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Tunable magnon topology in monolayer CrI3 under external stimuli
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Two-dimensional (2D) honeycomb ferromagnets, such as monolayer chromium trihalides, are predicted to
behave as topological magnon insulators, characterized by an insulating bulk and topologically protected edge
states, giving rise to a thermal magnon Hall effect. Here we report the behavior of the topological magnons in
monolayer CrI3 under external stimuli, including biaxial and uniaxial strain, electric gating, as well as in-plane
and out-of-plane magnetic field, revealing that one can thereby tailor the magnetic states as well as the size and
the topology of the magnonic bandgap. These findings broaden the perspective of using 2D magnetic materials
to design topological magnonic devices.
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I. INTRODUCTION

Last years have witnessed a surge of research interest in
the field of topological magnonics [1], driven by experimen-
tal findings in diverse materials, including pyrochloric [2,3],
perovskite [3], hexagonal [4–7], and kagome [8,9] structures.
These materials, exhibiting nontrivial magnon topology, man-
ifest a bandgap in their bulk magnon bands, and topologically
protected edge states [1,10–20], leading to a thermal magnon
Hall effect. Materials with such properties are known as topo-
logical magnon insulators (TMIs), drawing an analogy to their
electronic counterparts. Several recent studies proposed that
the properties of TMIs can be exploited to construct a variety
of topological magnonic devices, including waveguides, spin
wave diodes, beam splitters, and interferometers [20–23]. In
order to realize such devices experimentally, and optimize
their performance, it is important to understand how to control
and tune the magnon topology of a given material.

CrI3, the archetypal two-dimensional (2D) magnetic ma-
terial, has recently gained significant attention in the field of
magnonics, as it possesses highly-tunable magnon modes in
the terahertz frequency range [24–26], exhibiting potential for
fast and energy-efficient data processing applications [27]. In
addition, several theoretical studies [11–13] suggested that
2D CrI3 may be a promising candidate to host topological
magnons, leading to the possibility of realizing TMIs in the
monolayer limit.

For a material to possess topological magnons, at least
two conditions need to be fulfilled: (i) the spin-wave disper-
sion has a nonzero bandgap, in CrI3, the magnonic bandgap
emerges from the Dzyaloshinskii-Moriya interaction (DMI)
and the Kitaev interaction, which both originate from the spin-
orbit coupling (SOC) [4,5,11–17], and are prone to tuning
through mechanical and electric stimuli [26,28–30], offering
opportunities to tailor the magnonic bandgap of CrI3; (ii) the
effective time-reversal symmetry is be broken, e.g., due to
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the spontaneous magnetization of a material or an externally
applied magnetic field. However, even when these two condi-
tions are fulfilled, the magnon topology is known to depend on
intrinsic material properties like sublattice symmetry [13,14],
stacking order [13], or magnetic configuration [13]. In the
present paper, we demonstrate that the magnon topology of
monolayer CrI3 can also be actively tuned using external
stimuli such as biaxial and uniaxial strain, and applied electric
or magnetic fields.

The paper is organized as follows. In Sec. II, we detail the
computational methodology used in this paper. We provide
a detailed description of the Heisenberg Hamiltonian that
models the magnetic interactions in CrI3 and explain how the
magnetic parameters of this Hamiltonian are obtained from
first-principles calculations. Further, we discuss how we de-
termine the ground-state spin configuration and the magnonic
dispersion for a given set of magnetic parameters, and define
the Chern number, which will be used to classify the topology
of the magnons. In Sec. III, we first briefly revise the mag-
netic and magnonic properties of a pristine CrI3 monolayer
in Sec. III A, and then show how these properties are influ-
enced by biaxial and uniaxial strain, electric gating, and an
external magnetic field in Secs. III B–III E respectively. For
biaxial strain, we report magnetic phase transitions between
the out-of-plane ferromagnetic (FM) spin polarization of the
pristine case, to in-plane FM and Néel antiferromagnetic
(AFM) states. Further, we reveal that one can tune both the
size and the topology of the magnonic bandgap using biaxial
and uniaxial strain, and out-of-plane and in-plane magnetic
fields, unveiling topological phase transitions between phases
with opposite Chern numbers, and between phases with trivial
and nontrivial topology. Furthermore, we investigate the effect
of an applied electric field on monolayer CrI3, albeit causing
rather small quantitative changes to the magnonic dispersion.
Section IV summarizes our findings and discusses further
research opportunities within the field. Additionally, in the
Appendix, we report results for the spin-wave dispersion of
the pristine CrBr3 and CrCl3 monolayers (belonging to the
same Cr-trihalide family), revealing the presence of a very
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small topological bandgap for the former and a Dirac point
for the latter.

