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Theoretical studies of enhanced anomalous Nernst effect in Fe3Ga

Ondřej Stejskal *

Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague, Czech Republic
and Institute of Physics, The Czech Academy of Sciences, Na Slovance 2, Prague, Czech Republic

Martin Veis and Jaroslav Hamrle
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague, Czech Republic

(Received 19 January 2023; accepted 7 July 2023; published 8 August 2023)

The anomalous Nernst effect (ANE) is a member of the extensive family of topological effects in solid state
physics. It converts a heat current into electric voltage and originates from the Berry curvature of electronic
bands near the Fermi level. Recent results established the Fe3Ga alloy as one of the most promising candidates
for applications, due to its flat band structure consisting of a rich web of nodal lines. In this theoretical work,
we study the effect of deformation of Fe3Ga on the anomalous Nernst effect, which naturally occurs in thin
films. Furthermore, we demonstrate that doping, which effectively shifts the position of the Fermi level, can also
significantly modify the strength of the effect. Lastly, we provide detailed analysis of the origin of ANE in the
electronic structure of Fe3Ga which yields a deeper insight into the generating mechanisms, the understanding
of which can lead to substantial enhancement of the effect in the future.
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I. INTRODUCTION

In recent years, topological effects have attracted a lot
of attention in solid state research, due to their unique
and interesting manifestations with an enormous potential
in applications. In magnetic materials, broken time-reversal
symmetry induces anomalous linear response effects such as
the anomalous Hall effect [1–5], anomalous Nernst effect
(ANE) [6,7], and magneto-optic Kerr effect [8,9], all be-
ing governed by the presence of the Berry curvature of the
electronic states.

ANE manifests itself as thermoelectricity, i.e., lossless
conversion of heat flow into electricity, which plays a key
role in developing novel energy-harvesting technologies. The
transverse geometry of the effect in ferromagnets offers many
advantages to the conventional longitudinal Seebeck effect
[10,11], but is significantly smaller in magnitude. Currently,
huge effort is devoted to searching and identifying materials
providing large ANE at zero field.

It has been discovered that ANE originates from the Berry
curvature of the conduction electrons at the Fermi level [2]
and is strongly enhanced with the presence of nodal lines and
planes for bands at the Fermi level which are then split by the
spin-orbit interaction (SOI) to provide large Berry curvatures
[12–20]. Therefore, an extensive amount of high-throughput
first-principle calculations were performed in order to find
materials with large nodal structures and high density of states
at the Fermi energy.

The research has shifted toward ferromagnetic Heuslers
[17,21], Fe3X alloys [18,19,22] lately, with Fe3Ga coming
out on top [18,23] due to its rich flat band structure at Fermi
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energy in the vicinity of point L. This material has been
calculated before [18,24] but limited only to stoichiometric
undeformed cubic structure.

In this work, we investigate how modifications of the crys-
tal structure of Fe3Ga by both deformation and doping affect
the value of ANE. We show that compressive strain is to be
sought for in thin film applications.

Furthermore, the electronic structure of DO3-ordered
Fe3Ga is thoroughly studied in order to identify the underlying
origin of its large ANE. Two distinct sources of the effect are
identified in the Brillouin zone (BZ) and analyzed separately.

II. ELECTRONIC STRUCTURE OF Fe3Ga

The electronic structure of DO3-ordered Fe3Ga bulk crys-
tal [Fig. 1(a)] was calculated by the WIEN2k code [25,26]
with 27 000 k points in the full Brillouin zone and the general-
ized gradient approximation [27] as the exchange-correlation
potential. The lattice constant was set to 5.80 Å [28]. The
calculation was performed with the spin-orbit interaction and
with magnetization in the z direction. The product of the
smallest atomic sphere and the largest reciprocal space vector
was set to RMTKmax = 7 with the maximum value of the partial
waves inside the spheres lmax = 10. States up to 3s are treated
as core states. Bands in Fig. 1(a) are labeled by an increasing
energy eigenvalue starting with 3d Fe states. The closest Ga
states are located approximately 7 eV below the Fermi level
(see Fig. S5 in the Supplemental Material [29]).

The Berry curvature is calculated directly from the
WIEN2k output by the Kubo-like formula:

�n
μν (k) = − h̄2

m2

∑
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FIG. 1. (a) Band structure of DO3-ordered Fe3Ga crystal. Red
(blue) color corresponds to spin down (up). Bands are indexed by
their increasing energy eigenvalue starting with 3d Fe bands. SOI
is included. The green curve corresponds to the z component of
the Berry curvature over occupied states �occ

z = �n fn�
n
z . (b) Crystal

structure of Fe3Ga. (c) Brillouin zone of fcc crystal.

where En is the band energy, ψnk are Bloch wave functions,
and pμ are momentum operators. The Berry curvature �μν

is an antisymmetric tensor that in three dimensions can be
expressed in a pseudovector form via �μν = εμνξ�ξ . The cal-
culation of the anomalous Hall conductivity (AHC) is carried
out by integration of the Berry curvature over the Brillouin
zone:

σ AHE
xy = −e2

h̄

1

(2π )3

∑
n

∫
BZ

fn(k)�n
z (k) dk, (2)

where f is the Fermi-Dirac distribution function. This is
nowadays a well-established procedure for evaluating the in-
trinsic part of the anomalous Hall conductivity [1–5].

