-
entation, and incident wave structure. These density bins were
utilized as an input layer to a neural network to predict the
shock induced T and Ulatent fields.

From trends in RMS errors for different bin sizes and
spatial extents of the input layer, we find that the predictability
of a network increases with more spatial extent, as well as
with smaller bins which would carry more precise microstruc-
tural information. These improvements are despite the smaller
bins leading to much larger variability and fluctuation in the
temperature fields, where larger bins smooth and coarsen that
information.

FIG. 4. Root-mean-square errors for all temperature networks run, as a function of spatial extent. Colored lines represent different bin
sizes. LN-RMSEs (linear normalized RMSEs) are RMS errors that are normalized by the RMS error of a linear network for zero nearest
neighbors (N = 0).
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While density information did not allow for accurate
prediction of Ulatent, the networks readily predicted the tem-
perature fields with some of the hotspots being overpredicted,
while others are underpredicted. While the network predicts
hotter temperatures for larger pores, where more P-V work
can occur during compaction, it fails to fully capture other
mechanisms such as jetting and molecular ejecta, which can
lead to extreme temperatures. This failure manifests in pores
that nucleate these jetting mechanisms, those elongated in the
shock direction, to have underpredicted temperatures. Addi-
tionally, equiaxed or wider pores that do not jet are slightly
overpredicted. This leads the network to give less variation
in prediction from hotspot to hotspot, but still captures the
general trend with pore size.

Hence we are able to utilize neural network predictions
to show that while P-V work is the dominant mechanism
in temperature localization, not having finer microstructural
details such as those on the nanometer to subnanometer length
scale leads to errors with the hotspot on the order of a few
hundred kelvin. Additionally, P-V work and pore shape are
shown to be much less important mechanisms for the Ulatent

field, which may have considerable influence from plasticity
levels and material flow rate [25,33].

This work shows promise in the use of these limited neural
networks to assess physical mechanisms in play for complex,
physicochemical processes in condensed matter systems. In
future work, a wider variety of input descriptors can be uti-
lized that, in addition to density, map features such as crystal
orientation, preexisting crystalline defects, surface roughness
in pores, and the structure or shape of the incident shock
wave which will be altered from upstream microstructural
features and shock instabilities. By coupling these features
with a “leave one feature out”-type scheme and the varying-
spatial-extent scheme used here, the relative importance of

key hotspot mechanisms and their necessary descriptors can
be deduced.

In general, we believe the workflow developed here is
widely applicable to a variety of materials’ processes in gran-
ular systems that can be simulated or experimentally probed
with high resolution in which to train a model. Measurable
and mathematically describable packing of granular materials
ranging from micrometer to millimeter scales [71], as well
as simulatable systems down to the nanoscale [17], offers
a route to design significantly larger training sets than used
here which would span multiple orders of magnitude and time
and length scale processes. Having good structural charac-
terizations of these packings [72], as shown here, is crucial
to accurately modeling dynamic processes in these materials.
Significant future work is needed to extend the ideas here to be
valid for loose packings in large systems in which the length
scales of microstructural features can vary by many orders of
magnitude [71,72].
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