II. METHODOLOGY AND THEORY

The magnetic interactions in CrI3 are modeled by a Heisen-
berg spin Hamiltonian

Ĥ = 1

2

∑
i, j

ŜiJi j Ŝ j +
∑

i

ŜiAiiŜi + μB

∑
i

B · giŜi, (1)

in which Ji j and Aii are the exchange and single-ion
anisotropy (SIA) matrices respectively, and the spins Ŝi =
(Ŝx

i , Ŝy
i , Ŝz

i ) are expressed in Cartesian coordinates. We con-
sider a spin of S = 3/2, since the chromium atoms show
a magnetic moment of μ = 3μB. The exchange term of the
Hamiltonian can be decomposed in separate contributions as

Ĥex = 1

2

∑
i, j

[
Ji j Ŝi · Ŝ j + Ki j Ŝ

γ

i Ŝγ

j + Di j (Ŝi × Ŝ j )
]
,

where the spins Ŝi = (Ŝα
i , Ŝβ

i , Ŝγ
i ) are now considered in the

local eigenbases {α, β, γ } that diagonalize the symmetric
parts of the exchange matrices. In these bases, we define the
isotropic exchange constant as Ji j = (Jα

i j + Jβ
i j )/2, and the Ki-

taev constant as Ki j = Jγ

i j − Ji j . The components of the DMI
are calculated in the Cartesian basis from the off-diagonal el-
ements of the exchange matrix as Dx

i j = 1
2 (J yz

i j − J zy
i j ), Dy

i j =
1
2 (J zx

i j − J xz
i j ) and Dz

i j = 1
2 (J xy

i j − J yx
i j ) [31,32]. Notice that

the sign of the DMI vector depends on the hopping direc-
tion of the considered spin pair, since Di j = νi j |Di j | with
νi j = −ν ji = ±1. Due to the rotational symmetry of CrI3, it
is sufficient to calculate only one element of the SIA ma-
trix, namely Azz

ii , all the other matrix elements are redundant
[31,32]. However, breaking of this symmetry, e.g., by ap-
plying uniaxial strain, requires a calculation of the full SIA
matrix. The effect of an external magnetic field is accounted
for by the inclusion of a term due to the Zeeman interaction
in the Heisenberg Hamiltonian, where gi ≈ 2 is the g factor,
and μB is the Bohr magneton. The Heisenberg Hamiltonian is
parameterized from first principles using the four-state energy
mapping (4SM) methodology [31,32] and density functional
theory (DFT). A detailed discussion on the implementation
of the needed DFT calculations is included in Appendix A.
Tables containing all the calculated exchange and SIA param-
eters can be found in the Supplemental Material [33].

The ground-state spin configurations and magnonic dis-
persion of monolayer CrI3 are both calculated using SPINW

[34]. The ground-state spin configurations are obtained using
the magnetic structure optimizer functionalities that are im-
plemented in SPINW. These functions can reach (local) energy
minima by iteratively rotating the spins starting from an initial
random spin configuration. The minimization was repeated
for varying supercell sizes to exclude its influence on the final
result. To obtain the spin-wave dispersion, we assume linear
spin-wave theory and perform a numerical diagonalization of
the spin Hamiltonian in reciprocal space.