The strength of the ANE is evaluated by the temperature-
dependent anomalous transverse thermoelectric coefficient:

αxy(T ) = −1

e

∫
dE

(
− ∂ f

∂E

)
σ AHE

xy (E )
E

T
. (3)

The anomalous Hall conductivity σ AHE
xy (E ) becomes a func-

tion of energy E that represents the threshold for which the
electron states are treated as occupied. AHC is required to
be calculated in a narrow energy interval in the vicinity of
the Fermi level; therefore even minor changes in the form
of doping and deformation can modify the value of ANE
significantly.

A. Doping

The electronic structure of doped Fe3Ga was modeled by
the virtual crystal approximation. It is implemented by re-
placing Ga with a virtual element having a noninteger atomic
number, which simulates an effective increase or decrease of
electron density. Six alloys were considered substituting 5%,
10%, and 20% of Ga elements by either Ge or Zn.

FIG. 2. AHC spectrum for doped Fe3Ga crystal structure. In the
inset, the weighting function for evaluation of α is shown.

From Fig. 2, it is apparent that doping effectively moves
the position of the Fermi energy as the Ga states are buried
deeply below the Fermi level. Substituting Ga with a heavier
element (Ge) leads to a significant increase of the effect (see
Table I) while a lighter element (Zn) kills the effect and with
a higher concentration even changes its sign.

In the inset of Fig. 2 the evaluation at 300 K of the
function entering the convolution [Eq. (3)] is depicted. This
function weights the value of the anomalous Hall conductivity
σ AHE

xy (E ) in the vicinity of the Fermi level to obtain the value
of α. For correct numerical evaluation σ AHE

xy (E ) needs to be
calculated in the energy interval from −0.2 eV to 0.2 eV.

The temperature dependence of the anomalous transverse
thermoelectric coefficient α [Eq. (3)] for extreme cases is
shown in Fig. 3. The values of αmax [defined as the maximal
value of αxy(T )] and α(300 K) are presented in Table I. Gen-
erally, the value of α turns out to be very sensitive on the exact
position of the Fermi level. Different ab initio codes and ap-
plied potentials result in different values of the Fermi energy,
making it a very difficult parameter to obtain from first prin-
ciples alone. Sakai et al. [18] reported αmax = 3.0 A K−1 m−1

for Fe3Ga. We arrive at the same value if we adjust the Fermi
level to match theirs.

TABLE I. Thermoelectric coefficients αmax [maximal value of
αxy(T )] and α(300 K) for deformed and doped Fe3Ga.

αmax α(300 K)
Crystal structure (A K−1 m−1) (A K−1 m−1)

Cubic Fe3Ga 1.7 1.7
Fe3Ga0.95Ge0.05 2.5 2.5
Fe3Ga0.9Ge0.1 3.0 3.0
Fe3Ga0.8Ge0.2 3.3 3.0
Fe3Ga0.95Zn0.05 0.8 0.6
Fe3Ga0.9Zn0.1 −0.7 −0.6
Fe3Ga0.8Zn0.2 −2.6 −2.6
tetra, c > c0, 0.5% 2.1 2.1
tetra, c > c0, 1.0% 2.1 2.0
tetra, c > c0, 1.5% 2.4 2.2
tetra, c < c0, 0.5% 0.9 0.8
tetra, c < c0, 1.0% −0.6 −0.1
tetra, c < c0, 1.5% −0.9 −0.9
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FIG. 3. Temperature dependence of the anomalous transverse
thermoelectric coefficient α.

B. Deformation

Two general cases of deformation were considered, namely
compressive and tensile strain. With compressive strain, the
in-plane lattice parameter is shortened by 0.5%, 1.0%, and
1.5%, while preserving the total volume of the unit cell. As the
out-of-plane lattice parameter gets larger, this case is denoted
by tetra, c > c0.

In the tensile strain case, the in-plane lattice parameter is
extended by 0.5%, 1.0%, and 1.5%, denoted by tetra, c < c0.
In both cases, the crystal structure changes from cubic (space
group Fm-3m, No. 225) to tetragonal (I4/mmm, No. 139).
The respective band structures are shown in Fig. S1 in the
Supplemental Material [29].