To classify the topology of magnons, we calculate the
Chern number, which is a topological invariant with an integer

FIG. 1. Top view (a) and side view (b) of the crystal structure of
monolayer CrI3. The chromium and iodine atoms are depicted with
dark blue and orange spheres respectively. The unit cell is marked
with a solid black line. The crystal structure was drawn using VESTA

[36]. Panel (c) depicts the corresponding first BZ and high-symmetry
points for 2D systems with a hexagonal lattice.

value that is defined for the nth band as

Cn = 1

2π

∫
BZ

�nk dk, (2)

where the integration is performed over the first Brillouin zone
(BZ) with k = (kx, ky ), and the Berry curvature is calculated
as

�nk = −2Im

⎡
⎣∑

n′ �=n

〈ψnk|vx|ψn′k 〉〈ψn′k|vy|ψnk 〉
(λnk − λn′k )2

⎤
⎦, (3)

with λnk and |ψnk〉 respectively the eigenvalues and eigenvec-
tors of the Bogoliubov Hamiltonian Ĥk in reciprocal space,
and vx(y) = ∂kx(y)Ĥk. For systems that are gapless or exhibit
a trivial bandgap, the Chern numbers vanish. In this paper,
we calculate Chern numbers according to the link-variable
approach as detailed in Ref. [35] for a discretized BZ.

III. RESULTS

A. Pristine monolayer

Before discussing the tuning of magnons using external
stimuli, we first review the results for a pristine CrI3 mono-
layer [13]. Figures 1(a) and 1(b) depict the crystal structure
of monolayer CrI3. The chromium atoms form a honeycomb
lattice and are octahedrally coordinated with six iodine atoms.
Each unit cell contains two chromium atoms, which are con-
nected through two ≈90◦ Cr-I-Cr bonds. Structural relaxation
using DFT, yields an in-plane lattice constant of a = 6.919 Å.
Figure 1(c) depicts the first BZ and high-symmetry points of
a 2D hexagonal lattice. Note that, in principle, the K and K ′
points are inequivalent; however, if the sublattice symmetry is
upheld, the dispersion will be identical at both points.

Monolayer CrI3 has a FM ground state, caused by
isotropic exchange constants of JNN = −4.35 meV and
JNNN = −0.74 meV for respectively the nearest-neighbor
(NN) and next-nearest-neighbor (NNN) interactions. The
anisotropy in the exchange interaction is captured by the
Kitaev constants, which are equal to KNN = 1.49 meV and
KNNN = 0.17 meV. This exchange anisotropy, together with
a SIA parameter of 〈Azz

ii 〉 = −0.08 meV, causes the spins to
prefer an out-of-plane orientation. Due to the presence of an
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inversion center between NN spins (i.e., preserved inversion
symmetry), the resulting DMI will be zero. However, there
is no inversion symmetry between NNN spins, resulting in a
weak yet nonzero DMI of |DNNN| = 0.06 meV.

The calculated magnetic parameters for the pristine CrI3

monolayer yield the spin-wave dispersion depicted as the blue
curve in Fig. 3(a). The lower energy “acoustic” branch and the
higher energy “optical” branch, correspond to an in-phase and
an out-of-phase precession of the spin sublattices respectively.
At the � point, a Goldstone gap of �� = 0.43 meV opens
in the dispersion due to the material’s magnetic anisotropy.
At the K point, there is a small bandgap of �K = 0.15 meV,
which is caused by a combination of the NNN DMI and the
NN Kitaev interaction. This bandgap turns out to be topo-
logically nontrivial, yielding Chern numbers of Cn = ±1 for
the upper and lower bands, respectively. The origin of the
topology is attributed to the breaking of time-reversal symme-
try due to the spontaneous magnetization of CrI3. Note that,
although the calculated bandgap is of the same order of mag-
nitude as other theoretically calculated values for monolayer
CrI3 [37,38], it is significantly smaller than the experimentally
observed value of ≈2.8 meV for bulk CrI3 reported in Ref. [5].
Although this issue is still open to debate, a recent study
suggests that the magnon-phonon coupling, which we do not
account for in our model, is the mechanism responsible for
this discrepancy [39].

B. Effect of biaxial strain

In this section, we discuss to which extent the spin states
and the magnonic properties of monolayer CrI3 can be tuned
by applied biaxial strain.

Figures 2(b) and 2(c) depict the dependence of the ex-
change and SIA parameters (in the Cartesian basis) on the
biaxial strain. In Fig. 2(b), we defined the in-plane and out-
of-plane exchange constants as J‖ = [〈J xx

i j 〉 + 〈J yy
i j 〉]/2 with

〈J xx
i j 〉 ≈ 〈J yy

i j 〉 and Jzz = 〈J zz
i j 〉, where 〈〉 corresponds to av-

erages taken over all appropriate (i − j) pairs for the NN
and NNN parameters respectively. Similarly, we define the
out-of-plane exchange anisotropies portrayed in Fig. 2(c) as
� = 〈J zz

i j 〉 − J‖. The dotted lines in Figs. 2(b) and 2(c) mark
magnetic phase transitions between the spin configurations
depicted in Fig. 2(a). The NN exchange constants decrease
for applied tensile strains, while the SIA increases, eventu-
ally resulting in a transition to an in-plane FM state (xFM),
marked with blue on Fig. 2. The transition occurs at the
point where Azz

ii + �NNN > |�NN|, assuring that the in-plane
state is now lower in energy than the out-of-plane (zFM)
one. In contrast, the exchange constants increase rapidly for
compressive strains, eventually even turning positive, which
leads to a transition to an in-plane Néel-AFM state, marked
with red on Fig. 2. Note that in the xFM state the spins are
oriented along the armchair direction, while in the Néel-AFM
state, they orient themselves along the zigzag direction. The
emerging magnetic phase transitions are in qualitatively good
agreement with earlier reported results [28], strengthening our
confidence in the obtained magnetic parameters.

Naturally, the changes in the magnetic parameters as a
consequence of the applied strain will also influence the
magnonic dispersion. Figure 3(a) shows the influence of a 4%

FIG. 2. Effect of biaxial strain on the magnetic properties of
monolayer CrI3. (a) Spin configurations of a biaxially strained CrI3

monolayer. (b) Evolution of the in-plane and out-of-plane exchange
constants as a function of the applied strain. (c) Dependence of the
out-of-plane exchange anisotropy and the SIA on the applied strain.
All parameters are considered in the Cartesian basis. Dotted lines
mark magnetic phase transitions between the spin configurations
depicted in (a).

tensile strain and a −4% compressive strain on the shape of
the dispersion. The bandwidth of the magnon spectrum will
increase or decrease proportionally to the strength of the ex-
change interaction [i.e., increase for tensile strain, decrease for
compressive strain; cf. Fig. 2(a)]. The size of the Goldstone
gap will decrease for applied tensile strains as it is propor-
tional to the out-of-plane magnetic anisotropy of the system
[cf. Fig. 2(b)]. Figure 3(b) depicts the size of the magnonic
bandgap (at the K point) as a function of the applied strain.
It is clear that the size of �K evolves proportionally to the
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FIG. 3. Effect of biaxial strain on the magnonic properties of monolayer CrI3. (a) Shape of the magnonic dispersion for different values of
applied biaxial strain. (b) Size of the magnonic bandgap (at the K point) and the out-of-plane component of the NNN DMI as a function of the
applied strain. The green dotted line denotes that, although �K is nonzero, there is no effective bandgap due to the lowering of the branches
at the � point. Corresponding Chern numbers are indicated for each topological phase, topological phase transitions are marked with black
dotted lines.