The results are shown in Fig. 4 and summarized in Table I.
In both cases, deformation leads to smoothening of the spec-
trum. However, while the tensile strain tends to cancel out the
effect, compression leads to a significant increase of ANE.
Therefore, in thin film applications substrates with smaller
lattice parameters should be considered.

The change of the AHC spectra under deformation is defi-
nitely not trivial, since with lowered symmetry the entire band
structure is different. In order to provide some basic insight
into this matter, we shall study the sources of the anomalous
behavior in the Brillouin zone of cubic Fe3Ga followed by the
analysis of the effect of doping and applied strain.

FIG. 4. AHC spectrum for deformed Fe3Ga crystal structure.
Black line represents spectrum of undeformed bulk AHC.

FIG. 5. Spectrum of the anomalous Hall conductivity in Fe3Ga
as a function of the Fermi energy position. The total value is rep-
resented by black line. Red, blue, and magenta lines correspond to
contributions to conductivity from L, P, and L+P cubes, respectively.
In the inset, the Brillouin zone is depicted with L and P cubes.

III. ANALYSIS OF THE ANE SPECTRA

In this section we analyze the ANE spectrum to identify the
origin of the effect. On the standard k path through the recip-
rocal space [see Fig. 1(a)], there is only single major source
of the Berry curvature in the vicinity of point L as identified
by other authors [18]. However, the inspection of the Brillouin
zone reveals that there are two distinct contributions that cover
the majority of AHC. Apart from the aforementioned L point,
a strong source of the Berry curvature appears in the general
position around point P = [0.55, 0.15, 0.25], expressed in the
relative Cartesian coordinates.

Both sources can be numerically separated and their partial
spectra (integrated inside the respective cubes, including mul-
tiplicity) are shown in Fig. 5 along with the total anomalous
conductivity obtained by integration of the Berry curvature
over the entire Brillouin zone via Eq. (2) in the energy range
−0.1 to 0.1 eV. By modifying the value of the Fermi en-
ergy, only the positions of the Fermi surfaces change which
is reflected by fn(k) entering the integral through �occ =
�n fn(k)�n(k). The Berry curvature vector field of individual
bands �n(k) is not affected by the modification of electron
occupancy.

Together, both partial spectra cover over 70% of the total
anomalous conductivity throughout the entire energy range
and are separated from the total by a mere constant.

In the following, we shall analyze both contributions sep-
arately, identify the contributing Berry curvature flows, and
inspect the evolution of the Fermi surface with the Fermi level
position.

A. Contribution originating in cube P

First, the contribution from the cube centered at point P
is analyzed [see Fig. 6(c)]. The energy dependence of the
anomalous conductivity in this region is shown in Fig. 6(a).
It repeats 16 times in the Brillouin zone due to symmetry
and describes 21% of the total anomalous conductivity. Upon
close inspection, it is found that this region features only two
bands, namely bands 18 and 19. The Berry curvature of band
18 is depicted in Fig. 6(d), while the Berry curvature of band
19 flows in the opposite direction providing �18 + �19 = 0 in
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FIG. 6. (a) AHC spectrum originated in cube P. The dash-dotted
blue line corresponds to the analytical approximation of the P con-
tribution [Eq. (4)]. (b) Band structure in the direction of the Berry
curvature flow with the z component of the Berry curvature over
occupied states �occ

z = �n fn�
n
z that is approximately equal to �18

z in
the region between both Fermi surfaces. The reciprocal distance �k
at two Fermi level positions is indicated. (c) Brillouin zone with the
position of cube P. (d) Flow of the Berry curvature of band 18 in cube
P. The flux of the flow equals 2π/3. Fermi surfaces for bands 18 and
19 at E = 0 eV are depicted, Berry curvature between the surfaces
contributes to AHC. The green line represents the path along which
the band structure in (b) is depicted.

this part of the BZ. It is of particular interest to plot the band
structure in the direction of the flow (along the green P1P2

line) which is shown in Fig. 6(b).
Both bands are split by the crystal field even without SOI

and do not form nodal lines. SOI only further increases the
energy split. Since �18 + �19 = 0 and �occ = �n fn�

n, it is
clear that only the Berry curvature in the region between the
Fermi surfaces of bands 18 and 19 contributes to the anoma-
lous conductivity. Furthermore, the flow is localized along the
green P1P2 line; hence the value of the conductivity can be
approximated by an analytical formula [30]:

σ P
xy = −e2

h̄

1

(2π )3
18�k cos ϕ, cos ϕ = �̂ · ẑ. (4)

The Berry curvature flux is 18 = ∫
dS · �18 = 2π/3 high-

lighting the threefold rotational symmetry present in the
crystal. �k is the reciprocal distance between the respective
Fermi surfaces in the direction of the Berry curvature flow. In
the depicted case �k = 0.0417 bohr−1 and cos ϕ = −1/

√
2,

as the Berry curvature flows in the [011] direction. This
provides a contribution from a single 1D flow σ P

xy = 11.5
(� cm)−1. Due to symmetry, this contribution appears sixteen
times in the BZ with the total strength of 184 (� cm)−1,

FIG. 7. (a) AHC spectrum originated in cube L. (b) Band struc-
ture along the ULW path. The dashed and dash-dotted lines at
−0.043 eV and 0.021 eV, respectively, correspond to both turning
points in the spectrum. (c) Brillouin zone with the position of cube L.
(d) Flow of the Berry curvature and Fermi surface of band 20 in cube
L. Berry curvature outside the surface contributes to AHC. Green
and yellow lines highlight the W-L and �-L directions, respectively.
Their intersection is the L point.

representing about 80% of the numerically obtained value in
cube P, as the Fermi surfaces are not exactly parallel when
crossing the Berry curvature flow.

It is apparent from the band structure in Fig. 6(b) that the
distance �k changes with varying position of the Fermi level
which is one of the ways to obtain the nonzero derivative and
hence nonzero ANE. The results of the analytical formula for
σ P

xy are represented by the dash-dotted blue line in Fig. 6(a).
They are not provided in the entire range as for energies below
−0.02 eV a third band (20) emerges and acts as an additional
source of Berry curvature.

B. Contribution originating in cube L

The second dominant source of the Berry curvature is
located in the vicinity of the L point [Fig. 7(c)]. The energy
dependence of the anomalous conductivity in this region is
shown in Fig. 7(a). It repeats 4 times in the Brillouin zone
due to symmetry and describes 52% of the total anomalous
conductivity. Even though there are no degeneracies present,
the close proximity of the band triplet leads to strong hy-
bridization and generates large Berry curvatures.

The sum of the Berry curvatures of the band triplet �19 +
�20 + �21 equals zero in cube L. Therefore, if all three bands
are either occupied or unoccupied, they do not contribute to
the anomalous effects. The dashed and dash-dotted lines in the
band structure Fig. 7(b) mark the energies where the upper and
lower band gets occupied and unoccupied, respectively, and
correspond to both turning points in the spectrum Fig. 7(a).

The anomalous effects inside energy region −0.043 eV
to 0.021 eV (between the dashed and dash-dotted lines) are
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FIG. 8. AHC spectrum of compressed Fe3Ga with partial
contributions.

governed solely by varying occupation of the middle band 20.
The Berry curvature structure of this band is complicated and
can be seen in Fig. 7(d). The Berry curvature in the occu-
pied region contributes to the anomalous conductivity. With
increasing Fermi energy, the Fermi surface shrinks inward
enabling other parts of the Berry curvature flows to contribute.
There are flows in many directions; some add to and some
subtract from the total value. Thus, precise geometry and
width of the individual flows matter and the value of AHC
steadily decreases with increasing energy leading to a nonzero
contribution to ANE.

C. Partial contributions under deformation

Under compressive (Fig. 8) and tensile (Fig. 9) strain, the
partial contribution analysis shows that the vicinity of point
L dominates both AHC spectra and determines solely their
overall shape around the Fermi level. Unfortunately, a detailed
investigation of Berry flows did not provide any additional
insight; therefore we present numerical results only. For more
information, see the Supplemental Material [29], where band
structures for all discussed cases (Fig. S1) and also the Berry
curvature flows around point L (Fig. S2) are shown.

In the compressed case, the P contribution vanishes (as
the energy distance between respective bands increases; see
Fig. S3 in the Supplemental Material [29]). However, a new
contribution arises around point Q = [0.5, 0.5, 0.15] with
similar strength (see inset of Fig. 8). Only in the compressed
case, the Fermi level falls exactly between two hybridizing
bands (see Fig. S4 in the Supplemental Material [29]).

FIG. 9. AHC spectrum of stretched Fe3Ga with partial
contributions.

The overall character of the spectra is preserved under
deformation, with both fundamental peaks approximately at
the same energy position, suggesting a small change in the
electronic structure. On the other hand, the strength of in-
dividual peaks decreases, suggesting a change of spin-orbit
splitting between respective bands leading to modifications of
the Berry curvature vector field.

IV. CONCLUSION

We performed ab initio calculations of several Fe3Ga struc-
tures modified by deformation and doping. We showed that
compressive strain leads to a significant increase of αxy and
hence should be sought for in applications. Doping modeled
via the virtual crystal approximation effectively moves the
position of the Fermi level and enables additional tuning of
the αxy value. For example, the model predicts that 20% of Ge
doping almost doubles the ANE.

Furthermore, we analyzed the origin of the ANE in DO3-
ordered Fe3Ga and identified two dominant sources in the
Brillouin zone related to the Berry curvature flow in the
vicinity of the Fermi level. Note, however, that the analysis
presented in this work covers only the intrinsic part of the
anomalous Nernst effect and omits scattering mechanisms.
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