the out-of-plane DMI component for both compressive and
tensile strain. However, despite the fact that �K is nonzero for
all considered strains, there will be no effective bandgap for
applied strains of −4% and lower, due to the lowering of the
branches at the � point as can be seen from the orange curve
in Fig. 3(a). Applying biaxial strain not only influences the
size of the bandgap but also its topology. Figure 3(b) shows
the Chern numbers for the different topological phases that
can be reached by applying biaxial strain. When there is no
effective bandgap, the Chern numbers, of course, vanish and
the system finds itself in a topologically trivial phase. For
a tensile strain of about 6% the sign of the Chern number
of each band changes sign, signifying that the propagation
direction of the magnonic edge states, and the corresponding
thermal Hall current will reverse. Note that such a sign change
is expected for decreasing DMI, which can be seen from the
topological phase diagram as a function of the DMI and the
Kitaev interaction reported in Ref. [13]. When the magnetic
phase changes to the xFM configuration, the Chern numbers
again change sign, since now the bandgap is determined by
the in-plane DMI component instead of the out-of-plane one.

C. Effect of uniaxial strain

By applying biaxial strain, one changes the distance be-
tween the spins in monolayer CrI3 while conserving its lattice
symmetries. However, if we apply uniaxial strain, the ro-
tational symmetry of the lattice will be broken, which is
reflected in the resulting exchange parameters [see Fig. 4(a)].
In what follows, the uniaxial strain is applied along the zigzag
direction of the chromium honeycomb lattice [40]. For the NN
exchange parameters associated with the pair oriented per-
pendicular to the direction of the strain, there are only minor
changes in the parameter values, while the changes for the
other two NN exchange parameters are more significant [33].
Consequently, the overall in-plane and out-of-plane exchange
constants will evolve in a similar fashion as the parameters

for the biaxial strain case, but they will grow and decline at a
slower rate. Another effect of the broken rotational symmetry
is that the SIA is no longer quantified by only one parameter
but by the full SIA matrix, which causes the easy axis of the
spins to tilt with respect to the out-of-plane axis [33]. Together
with the nonuniform changes to the exchange parameters of
the different pairs, this causes spin canting along the direction
of the applied strain, i.e., the zigzag direction.

Figure 4(b) plots the magnonic bandgap and corresponding
Chern numbers of monolayer CrI3 as a function of the applied
uniaxial strain. We identify the NNN DMI and the canting
of the spins caused by a change in the magnetic anisotropy,
the latter quantified by the out-of-plane component of the
magnetization, as the two largest factors that determine the
size of the bandgap.

For compressive uniaxial strain, the bandgap has the ten-
dency to increase proportional to the DMI. However, the spin
canting has the opposite effect and suppresses the bandgap,
which explains the dip in the bandgap around −4% applied
strain, where we see a similar decrease of the magnetization
curve. Nevertheless, we generally notice that compressive uni-
axial strain leads to an increase of the bandgap with respect to
the pristine case. Remarkably, we find that for a compressive
strain of −6% and −8% the Chern numbers vanish, despite a
nonzero �K . To illustrate why, we investigate the edge states
in a quasi-one-dimensional CrI3 stripe that is periodic along
the x direction, and has a finite width of 30 unit cells in the
y direction, with zigzag edges [see Fig. 5]. For the pristine
case, depicted in Fig. 5(a), we observe two nontrivial edge
modes that connect the upper and lower bands and cross at
the Dirac point. However, for a compressive uniaxial strain of
−6% [Fig. 5(b)], we see that the edge modes become trivial
as they no longer connect the upper and lower bulk bands;
hence, the Chern number equals zero. For higher compressive
strain, e.g., −8%, the effective bandgap is zeroed due to the
lowering of the branches around the � point, similarly to the
biaxial strain case.
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FIG. 4. Effect of uniaxial strain, applied along the zigzag direction of the chromium honeycomb lattice, on the magnetic and magnonic
properties of monolayer CrI3. (a) Evolution of the in-plane and out-of-plane exchange constants as a function of the applied strain. (b) Plot of
the size of the magnonic bandgap and the out-of-plane component of the NNN DMI on the left axis, and the out-of-plane component of the
magnetization on the right axis, all as a function of the applied strain. Corresponding Chern numbers are indicated for each phase, and phase
transitions are marked with black dotted lines.

For tensile strain, we find that the size of the bandgap scales
almost linearly with the absolute value of the DMI, while the
sign change of the DMI also causes the signs of the Chern
numbers to flip, again signifying a change in the propagation
direction of the magnonic edge currents.

D. Effect of electric gating

2D materials are particularly prone to vertical gating,
where low applied voltages can lead to very large electric
field and cause radical changes in electronic and magnetic
properties. By applying such an out-of-plane electric field,
we break the inversion symmetry of monolayer CrI3, allow-
ing for the emergence of DMI even between the NN spins.
However, as shown in Fig. 6, the resulting DMI is rather

small even at relatively high applied fields. At the same time,
we found that all other magnetic parameters remain prac-
tically unaffected by the applied field (details given in the
Supplemental Material [33]). Our calculations show that the
NN DMI scales linearly with the applied electric field, reach-
ing values of the same order of magnitude as the ones reported
in Ref. [41]. The found typical magnitude of these DMI values
is far insufficient to instigate any noncollinear spin textures
in CrI3. Furthermore, the found small increase in NN DMI
had a weak impact on the spin wave dispersion. Due to the
electric field, the magnons pick up a geometric phase, which
will shift the Dirac surface states up or down depending on
the polarity of the field with respect to the magnetization. This
phenomenon is called the AC effect, and it has been proposed
as a possible source of evidence to confirm the topological

FIG. 5. Effect of uniaxial strain on the magnonic dispersion of a quasi one-dimensional CrI3 stripe (of 30 unit-cells width and with zigzag
edges; panel (a) shows pristine case, panel (b) the −6% compressed stripe in the longitudinal direction). Bulk magnonic bands are depicted in
red, edge states in blue.
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FIG. 6. NN out-of-plane DMI value as a function of the applied
out-of-plane electric field.

properties of CrI3 in experiment [18]. However, according to
our calculations, these shifts, which are below 0.04 meV even
for a large electric field of Ez = 0.6 V/Å, are too small to be
observed experimentally.

E. Effect of magnetic field

In the preceding sections, we showed that applying strain
or an electric field to monolayer CrI3 tunes its exchange pa-
rameters and, consequently, its magnonic dispersion. In this
section, we demonstrate that by applying an external mag-
netic field, which merely changes the spin orientation and
leaves the exchange parameters intact, one can also manip-
ulate the spin-wave behavior. By investigating the hysteresis
curve of monolayer CrI3 in an out-of-plane magnetic field,
we first show that reversal of the magnetization results in a
sign change of the Chern numbers. Furthermore, we demon-
strate that an in-plane magnetic field can lead to a similar
sign change, or can even fully close the magnonic bandgap,
depending on the orientation of the applied field with respect
to the crystallographic directions of the lattice.

Out-of-plane field. Applying a uniform out-of-plane mag-
netic field has no effect on the shape of the magnonic
dispersion; however, the Goldstone gap will increase (de-
crease) for magnetic fields that have a parallel (opposite)
polarity with respect to the magnetization direction [13].
Figure 7 shows the hysteresis curve of monolayer CrI3, pre-
dicting that beyond the coercive field of 3.25 T [42] the
Goldstone gap closes, causing the magnetization to flip. No-
tice that a flip of the magnetization causes a sign change of
the Chern numbers, reversing the propagation direction of the
magnonic edge states and the resulting heat current.

In-plane field. Figure 8 shows the effect of a uniform in-
plane magnetic field on monolayer CrI3, by plotting the size
of the magnonic bandgap as a function of the magnitude of
the field B and the azimuthal angle θ between the armchair
direction of the lattice and the direction of the field. As the
strength of the field is increased, the spins tilt towards the
direction of the applied field. We find that the saturation field,
for which all the spins attain in-plane polarization, lies in

FIG. 7. Hysteresis curve of monolayer CrI3 under applied out-
of-plane magnetic field. Corresponding Chern numbers are indicated
for both magnetization orientations.

the range 3.0–3.5 T, depending on the direction of the ap-
plied field, which is in good agreement with experimentally
reported values of approximately 3 T for bulk CrI3 [5,44].
Notice that the size of the magnonic bandgap decreases pro-
portionally to the out-of-plane polarization of the spins. For
strong fields, when the spins are fully polarized in the lattice
plane, the bandgap can even close entirely, which has also
been shown theoretically in the Heisenberg-Kitaev model [5].
Note, however, that the effect of the field on the bandgap
depends on the direction in which it is applied. For fields
applied along or under small angle θ to the armchair direction,
we find a parametric (B, θ ) region, marked with a white dotted
line on Fig. 8, where the bandgap does not fully close. Within
this region, the bandgap is small but nonzero, accompanied
by a sign change of the Chern numbers. These results seem
to be in qualitatively good agreement with Ref. [17], who

FIG. 8. Size of the magnonic bandgap �K as a function of the
magnitude and direction of an applied in-plane magnetic field. Cor-
responding Chern numbers and the topological phase boundaries are
indicated.
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reported a similar sign change of the Chern numbers and
the thermal Hall conductivity as a function of an in-plane
magnetic field for arbitrarily varied parameters in a general
spin model for 2D honeycomb ferromagnets (whereas here we
obtain the material-specific microscopic exchange parameters
from first-principles calculations). Finally, notice that due to
the breaking of in-plane honeycomb symmetry by the applied
field, the bandgap does not occur exactly at the K point, but
is slightly shifted instead, as seen in earlier studies on bilayer
and bulk CrI3 [13,38].

IV. CONCLUSIONS

Using a Heisenberg spin model parametrized from first
principles, we characterized the magnonic dispersion of
monolayer CrI3 under various external stimuli accessible in
experiment, showing that both the size and topology of the
magnonic bandgap can thereby be tuned. By applying biaxial
strain, uniaxial strain, or an out-of-plane or in-plane magnetic
field, we demonstrated tunability of the magnon topology be-
tween multiple phases, either switching between topologically
trivial and topologically nontrivial phases, or reversing the
sign of the Chern numbers between two topologically non-
trivial phases. In topological magnonic devices, these findings
could be employed to switch on/off or reverse the magnon
edge current or the thermal Hall current, or simply tune the
size of the bandgap and manipulate the bandwidth in which
the device operates.

Counterintuitively, we found that electric gating exerts a
negligible effect on the magnetic properties and magnonic
band structure of monolayer CrI3. This result is rather disap-
pointing with respect to electronic control of related magnonic
devices and requires experimental validation.

Although several neutron scattering measurements of 2D
materials confirmed the presence of magnonic bandgaps that
are predicted to possess topological properties [4–8], the ther-
mal magnon Hall effect remained undetected to date, which
would have been a decisive characteristic signature for the
existence of topological magnons in 2D materials. This obser-
vational hiatus is likely due to the condensation of magnons
in the bottom of the bands as they follow Bose-Einstein statis-
tics; however, recent work suggests that the amplification of
the edge states using very specifically tailored electromagnetic
fields could provide a route towards experimental verification
of the thermal Hall effect [10], which may then further be
employed to validate our results in CrI3.

On the theory front, there are also several open challenges
requiring further research. An important unsolved problem
is achieving more accurate predictions of the size of the
magnonic bandgap. In this regard, efforts should be directed
towards understanding and modeling of the magnon-phonon
coupling. Another research direction should be to advance the
study of topological magnonics in materials with different lat-
tice types or spin configurations, bearing in mind the pertinent
interest in using periodic spin textures as magnonic crystals
[45,46].
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APPENDIX A: DFT CALCULATIONS

The Vienna ab initio simulation package (VASP) [47–49] is
used to conduct DFT calculations, employing the generalized
gradient approximation (GGA) by implementing the Perdew-
Burke-Ernzerhof (PBE) [50] exchange-correlation functional,
and the projector augmented wave (PAW) [51] method. To
incorporate a vdW correction term, we utilize the D2 method
of Grimme [52]. The SOC is included in all calculations
[53]. To improve the description of the strongly-correlated

FIG. 9. Magnonic dispersion of monolayers CrBr3 (a) and CrCl3

(b). For CrBr3, a very small bandgap of �K = 0.03 meV is present
at the K point, and corresponding Chern numbers are indicated for
each band. CrCl3 exhibits a Dirac cone at the K point and, thus, a
trivial topology.

084402-7
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d-electrons, we implement the GGA + U method in the ro-
tationally invariant form [54] by adding an on-site Coulomb
interaction of Ueff = U − J = 2.8037 eV to the d orbitals of
the chromium atoms. The latter value was calculated using a
linear response method. During structural relaxations, we use
a plane-wave energy cutoff of 700 eV, during other 4SM cal-
culations we can safely lower the cutoff to 300 eV [55]. Due
to the periodic boundary conditions of VASP, we implement
a unit-cell length of c = 20 Å in the out-of-plane direction to
include enough vacuum between periodic images. In the 4SM
calculations, we require a 3 × 3 × 1 supercell to assure fully
converged magnetic parameters. Smaller supercells result in
an overestimation of the exchange constants due to artificial
interactions between periodic images. For the BZ integration,
we use a Gaussian smearing of 0.01 eV. During structural
relaxation, a k-point sampling grid of 15 × 15 × 1 is utilized,
while the use of supercells in the 4SM calculations permits
the use of a smaller 3 × 3 × 1 grid to minimize the computa-
tional cost. To investigate the dynamical stability of strained
CrI3, we calculated the phonon dispersion for different applied
strains. The obtained phonon band structures showed no sign
of instabilities for the strain values considered in this paper.

APPENDIX B: MAGNONIC DISPERSION
OF MONOLAYER CrBr3 AND CrCl3

In order to investigate the effect of the SOC on the magnon
topology, and in search of realizing Dirac magnons in a mag-

netic monolayer, we detail the spin-wave dispersion of CrBr3

and CrCl3.
The magnonic bandgap in CrI3 originates from the DMI

and the Kitaev interaction, which are both a consequence
of the strong SOC due to its heavy iodine ligands. Other
chromium trihalide monolayers, i.e., CrBr3 or CrCl3, have
lighter ligands and, thus, a smaller SOC, leading to heav-
ily reduced magnetic parameters of respectively, Dz

NNN =
0.00 meV and KNN = 0.15 meV for CrBr3, and Dz

NNN =
0.00 meV and KNN = 0.03 meV for CrCl3. A full summary of
all the magnetic parameters for CrBr3 and CrCl3 can be found
in the Supplemental Material [33]. The obtained magnetic
parameters lead to an out-of-plane FM ground state for both
CrBr3 and CrCl3, although the latter is in disagreement with
experimental work on bulk CrCl3 [56], our study is consis-
tent with earlier DFT-based studies of monolayer CrCl3 [57].
The spin wave dispersion for both materials is depicted in
Figs. 9(a) and 9(b) for CrBr3 and CrCl3 respectively. The
dispersion has a similar shape to the one of CrI3; however,
the reduced DMI and Kitaev values now result in a tiny
topological bandgap of �K = 0.03 meV for CrBr3 and a Dirac
cone for CrCl3. Since the DMI is zero is both materials, we
attribute the origin of the bandgap in CrBr3 solely to the Ki-
taev interaction. The Chern numbers for CrBr3 are indicated in
the figure. Our calculations for CrCl3 confirm that the gapless
Dirac magnons recently observed in the bulk [58,59], persist
down to the monolayer limit.
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